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Abstract
Complex-valued harmonic functions that are univalent and sense preserving in the
open unit disk can be written in the form f = h + g, where h and g are analytic. In this
paper we investigate some classes of univalent harmonic functions with varying
coefficients related to Janowski functions. By using the extreme points theory we
obtain necessary and sufficient convolution conditions, coefficients estimates,
distortion theorems, and integral mean inequalities for these classes of functions. The
radii of starlikeness and convexity for these classes are also determined.
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1 Introduction
Harmonic functions are famous for their use in the study of minimal surfaces and also
play important roles in a variety of problems in applied mathematics (e.g. see Choquet [],
Dorff [], Duren [] or Lewy []). A continuous function f = u + iv is said to be complex-
valued harmonic in a domain D ⊂C if both u and v are real harmonic in D. In any simply
connected domain, we can write f = h + g , where h and g are analytic in D. We shall call
h the analytic and g the co-analytic part of f . Clunie and Sheil-Small [] pointed out that
a necessary and sufficient condition for f to be locally univalent and sense preserving in
D is that |h′(z)| > |g ′(z)| in D. Note that for f = h + g, harmonic and sense preserving in
the open unit disk D = {z ∈ C : |z| < }, the condition h′() =  > |g ′()| implies that the
function (f – g ′()f )/( – |g ′()|) is also harmonic and sense preserving in D. We let H
be the class of functions f = h + g, harmonic, sense preserving, and univalent in the open
unit disk D, for which fz() = g ′() = . Such harmonic and sense-preserving functions
f = h + g ∈H may be represented by the power series

h(z) = z +
∞∑

k=

akzk , g(z) =
∞∑

k=

bkzk , z ∈ D. ()

Clunie and Sheil-Small [] proved that the class H is a compact family (with respect to
the topology of locally uniform convergence). Note that for g(z) ≡ , the class H reduces
to the class S of normalized analytic functions univalent in D.

For  ≤ α <  we let S∗
H(α) and Sc

H(α), respectively, denote the subclasses of SH con-
sisting of harmonic starlike and harmonic convex functions of order α.
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A functions f of the form () is in S∗
H(α) if and only if (e.g. see Clunie and Sheil-Small

[] or Duren [])

∂

∂θ

(
arg f

(
reiθ )) > α, |z| = r < .

Similarly, a function f of the form () is in Sc
H(α) if and only if

∂

∂θ

(
arg

∂

∂θ
f
(
ρeiθ)

)
> α, |z| = r < .

We note that a harmonic function f ∈ S∗
H(α) if and only if

Re
JHf (z)

f (z)
> α, |z| = r < ,

or
∣∣∣∣
JHf (z) – ( + α)f (z)
JHf (z) + ( – α)f (z)

∣∣∣∣ < , |z| = r < ,

where

JHf (z) := zh′(z) – zg ′(z).

For  ≤ α < , it is easy to verify that

f ∈ Sc
H(α) ⇔ JHf ∈ S∗

H(α).

For λ ∈ {, , , . . .} and f = h + g ∈ H of the form (), we consider the linear operator Jλ
H :

H →H defined by J
Hf := f = h + g and

Jλ
Hf (z) := JH

(
Jλ–
H f (z)

)

:= z +
∞∑

n=

nλanzn + (–)λ
∞∑

n=

nλbnzn (z ∈D).

For the analytic definition of the above case, see the Sălăgean operator [].
We say that a function f : D →C is subordinate to a function g : D →C, and write f (z) ≺

g(z) (or simply f ≺ g), if there exists a complex-valued function w which maps D into itself
with w() = , such that f (z) = g(w(z)); z ∈ D. In particular, if g is univalent in D, then
f () = g() and f (D) ⊂ g(D).

The Hadamard product (or convolution) of functions f and f of the form

fk(z) = z +
∞∑

n=

ak,nzn +
∞∑

n=

bk,nzn
(
z ∈D, k ∈ {, }) ()

is defined by

(f ∗ f)(z) = z +
∞∑

n=

a,na,nzn +
∞∑

n=

b,nb,nzn (z ∈D).
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For nonnegative integer λ ∈ {, , , . . .} and for –B ≤ A < B ≤  we define Hλ(A, B) to be
the class of functions f ∈H so that (also see Dziok [, ])

Jλ+
H f (z)
Jλ
Hf (z)

≺  + Az
 + Bz

()

and Gλ(A, B) to consist of functions f ∈H so that

Jλ
Hf (z)

z
≺  + Az

 + Bz
.

