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Abstract
Following the discovery of general Lp-projection bodies by Ludwig, Haberl and
Schuster determined the extremum of the volume of the polars of this family of
Lp-projection bodies. In this paper, the result of Haberl and Schuster is extended to all
dual quermassintegrals, and a dual counterpart for the quermassintegrals of general
Lp-projection bodies is also obtained. Moreover, the extremum of the Lq-dual affine
surface areas of polars of general Lp-projection bodies are determined.
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1 Introduction
Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in the n-dimensional Euclidean spaceRn. For the set of convex bodies containing the origin
in their interiors and the set of origin-symmetric convex bodies in R

n, we writeKn
o andKn

os,
respectively. Let Sn– denote the unit sphere in R

n and denote by V (K) the n-dimensional
volume of the body K . For the standard unit ball B in R

n, write V (B) = ωn.
For K ∈Kn, its support function hK = h(K , ·) : Rn −→ (–∞, +∞) is defined by (see [])

h(K , x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y.
The projection body of a convex body was introduced by Minkowski at the turn of the

previous century. For K ∈Kn, the projection body �K of K is the origin-symmetric con-
vex body whose support function is defined by (see [])

h�K (u) =



∫
Sn–

|u · v|dS(K , v)

for all u ∈ Sn–. Here, S(K , ·) denotes the surface area measure of the convex body K . Classi-
cal projection bodies are a very important notion in the Brunn-Minkowski theory. During
the past four decades, a number of important results regarding classical projection bodies
were obtained (see [–]).
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The notion of an Lp-projection body was introduced by Lutwak, Yang, and Zhang [].
For K ∈ Kn

o and p ≥ , the Lp-projection body �pK of K is the origin-symmetric convex
body whose support function is given by

hp
�pK (u) = αn,p

∫
Sn–

|u · v|p dSp(K , v) (.)

for all u ∈ Sn–. Here

αn,p =


nωncn–,p
(.)

with cn,p = ωn+p/ωωnωp–, and Sp(K , ·) is the Lp-surface area measure of K that has the
Radon-Nikodym derivative

dSp(K , ·)
dS(K , ·) = h(K , ·)–p. (.)

The unusual normalization of definition (.) is chosen so that for the unit ball B, we have
�pB = B. In particular, for p = , �K is just the classical projection body �K of K under
the different normalization of definition (.).

Lp-projection bodies belong to the Lp-Brunn-Minkowski theory, which is an extension
of the classical Brunn-Minkowski theory. Apart from [], Lp-projection bodies have been
investigated intensively in recent years (see [, –]).

Through the characterization of so-called Lp-Minkowski valuations, Ludwig [] dis-
covered (see also [–] for related results) an asymmetric Lp-projection body �+

pK of
K ∈Kn

o , whose support function is defined by

hp
�+

p K (u) = αn,p

∫
Sn–

(u · v)p
+ dSp(K , v), (.)

where (u · v)+ = max{u · v, }. From (.) and (.) we see �+
pB = B.

Moreover, Ludwig [] introduced the function ϕτ : R −→ [, +∞) given by

ϕτ (t) = |t| + τ t

for τ ∈ [–, ]. For K ∈Kn
o , p ≥ , let �τ

pK ∈Kn
o with support function

hp
�τ

pK (u) = αn,p(τ )
∫

Sn–
ϕτ (u · v)p dSp(K , v), (.)

where

αn,p(τ ) =
αn,p

( + τ )p + ( – τ )p .

The normalization is chosen such that �τ
pB = B for every τ ∈ [–, ]. Here �τ

pK is called
the general Lp-projection body of K . Obviously, if τ = , then �τ

pK = �
pK = �pK .

Following the discovery of Ludiwg, Haberl and Schuster [] defined

�–
p K = �+

p(–K). (.)
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From (.), (.), and (.) they (see []) deduced that for K ∈Kn
o , p ≥ , τ ∈ [–, ], and

all u ∈ Sn–,

hp
�τ

pK (u) = f(τ )hp
�+

p K (u) + f(τ )hp
�–

p K (u), (.)

that is,

�τ
pK = f(τ ) · �+

pK +p f(τ ) · �–
p K , (.)

where ‘+p’ denotes the Lp-Minkowski addition of convex bodies, and

f(τ ) =
( + τ )p

( + τ )p + ( – τ )p , f(τ ) =
( – τ )p

( + τ )p + ( – τ )p . (.)

If τ = ±, then �τ
pK = �±

p K .
For general Lp-projection bodies, Haberl and Schuster [] not only established a gen-

eral version of the Lp-Petty projection inequality but also determined the following ex-
tremum of volume for their polars.

Theorem .A If K ∈Kn
o , p ≥ , and τ ∈ [–, ], then

V
(
�∗

pK
) ≤ V

(
�τ ,∗

p K
) ≤ V

(
�±,∗

p K
)
. (.)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality if and only if τ =  and equality in the right inequality if and only if τ = ±. Here,
�τ ,∗

p K denotes the polar of the general Lp-projection body �τ
pK of K ∈Kn

o .

Apart from [], general Lp-projection bodies were studied by various authors; for ex-
ample, Wang and Wan [] investigated related Shephard-type problems, Wang and Feng
[] established Petty’s affine projection inequality for them. General Lp-projection bod-
ies are a central notion in a new and rapidly evolving asymmetric Lp-Brunn-Minkowski
theory (see [, , –]).

In this paper, we first extend inequality (.) to dual quermassintegrals forms, that is,
the extremums of dual quermassintegrals for the polars of general Lp-projection bodies
are obtained.

Theorem . If K ∈Kn
o , p ≥ , τ ∈ [–, ], and real i �= n, then, for i < n or i > n + p,

W̃i
(
�∗

pK
) ≤ W̃i

(
�τ ,∗

p K
) ≤ W̃i

(
�±,∗

p K
)
, (.)

and, for n < i < n + p,

W̃i
(
�∗

pK
) ≥ W̃i

(
�τ ,∗

p K
) ≥ W̃i

(
�±,∗

p K
)
. (.)

In each case, if K is not origin-symmetric and p is not an odd integer, then there is equality
in the left inequality if and only if τ =  and equality in the right inequality if and only if
τ = ±. For i = n + p, (.) and (.) become equalities. Here W̃i(Q) (i is any real) denote
the dual quermassintegrals of the star body Q.



Wang and Wang Journal of Inequalities and Applications  (2016) 2016:135 Page 4 of 16

If i = , then since W̃(Q) = V (Q), Theorem . reduces to Theorem .A.
Next, we obtain the extremums of quermassintegrals of general Lp-projection bodies.

Theorem . If K ∈Kn
o , p ≥ , τ ∈ [–, ], and i = , , . . . , n – , then

Wi(�pK) ≥ Wi
(
�τ

pK
) ≥ Wi

(
�±

p K
)
. (.)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality if and only if τ =  and equality in the right inequality if and only if τ = ±. Here
Wi(Q) (i = , , . . . , n – ) denote the quermassintegrals of Q ∈Kn

o .

Taking i =  in Theorem ., we obtain the following:

Corollary . If K ∈Kn
o , p ≥ , and τ ∈ [–, ], then

V (�pK) ≥ V
(
�τ

pK
) ≥ V

(
�±

p K
)
. (.)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality if and only if τ =  and equality in the right inequality if and only if τ = ±.

Inequality (.) can be viewed as a dual version of inequality (.).
Finally, we determine the extremal values of the Lq-dual affine surface area (see Sec-

tion ) of the polars of general Lp-projection bodies.

Theorem . If K ∈Kn
o , p ≥ ,  < q < n, and τ ∈ [–, ], then

�̃q
(
�∗

pK
) ≤ �̃q

(
�τ ,∗

p K
) ≤ �̃q

(
�±,∗

p K
)
. (.)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality if and only if τ =  and equality in the right inequality if and only if τ = ±. Here
�̃q(Q) denotes the Lq-dual affine surface area of the star body Q.