We remark that the classes H(A, B) and G(A, B)for the analytic case, i.e. g ≡ , were
introduced by Janowski [] and the classes S∗

H(α) = H(α –, ) and Sc
H(α) = H(α –, )

for the harmonic case were investigated by Jahangiri [, ] and Silverman []. It is the
aim of this paper to obtain necessary and sufficient convolution conditions, coefficient
bounds, distortion theorems, radii of starlikeness and convexity, compactness, and ex-
treme points for the above defined classes Hλ(A, B) and Gλ(A, B).

2 Analytic criteria
Our first theorem provides a necessary and sufficient convolution condition for the har-
monic functions in Hλ(A, B).

Theorem  A function f belongs to the class Hλ(A, B) if and only if f ∈H and

Jλ
Hf (z) ∗ φ(z; ζ ) �= 

(
ζ ∈C, |ζ | = 

)
,

where

φ(z; ζ ) =
(B – A)ζ z + ( + Aζ )z

( – z) – (–)λ
z + (A + B)ζ z – ( + Aζ )z

( – z) (z ∈D).

Proof Let f ∈H. Then f ∈Hλ(A, B) if and only if the condition () holds or equivalently

Jλ+
H f (z)
Jλ
Hf (z)

�=  + Aζ

 + Bζ

(
ζ ∈C, |ζ | = 

)
. ()

Now for Jλ+
H h(z) = Jλ

Hh(z)∗z/(–z) and Jλ
Hh(z) = Jλ

Hh(z)∗z/(–z), the inequality () yields

( + Bζ )Jλ+
H f (z) – ( + Aζ )Jλ

Hf (z)

= ( + Bζ )Jλ+
H h(z) – ( + Aζ )Jλ

Hh(z)

– (–)λ
[
( + Bζ )Jλ+

H g(z) + ( + Aζ )Jλ
Hg(z)

]

= Jλ
Hh(z) ∗

(
( + Bζ )z
( – z) –

( + Aζ )z
 – z

)

– (–)λ+Jλ
Hg(z) ∗

(
( + Bζ )z
( – z) +

( + Aζ )z
 – z

)

= Jλ
Hf (z) ∗ φ(z; ζ ) �= . �

A sufficient coefficient bound for the functions in Hλ(A, B) is provided in the following.
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Theorem  For z ∈ D, the harmonic function f (z) = z +
∑∞

n= anzn +
∑∞

n= bnzn is in
Hλ(A, B) if

∞∑

n=

(
γn|an| + δn|bn|

) ≤ B – A, ()

where

γn = nλ
(
n( + B) – ( + A)

)
and δn = nλ

(
n( + B) + ( + A)

)
. ()

Proof Clearly the theorem is true for f (z) ≡ z. So, we assume that an �=  or bn �=  for
n ≥ . Since γn ≥ n(B – A) and δn ≥ n(B – A) by () we have

∣∣h′(z)
∣∣ –

∣∣g ′(z)
∣∣ ≥  –

∞∑

n=

n|an||z|n –
∞∑

n=

n|bn||z|n ≥  – |z|
∞∑

n=

(
n|an| + n|bn|

)

≥  –
|z|

B – A

∞∑

n=

(
γn|an| + δn|bn|

) ≥  – |z| >  (z ∈ D).

Therefore f is sense preserving and locally univalent in D. Further, if z, z ∈ D and we
assume that z �= z, then

∣∣∣∣
zn

 – zn


z – z

∣∣∣∣ =

∣∣∣∣∣

n∑

m=

zm–
 zn–m



∣∣∣∣∣ ≤
n∑

m=

|z|m–|z|n–m < n (n = , , . . .).