This paper is organized as follows. In Section , we provide some preliminary results.
Then, in Section , we recall some basic properties of general Lp-projection bodies. Sec-
tion  contains the proofs of Theorems .-..

2 Basic notions
2.1 Radial functions and polar bodies
If K is a compact star-shaped (about the origin) set in R

n, then its radial function ρK =
ρ(K , ·) : Rn\{} −→ [, +∞) is defined by (see [])

ρ(K , x) = max{λ ≥  : λx ∈ K}, x ∈R
n\{}.

If ρK is positive and continuous, then K is called a star body (about the origin). For the
set of star bodies containing the origin in their interiors and the set of origin-symmetric
star bodies in R

n, we write Sn
o and Sn

os, respectively. Two star bodies K and L are said to
be dilates (of one another) if ρK (u)/ρL(u) is independent of u ∈ Sn–.
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If E is a nonempty subset of Rn, then the polar set E∗ of E is defined by (see [])

E∗ = {x : x · y ≤ , y ∈ E}, x ∈R
n. (.)

From (.) it follows that if K ∈Kn
o , then

hK∗ = /ρK and ρK∗ = /hK . (.)

2.2 Lp-Minkowski and Lp-harmonic radial combinations
For K , L ∈ Kn

o , p ≥ , and λ,μ ≥  (not both zero), the Lp-Minkowski combination (also
called the Firey Lp-combination) λ · K +p μ · L ∈Kn

o of K and L is defined by (see [, ])

h(λ · K +p μ · L, · )p = λh(K , ·)p + μh(L, ·)p, (.)

where ‘·’ in λ · K denotes the Lp-Minkowski scalar multiplication.
For K , L ∈ Sn

o , p ≥ , and λ,μ ≥  (not both zero), the Lp-harmonic radial combination
λ ◦ K +̃–p μ ◦ L ∈ Sn

o of K and L is defined by (see [])

ρ(λ ◦ K +̃–p μ ◦ L, ·)–p = λρ(K , ·)–p + μρ(L, ·)–p. (.)

From (.), (.), and (.) we easily see that if K , L ∈ Kn
o , p ≥ , and λ,μ ≥  (not both

zero), then

(λ · K +p μ · L)∗ = λ ◦ K∗ +̃–p μ ◦ L∗. (.)

2.3 Lp-mixed and dual mixed volumes
Lutwak [] gave the definition of Lp-mixed volume associated with Lp-Minkowski com-
binations of convex bodies: For K , L ∈Kn

o , ε > , and p ≥ , the Lp-mixed volume Vp(K , L)
of K and L is defined by

n
p

Vp(K , L) = lim
ε−→+

V (K +p ε · L) – V (K)
ε

.

Corresponding to each K ∈Kn
o , Lutwak [] proved that, for each L ∈Kn

o ,

Vp(K , L) =

n

∫
Sn–

hp
L(v) dSp(K , v). (.)

From (.) and (.) it follows immediately that, for each K ∈Kn
o ,

Vp(K , K) = V (K) =

n

∫
Sn–

hK (v) dS(K , v). (.)

The Lp-Minkowski inequality states the following (see []):

Theorem .A If K , L ∈Kn
o , and p ≥ , then

Vp(K , L) ≥ V (K)(n–p)/nV (L)p/n (.)
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with equality for p >  if and only if K and L are dilates and for p =  if and only if K and L
are homothetic.

Haberl [] (also see []) introduced the notion of Lp-dual mixed volume as follows.
For K , L ∈ Sn

o , p > , and ε > , the Lp-dual mixed volume Ṽp(K , L) of K and L is defined
by

Ṽp(K , L) =

n

∫
Sn–

ρ
n–p
K (u)ρp

L(u) dS(u), (.)

where the integration is with respect to spherical Lebesgue measure on Sn–.

2.4 Lp-dual affine surface areas
Based on the Lp-dual mixed volume, Wang, Yuan, and He [] defined the notion of
Lp-dual affine surface area. For K ∈ Sn

o and  < p < n, the Lp-dual affine surface area �̃p(K)
of K is defined by

n– p
n �̃p(K)

n+p
n = sup

{
nṼp

(
K , Q∗)V (Q)

p
n : Q ∈Kn

c
}

, (.)

where Kn
c denotes the set of convex bodies whose centroids lie at the origin in R

n.
We extend definition (.) from Q ∈Kn

c to Q ∈ Sn
os as follows: For K ∈ Sn

o and  < p < n,
the Lp-dual affine surface area �̃p(K) of K is defined by

n– p
n �̃p(K)

n+p
n = sup

{
nṼp

(
K , Q∗)V (Q)

p
n : Q ∈ Sn

os
}

. (.)

2.5 Quermassintegrals and dual quermassintegrals
For K ∈Kn, i = , , . . . , n – , the quermassintegrals Wi(K) of K are given by (see [, ])

Wi(K) =

n

∫
Sn–

h(K , u) dSi(K , u), (.)

where Si(K , ·) (i = , , . . . , n – ) denotes the ith surface area measure of K , and S(K , ·) =
S(K , ·). From (.) and (.) we easily see that W(K) = V (K).

For the Lp-Minkowski combination, Lutwak [] proved the following Brunn-Min-
kowski inequality for quermassintegrals.

Theorem .B If K , L ∈Kn
o , p ≥ , i = , , . . . , n – , and λ,μ ≥  (not both zero), then

Wi(λ · K +p μ · L)
p

n–i ≥ λWi(K)
p

n–i + μWi(L)
p

n–i (.)

with equality for p =  if and only if K and L are homothetic and for p >  if and only if K
and L are dilates.

For K ∈ Sn
o and any real i, the dual quermassintegrals W̃i(K) of K are defined by (see [])

W̃i(K) =

n

∫
Sn–

ρ(K , u)n–i dS(u). (.)
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Obviously, (.) implies

W̃(K) = V (K) =

n

∫
Sn–

ρ(K , u)n dS(u).

Associated with the Lp-harmonic radial combinations of star bodies, Wang and Leng
[] established the following Brunn-Minkowski inequality for dual quermassintegrals.

Theorem .C If K , L ∈ Sn
o , p ≥ , λ,μ ≥  (not both zero), and real i �= n, then, for i < n or

n < i < n + p,

W̃i(λ ◦ K +̃–p μ ◦ L)– p
n–i ≥ λW̃i(K)– p

n–i + μW̃i(L)– p
n–i (.)

and, for i > n + p,

W̃i(λ ◦ K +̃–p μ ◦ L)– p
n–i ≤ λW̃i(K)– p

n–i + μW̃i(L)– p
n–i . (.)

In each inequality, equality holds if and only if K and L are dilates. For i = n + p, (.) and
(.) become equalities.

3 Some properties of general Lp-projection bodies
In this section, we recall some basic properties of general Lp-projection bodies.

Theorem . If K ∈Kn
o , p ≥ , and τ ∈ [–, ], then

�τ
p(–K) = �–τ

p K = –�τ
pK . (.)

Proof From (.) it follows that, for all u ∈ Sn–,

hp
–�τ

pK (u) = hp
�τ

pK (–u) = αn,p(τ )
∫

Sn–
ϕτ (–u · v)p dSp(K , v)

= αn,p(τ )
∫

Sn–
ϕτ

(
u · (–v)

)p dSp(–K , –v) = hp
�τ

p(–K )(u).

This gives

�τ
p(–K) = –�τ

pK . (.)

In addition, by (.) we have that

f(τ ) + f(τ ) = , (.)

f(–τ ) = f(τ ), f(–τ ) = f(τ ). (.)

From (.) and (.), together with (.) and (.), we obtain

�–τ
p K = f(–τ ) · �+

pK +p f(–τ ) · �–
p K

= f(τ ) · �–
p (–K) +p f(τ ) · �+

p(–K) = �τ
p(–K). (.)