Hence

∣∣f (z) – f (z)
∣∣ ≥ ∣∣h(z) – h(z)

∣∣ –
∣∣g(z) – g(z)

∣∣

≥
∣∣∣∣∣z – z –

∞∑

n=

an
(
zn

 – zn

)
∣∣∣∣∣ –

∣∣∣∣∣

∞∑

n=

bn
(
zn

 – zn

)
∣∣∣∣∣

≥ |z – z| –
∞∑

n=

|an|
∣∣zn

 – zn

∣∣ –

∞∑

n=

|bn|
∣∣zn

 – zn

∣∣

= |z – z|
(

 –
∞∑

n=

|an|
∣∣∣∣
zn

 – zn


z – z

∣∣∣∣ –
∞∑

n=

|bn|
∣∣∣∣
zn

 – zn


z – z

∣∣∣∣

)

> |z – z|
(

 –
∞∑

n=

n|an| –
∞∑

n=

n|bn|
)

≥ .

This proves that f is univalent in D i.e. f ∈H.
On the other hand, f ∈Hλ(A, B) if and only if there exists a complex-valued function w,

w() = , |w(z)| <  (z ∈D) such that

Jλ+
H f (z)
Jλ
Hf (z)

=
 + Aw(z)
 + Bw(z)

(z ∈D),
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or equivalently

∣∣∣∣
Jλ+
H f (z) – Jλ

Hf (z)
BDλ+

H f (z) – ADλ
Hf (z)

∣∣∣∣ <  (z ∈D). ()

The above inequality () holds since for |z| = r ( < r < ) we obtain

∣∣Jλ+
H f (z) – Jλ

Hf (z)
∣∣ –

∣∣BDλ+
H f (z) – ADλ

Hf (z)
∣∣

=

∣∣∣∣∣

∞∑

n=

nλ(n – )anzn – (–)λ
∞∑

n=

nλ(n + )bnzn

∣∣∣∣∣

–

∣∣∣∣∣(B – A)z +
∞∑

n=

nλ(Bn – A)anzn + (–)λ
∞∑

n=

nλ(Bn + A)bnzn

∣∣∣∣∣

≤
∞∑

n=

nλ(n – )|an|rn +
∞∑

n=

nλ(n + )|bn|rn – (B – A)r

+
∞∑

n=

nλ(Bn – A)|an|rn +
∞∑

n=

nλ(Bn + A)|bn|rn

≤ r

{ ∞∑

n=

(
γn|an| + δn|bn|

)
rn– – (B – A)

}
< ,

and therefore f ∈Hλ(A, B). �

Next we show that the condition () is also necessary for the functions f ∈ H to be in
the class Hλ

T (A, B) := T λ ∩Hλ(A, B) where T λ is the class of functions f = h + g ∈ H with
varying coefficients (see [, ] or []) for which there exists a real number φ so that

f = h + g = z –
∞∑

n=

ei(–n)φ|an|zn + (–)λ
∞∑

n=

ei(n–)φ |bn|zn (z ∈D). ()

Theorem  Let f = h + g be defined by (). Then f ∈ Hλ
T (A, B) if and only if the condition

() holds.

Proof The ‘if ’ part follows from Theorem . For the ‘only-if ’ part, assume that f ∈
Hλ

T (A, B), then by () we have

∣∣∣∣

∑∞
n= nλ[(n – )anzn– + (–)λ(n + )bnzn–]

B – A –
∑∞

n= nλ[(Bn – A)anzn– + (–)λ(Bn + A)bnzn–]

∣∣∣∣ <  (z ∈ D).

For |z| = r <  we obtain

∑∞
n= nλ[(n – )|an| + (n + )|bn|]rn–

(B – A) –
∑∞

n= nλ[(Bn – A)|an| + (Bn + A)|bn|]rn– < .

Thus, for γn and δn as defined by (), we have

∞∑

n=

(
γn|an| + δn|bn|

)
rn– < B – A ( ≤ r < ). ()
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Let {σn} be the sequence of partial sums of the series
∑∞

n=(γn|an| + δn|bn|). Then {σn} is
a nondecreasing sequence and by () it is bounded above by B – A. Thus, it is convergent
and

∞∑

n=

(
γn|an| + δn|bn|

)
= lim

n→∞σn ≤ B – A.

This gives the condition (). �

A similar argument can be used to prove the following.

Theorem  Let f = h + g ∈ H be a function of the form (). Then f ∈ Gλ
T (A, B) := T λ ∩

Gλ(A, B) if and only if

∞∑

n=

nλ
(|an| + |bn|

) ≤ B – A
 + B

.

For special cases, Theorems , , and  yield the following corollaries.

Corollary  Let f = h + g ∈H. Then f ∈Hλ := Hλ(–, ) if and only if

Jλ
Hf (z) ∗ φ(z; ζ ) �= 

(|ζ | = 
)
,

where

φ(z; ζ ) =
ζ z + ( – ζ )z

( – z) – (–)λ
z + ( – ζ )z

( – z) (z ∈D).

Corollary  Let f = h+g ∈H be a function of the form (). Then f ∈Hλ
T (α) := Hλ

T (α–, )
if and only if

∞∑

n=

nλ
(
(n – α)|an| + (n + α)|bn|

) ≤ .

Corollary  Let f = h + g ∈ H be a function of the form (). Then f ∈ Hλ
T := Hλ

T () if and
only if

∞∑

n=

nλ+(|an| + |bn|
) ≤ ,

i.e.

Hλ
T ≡ Gλ+

T := Gλ+
T (–, ).

3 Extreme points
A function f ∈F ⊂H is called an extreme point of F if f = μf + ( –μ)f implies f = f = f
for all f and f in F and  < μ < . We shall use the notation EF to denote the set of all
extreme points of F . It is clear that EF ⊂F .
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We say that F is locally uniformly bounded if for each r,  < r < , there is a real constant
M = M(r) so that |f (z)| ≤ M where f ∈F and |z| ≤ r.

We say that a class F is convex if μf + ( – μ)g ∈ F for all f and g in F and  ≤ μ ≤ .
Moreover, we define the closed convex hull of F , denoted by coF , as the intersection of all
closed convex subsets of H (with respect to the topology of locally uniform convergence)
that contain F .

A real-valued functional J : H → R is called convex on a convex class F ⊂H if J (μf +
( – μ)g) ≤ μJ (f ) + ( – μ)J (g) for all f and g in F and  ≤ μ ≤ .

The Krein-Milman theorem (see []) is fundamental in the theory of extreme points.
In particular, it implies the following.

Lemma  If F is a non-empty compact subclass of the class H, then EF is non-empty and
coEF = coF .

Lemma  [] LetF be a non-empty compact convex subclass of the classH andJ : H →R

be a real-valued, continuous, and convex functional on F . Then

max
{
J (f ) : f ∈F

}
= max

{
J (f ) : f ∈ EF

}
.

Since H is a complete metric space, Montel’s theorem [] implies the following.

Lemma  A class F ⊂ H is compact if and only if F is closed and locally uniformly
bounded.

Now, we are ready to state and prove our next theorem.

Theorem  The class Hλ
T (A, B) is a convex and compact subset of H.

Proof For  ≤ μ ≤ , let f, f ∈Hλ
T (A, B) be defined by (). Then

μf(z) + ( – μ)f(z) = z +
∞∑

n=

{(
μa,n + ( – μ)a,n

)
zn +

(
μb,n + ( – μ)b,n

)
zn

}

and

∞∑

n=

{
γn

∣∣μa,n + ( – μ)a,n
∣∣ + δn

∣∣μb,n + ( – μ)b,nzn∣∣}

≤ μ

∞∑

n=

{
γn|a,n| + δn|b,n|

}
+ ( – μ)

∞∑

n=

γn|a,n| + δn|b,n|

≤ μ(B – A) + ( – μ)(B – A) = B – A.

Thus, the function φ = μf + ( – μ)f belongs to the class Hλ
T (A, B). This means that the

class Hλ
T (A, B) is convex.

On the other hand, for f ∈Hλ
T (A, B), |z| ≤ r and  < r < , we have

∣∣f (z)
∣∣ ≤ r +

∞∑

n=

(|an| + |bn|
)
rn ≤ r +

∞∑

n=

(
γn|an| + δn|bn|

) ≤ r + (B – A).
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Therefore, Hλ
T (A, B) is locally uniformly bounded. Let

fk(z) = z +
∞∑

n=

ak,nzn +
∞∑

n=

bk,nzn (z ∈D, k ∈N)

and let f = h + g be given by (). Using Theorem  we have

∞∑

n=

(
γn|ak,n| + δn|bk,n|

) ≤ B – A (k ∈N). ()

If we assume that fk → f , then we conclude that |ak,n| → |an| and |bk,n| → |bn| as k → ∞
(n ∈N). Let {σn} be the sequence of partial sums of the series

∑∞
n=(γn|an| + δn|bn|). Then

{σn} is a nondecreasing sequence and by () it is bounded above by B – A. Thus, it is
convergent and

∞∑

n=

(
γn|an| + δn|bn|

)
= lim

n→∞σn ≤ B – A.