Obviously, (.) and (.) yield (.). �



Wang and Wang Journal of Inequalities and Applications  (2016) 2016:135 Page 8 of 16

Theorem . If K ∈Kn
o , p ≥ , τ ∈ [–, ], and τ �= , then

�τ
pK = �–τ

p K ⇐⇒ �+
pK = �–

p K .

Proof From (.) and (.) it follows that, for K ∈Kn
o , p ≥ , and τ ∈ [–, ],

�–τ
p K = f(τ ) · �+

pK +p f(τ ) · �–
p K ,

that is,

hp
�–τ

p K (u) = f(τ )hp
�+

p K (u) + f(τ )hp
�–

p K (u) (.)

for all u ∈ Sn–. Therefore, by (.), (.), and (.), if �+
pK = �–

p K , then

hp
�τ

pK (u) = hp
�–τ

p K (u)

for all u ∈ Sn–. This gives �τ
pK = �–τ

p K .
Conversely, if �τ

pK = �–τ
p K , then (.) and (.) yield

[
f(τ ) – f(τ )

]
hp

�+
p K (u) =

[
f(τ ) – f(τ )

]
hp

�–
p K (u)

for all u ∈ Sn–. Since f(τ ) – f(τ ) �=  when τ �= , we get �+
pK = �–

p K . �

Haberl and Schuster [] proved the following fact.

Theorem .A If K ∈ Kn
o , p ≥ , and p is not odd integer, then �+

pK = �–
p K if and only if

K ∈Kn
os.

According to Theorems .A and ., we get the following:

Theorem . If K ∈ Kn
o , p ≥ , and p is not odd integer, then, for τ ∈ [–, ] and τ �= ,

�τ
pK = �–τ

p K if and only if K ∈Kn
os.

Theorem . If K ∈Kn
o , p ≥ , and τ ∈ [–, ], then

�τ
pK +p �–τ

p K = �+
pK +p �–

p K . (.)

Proof From (.) and (.), using (.), we have that, for any u ∈ Sn–,

h
(
�τ

pK , u
)p + h

(
�–τ

p K , u
)p = h

(
�+

pK , u
)p + h

(
�–

p K , u
)p,

that is,

h
(
�τ

pK +p �–τ
p K , u

)p = h
(
�+

pK +p �–
p K , u

)p.

This is the desired relation. �

From Theorem . we deduce the following:
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Corollary . If K ∈Kn
o , p ≥ , and τ ∈ [–, ], then

�pK =



· �τ
pK +p




· �–τ
p K . (.)

Proof Taking τ =  in (.) and combining with (.) yield

�pK =



· �+
pK +p




· �–
p K . (.)

From (.) and (.) we immediately get (.). �

Theorem . If K , L ∈Kn
os, p ≥  is not an even integer, and τ ∈ [–, ], then

�τ
pK = �τ

pL �⇒ K = L.

The proof of Theorem . requires the following two lemmas.

Lemma . If K , L ∈ Kn
o , and p ≥  is not an even integer, then �pK = �pL if and only if

Vp(K , Q) = Vp(L, Q) for any Q ∈Kn
os.

Proof From (.) we know that, for any u ∈ Sn–,

hp
�p(–K )(u) = αn,p

∫
Sn–

|u · v|p dSp(–K , v)

= αn,p

∫
Sn–

∣∣u · (–v)
∣∣p dSp(K , –v) = hp

�pK (u),

which implies �p(–K) = �pK . Thus, for any u ∈ Sn–,

hp
�pK (u) =




hp
�pK (u) +




hp
�p(–K )(u)

=


αn,p

∫
Sn–

|u · v|p[dSp(K , v) + dSp(–K , v)
]
.

Thus, if �pK = �pL, then, for any u ∈ Sn–,

∫
Sn–

|u · v|p[dSp(K , v) + dSp(–K , v) – dSp(L, v) – dSp(–L, v)
]

= .

Letting μ(v) = Sp(K , v) + Sp(–K , v) – Sp(L, v) – Sp(–L, v), we have

∫
Sn–

|u · v|p dμ(v) = . (.)