Therefore, f ∈ Hλ
T (A, B), and therefore the class Hλ

T (A, B) is closed. In consequence, by
Lemma , the class Hλ

T (A, B) is compact subset of H, which completes the proof. �

Our next theorem is on the extreme points of Hλ
T (A, B).

Theorem  Extreme points of the class Hλ
T (A, B) are the functions f of the form () where

h = hn and g = gn are of the form

h(z) = z, hn(z) = z –
B – A

γn
ei(–n)φzn, ()

gn(z) = (–)λ
B – A

δn
ei(n–)φzn (

z ∈D, n ∈ {, , . . .}).

Proof Let gn = μf + ( – μ)f where  < μ <  and f, f ∈ Sλ
T (A, B) are functions of the

form (). Then, by (), we have |b,n| = |b,n| = B–A
δn

, and therefore a,k = a,k =  for
k ∈ {, , . . .} and b,k = b,k =  for k ∈ {, , . . .}�{n}. It follows that gn = f = f and conse-
quently gn ∈ ES∗

T (A, B). Similarly, we can verify that the functions hn of the form () are
the extreme points of the class Sλ

T (A, B).
Now, suppose that a function f of the form () belongs to the set EHλ

T (A, B) and f is not
of the form (). Then there exists m ∈ {, , . . .} such that

 < |am| <
B – A
αm

or  < |bm| <
B – A
βm

.

If  < |am| < B–A
αm

, then putting

μ =
|am|αm

B – A
, φ =


 – μ

(f – μhm),

we have  < μ < , hm �= φ, and

f = μhm + ( – μ)φ.
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Thus, f /∈ EHλ
T (A, B). Similarly, if  < |bm| < B–A

δn
, then putting

μ =
|bm|βm

B – A
, φ =


 – μ

(f – μgm),

we have  < μ < , gm �= φ, and

f = μgm + ( – μ)φ.

It follows that f /∈ EHλ
T (A, B), and so the proof is completed. �

It is clear that if the class F = {fn ∈H : n ∈N} is locally uniformly bounded, then

coF =

{ ∞∑

n=

μnfn :
∞∑

n=

μn = ,μn ≥  (n ∈ N)

}
.

Thus, by Theorem , we have the following.

Corollary  Let hn, gn be defined by (). Then

Hλ
T (A, B) =

{ ∞∑

n=

(μnhn + δngn) :
∞∑

n=

(μn + δn) = , δ = ,μn, δn ≥  (n ∈N)

}
.

For all fixed values of m, n,λ ∈ N, z ∈ D, the following real-valued functionals are con-
tinuous and convex on H:

J (f ) = |an|, J (f ) = |bn|, J (f ) =
∣∣f (z)

∣∣, J (f ) =
∣∣Jλ
Hf (z)

∣∣ (f ∈H).

Moreover, for μ > ,  < r < , the real-valued functional

J (f ) =
(


π

∫ π



∣∣f
(
reiθ )∣∣μdθ

)/μ

(f ∈H)

is continuous on H. For μ ≥ , by Minkowski’s inequality it is also convex on H.
Therefore, by Lemma  and Theorem , we have the following corollaries.

Corollary  Let f ∈Hλ
T (A, B) be a function of the form (). Then

|an| ≤ B – A
γn

, |bn| ≤ B – A
δn

(n = , , . . .),

where γn, δn are defined by (). The result is sharp and the functions hn, gn of the form ()
are the extremal functions.

Corollary  Let f ∈Hλ
T (A, B) and |z| = r < . Then

r –
B – A

λ( + B – A)
r ≤ ∣∣f (z)

∣∣ ≤ r +
B – A

λ( + B – A)
r,
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r –
B – A

 + B – A
r ≤ ∣∣Jλ

Hf (z)
∣∣ ≤ r +

B – A
 + B – A

r (λ = , , , . . .).