Since μ(v) is an even Borel measure on Sn– and p ≥  is not an even integer, it follows
from (.) that μ(v) =  (see, e.g., []), that is,

Sp(K , ·) + Sp(–K , ·) = Sp(L, ·) + Sp(–L, ·). (.)
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Since Q ∈Kn
os, we have hQ(–v) = hQ(v) for all v ∈ Sn–. Therefore, by (.) we get

Vp(K , Q) =

n

∫
Sn–

hp
Q(–v) dSp(K , –v) =


n

∫
Sn–

hp
Q(v) dSp(–K , v).

This and (.) yield

Vp(K , Q) =


n

∫
Sn–

hp
Q(v)

[
dSp(K , v) + dSp(–K , v)

]

for any Q ∈ Kn
os. By (.) we see that if �pK = �pL, then Vp(K , Q) = Vp(L, Q) for any

Q ∈Kn
os.

Conversely, if Q ∈ Kn
os, let Q = [–u, u] (u ∈ Sn–). Then hQ(v) = |u · v| for any v ∈ Sn–.

This, together with (.), yields

Vp(K , Q) =

n

∫
Sn–

hp
Q(v) dSp(K , v)

=

n

∫
Sn–

|u · v|p dSp(K , v) =


nαn,p
hp(�pK , u).

Hence, if Vp(K , Q) = Vp(L, Q) for any Q ∈Kn
os, then �pK = �pL. �

Lemma . If K , L ∈Kn
os and p ≥  is not an even integer, then

�pK = �pL �⇒ K = L.

Proof By Lemma ., if �pK = �pL and p is not an even integer, then, for any Q ∈Kn
os,

Vp(K , Q) = Vp(L, Q). (.)

Taking K for Q in (.) and using (.) and (.), we obtain V (K) ≥ V (L) with equality
for p >  if and only if K and L are dilates (for p = , if and only if K and L are homothetic).
Similarly, taking L for Q in (.) yields V (K) ≤ V (L), and equality holds for p >  if and
only if K and L are dilates (for p = , if and only if K and L are homothetic). Therefore,
V (K) = V (L), and K and L are dilates when p >  (K and L are homothetic when p = ).
Since K , L ∈Kn

os, we have that, for p ≥ , K = L. �

Proof of Theorem . If K ∈Kn
os, then by (.) and Corollary . we have that

�pK = �τ
pK = �–τ

p K .

Therefore, if K , L ∈Kn
os, then, for τ ∈ [–, ],

�τ
pK = �τ

pL ⇐⇒ �pK = �pL.

This, together with Lemma ., completes the proof of Theorem .. �
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4 Proofs of the main results
In this section, we will complete the proofs of Theorems .-..

Proof of Theorem . From (.) and (.) we have

�τ ,∗
p K = f(τ ) ◦ �+,∗

p K +̃–p f(τ ) ◦ �–,∗
p K . (.)

Hence, for i < n or n < i < n + p, using (.) and (.), we have that

W̃i
(
�τ ,∗

p K
)– p

n–i ≥ f(τ )W̃i
(
�+,∗

p K
)– p

n–i + f(τ )W̃i
(
�–,∗

p K
)– p

n–i . (.)

But (.) yields �–
p K = �+

p(–K) = –�+
pK , which implies W̃i(�+,∗

p K) = W̃i(�–,∗
p K). Hence,

by (.) and (.) we obtain

W̃i
(
�τ ,∗

p K
)– p

n–i ≥ W̃i
(
�±,∗

p K
)– p

n–i . (.)

Now, if i < n, then

W̃i
(
�τ ,∗

p K
) ≤ W̃i

(
�±,∗

p K
)
. (.)