The result is sharp and the function h of the form () is the extremal function.
The following covering result follows from Corollary .

Corollary  If f ∈Hλ
T (A, B) then D(r) ⊂ f (D) where

r =  –
B – A

λ( + B – A)
.

We also conclude to the following.

Corollary  Let  < r <  and μ ≥ . If f ∈Hλ
T (A, B) then


π

∫ π



∣∣f
(
reiθ )∣∣μdθ ≤ 

π

∫ π



∣∣h
(
reiθ )∣∣μdθ ,


π

∫ π



∣∣Jλ
Hf (z)

∣∣μdθ ≤ 
π

∫ π



∣∣Jλ
Hh

(
reiθ )∣∣μdθ (μ = , , . . .).

4 Radii of starlikeness and convexity
Let B ⊆H and let D(r) := {z ∈ C : |z| < r ≤ }. We define the radius of starlikeness and the
radius of convexity of the class B, respectively, by

R∗
α(B) := inf

f ∈B
(
sup

{
r ∈ (, ] : f is starlike of order α in D(r)

})
,

Rc
α(B) := inf

f ∈B
(
sup

{
r ∈ (, ] : f is convex of order α in D(r)

})
.

At this point, for the case α = , it is easy to verify that

Hλ(A, B) ⊂Hλ(–, ) ⊂Hλ–(–, ) ⊂ S∗
H() ⊂H,

and consequently

R∗

(
Hλ(A, B)

)
= R∗


(
Hλ

T (A, B)
)

= Rc

(
Hλ(A, B)

)
= Rc


(
Hλ

T (A, B)
)

=  (λ = , , . . .).

In the following theorem we determine R∗
α(Hλ

T (A, B)) for  ≤ α < .

Theorem  Let  ≤ α <  and γn and δn be defined by (). Then

R∗
α

(
Hλ

T (A, B)
)

= inf
n≥

(
 – α

B – A
min

{
γn

n – α
,

δn

n + α

}) 
n–

. ()

Proof Let f ∈Hλ
T (A, B) be of the form (). Then, for |z| = r < , we have

∣∣∣∣
JHf (z) – ( + α)f (z)
JHf (z) + ( – α)f (z)

∣∣∣∣ =
∣∣∣∣

–αz +
∑∞

n=((n –  – α)anzn – (n +  + α)bnzn)
( – α)z +

∑∞
n=((n +  – α)anzn – (n –  + α)bnzn)

∣∣∣∣

≤ α +
∑∞

n=((n –  – α)|an| + (n +  + α)|bn|)rn–

 – α –
∑∞

n=((n +  – α)|an| + (n –  + α)|bn|)rn– .
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Note (see Jahangiri [], Theorem ) that f is starlike of order α in D(r) if and only if

∣∣∣∣
JHf (z) – ( + α)f (z)
JHf (z) + ( – α)f (z)

∣∣∣∣ < 
(
z ∈D(r)

)

or

∞∑

n=

(
n – α

 – α
|an| +

n + α

 – α
|bn|

)
rn– ≤ . ()

Also, by Theorem , we have

∞∑

n=

(
γn

B – A
|an| +

δn

B – A
|bn|

)
≤ ,

where γn and δn are defined by ().
Since γn < δn (n = , , . . .), the condition () is true if

n – α

 – α
rn– ≤ γn

B – A
and

n + α

 – α
rn– ≤ δn

B – A
(n = , , . . .),

or if

r ≤
(

 – α

B – A
min

{
γn

n – α
,

δn

n + α

}) 
n–

(n = , , . . .).

It follows that the function f is starlike of order α in the disk U(r∗) where

r∗ := inf
n≥

(
 – α

B – A
min

{
γn

n – α
,

δn

n + α

}) 
n–

.

The function

fn(z) = hn(z) + gn(z) = z –
B – A

γn
ei(–n)φzn + (–)λ

B – A
δn

ei(n–)φzn

proves that the radius r∗ cannot be any larger. Thus we have (). �

Using a similar argument as above we obtain the following.

Theorem  Let  ≤ α <  and γn and δn be defined by (). Then

Rc
α

(
Hλ

T (A, B)
)

= inf
n≥

(
 – α

B – A
min

{
γn

n(n – α)
,

δn

n(n + α)

}) 
n–

.
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