Inequality (.) is just the right-hand side inequality of (.). If n < i < n + p, then by (.)
we get

W̃i
(
�τ ,∗

p K
) ≥ W̃i

(
�±,∗

p K
)
, (.)

which gives the right-hand side inequality of (.).
For i > n + p, using (.) and (.), we arrive at

W̃i
(
�τ ,∗

p K
)– p

n–i ≤ W̃i
(
�±,∗

p K
)– p

n–i ,

which yields (.).
According to the conditions of equality in (.) and (.), we have that equality holds

in (.) and (.) if and only if �+,∗
p K and �–,∗

p K are dilates. From this, letting �+,∗
p K =

c�–,∗
p K (c > ) and using that W̃i(�+,∗

p K) = W̃i(�–,∗
p K), it follows that c = , that is, �+,∗

p K =
�–,∗

p K . This means that �+
pK = �–

p K . Hence, from Theorem .A we see that if K is not
origin-symmetric and p is not an odd integer, then equality holds in the right-hand side
inequalities of (.) and (.) if and only if τ = ±.

Now we prove the left-hand side inequalities of (.) and (.).
From (.) and (.) we have that

�∗
pK =




◦ �τ ,∗
p K +̃–p




◦ �–τ ,∗
p K . (.)

Using (.) and respectively combining with inequalities (.) and (.), we obtain the
left-hand side inequalities of (.) and (.).

Moreover, by the conditions of equality in (.) and (.) we see that equality holds in
the left-hand side inequalities of (.) and (.) if and only if �τ

pK = �–τ
p K . This, together
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with Theorem ., yields that if K is not origin-symmetric and p is not an odd integer, then
equality holds in the left-hand side inequalities of (.) and (.) if and only if τ = . �

Proof of Theorem . Using (.) and inequality (.), we have

Wi
(
�τ

pK
) p

n–i ≥ f(τ )Wi
(
�+

pK
) p

n–i + f(τ )Wi
(
�–

p K
) p

n–i ,

which, combined with (.), yields

Wi
(
�τ

pK
) ≥ Wi

(
�±

p K
)
.

This gives the right-hand side inequality of (.).
According to the condition of equality in (.), we see that equality holds in the right-

hand side inequality of (.) for p >  if and only if �+
pK and �–

p K are dilates (for p =
, if and only if �+

pK and �–
p K are homothetic), which yields �+

pK = �–
p K . Thus, from

Theorem .A it follows that if K is not origin-symmetric and p is not an odd integer, then
equality holds in the right-hand side inequality of (.) if and only if τ = ±.

Meanwhile, from (.) and inequality (.) we obtain

Wi(�pK)
p

n–i ≥ 


Wi
(
�τ

pK
) p

n–i +



Wi
(
�–τ

p K
) p

n–i ,

which, together with (.), yields

Wi(�pK) ≥ Wi
(
�τ

pK
)
.

This is the left-hand side inequality of (.), where equality holds if and only if �τ
pK =

�–τ
p K . This, together with Theorem ., shows that if K is not origin-symmetric and p is

not an odd integer, then equality holds in the left-hand side inequality of (.) if and only
if τ = . �

The proof of Theorem . requires the following two lemmas.

Lemma . If K , L ∈ Sn
o ,  < q < n, p ≥ , and λ,μ ≥  (not both zero), then, for any Q ∈ Sn

o ,

Ṽq(λ ◦ K +̄–pμ ◦ L, Q)– p
n–q ≥ λṼq(K , Q)– p

n–q + μṼq(L, Q)– p
n–q (.)

with equality if and only if K and L are dilates.

Proof Since  < q < n and p ≥ , we have –p/(n – q) < . Hence, from (.), (.), and the
Minkowski integral inequality (see []), we obtain that, for any Q ∈ Sn

o ,

Ṽq(λ ◦ K +̄–pμ ◦ L, Q)– p
n–q =

[

n

∫
Sn–

ρ
n–q
λ◦K +̄–pμ◦L(u)ρq

Q(u) dS(u)
]– p

n–q

=
[


n

∫
Sn–

(
ρ

–p
λ◦K +̄–pμ◦L(u)

)– n–q
p ρ

q
Q(u) dS(u)

]– p
n–q

=
[


n

∫
Sn–

(
λρ

–p
K (u) + μρ

–p
L (u)

)– n–q
p ρ

q
Q(u) dS(u)

]– p
n–q
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≥
[


n

∫
Sn–

λρ
n–q
K (u)ρq

Q(u) dS(u)
]– p

n–q

+
[


n

∫
Sn–

μρ
n–q
L (u)ρq

Q(u) dS(u)
]– p

n–q

= λṼq(K , Q)– p
n–q + μṼq(L, Q)– p

n–q .

Thus, inequality (.) is proven.
According to the equality condition of the Minkowski integral inequality, equality holds

in (.) if and only if there exists a constant c >  such that

ρK (u)n–qρ
q
Q(u)

ρL(u)n–qρ
q
Q(u)

= c

for any u ∈ Sn–, that is, K and L are dilates. �

Lemma . If K , L ∈ Sn
o ,  < q < n, p ≥ , and λ,μ ≥  (not both zero), then

�̃q(λ ◦ K +̄–pμ ◦ L)– p(n+q)
n(n–q) ≥ λ�̃q(K)– p(n+q)

n(n–q) + μ�̃q(L)– p(n+q)
n(n–q) (.)

with equality if and only if K and L are dilates.

Proof For a bounded function ϕ > , we have

(supϕ)– = infϕ–. (.)

Thus, by (.), (.), and (.), noticing that – p
n–q <  when  < q < n and p ≥ , we have

that

[
n– q

n �̃q(λ ◦ K +̄–pμ ◦ L)
n+q

n
]– p

n–q

=
[
sup

{
nṼq

(
λ ◦ K +̄–pμ ◦ L, Q∗)V (Q)

q
n : Q ∈ Sn

os
}]– p

n–q

= inf
{[

nṼq
(
λ ◦ K +̄–pμ ◦ L, Q∗)V (Q)

q
n
]– p

n–q : Q ∈ Sn
os

}

= inf
{[

nṼq
(
λ ◦ K +̄–pμ ◦ L, Q∗)]– p

n–q
[
V (Q)

q
n
]– p

n–q : Q ∈ Sn
os

}

≥ inf
{
λ
[
nṼq

(
K , Q∗)V (Q)

q
n
]– p

n–q + μ
[
nṼq

(
L, Q∗)V (Q)

q
n
]– p

n–q : Q ∈ Sn
os

}

≥ λ inf
{[

nṼq
(
K , Q∗)V (Q)

q
n
]– p

n–q : Q ∈ Sn
os

}

+ μ inf
{[

nṼq
(
L, Q∗)V (Q)

q
n
]– p

n–q : Q ∈ Sn
os

}

= λ
[
sup

{
nṼq

(
K , Q∗)V (Q)

q
n : Q ∈ Sn

os
}]– p

n–q

+ μ
[
sup

{
nṼq

(
L, Q∗)V (Q)

q
n : Q ∈ Sn

os
}]– p

n–q

= λ
[
n– q

n �̃q(K)
n+q

n
]– p

n–q + μ
[
n– q

n �̃q(L)
n+q

n
]– p

n–q .

This gives (.).
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According to the equality condition of inequality (.), equality holds in inequality (.)
if and only if K and L are dilates. �

Proof of Theorem . From (.) and (.) we have that, for  < q < n and p ≥ ,

�̃q
(
�τ ,∗

p K
)– p(n+q)

n(n–q) = �̃q
(
f(τ ) ◦ �+,∗

p K +̃–p f(τ ) ◦ �–,∗
p K

)– p(n+q)
n(n–q)

≥ f(τ )�̃q
(
�+,∗

p K
)– p(n+q)

n(n–q) + f(τ )�̃q
(
�–,∗

p K
)– p(n+q)

n(n–q) . (.)

But (.) shows that, for any Q ∈ Sn
os, Ṽq(–K , Q) = Ṽq(K , Q). This and (.) give �̃q(–K) =

�̃q(K). From this we see that

�̃q
(
�–,∗

p K
)

= �̃q
(
–�+,∗

p K
)

= �̃q
(
�+,∗

p K
)
. (.)

This, together with (.) and (.), yields

�̃q
(
�τ ,∗

p K
)– p(n+q)

n(n–q) ≥ �̃q
(
�±,∗

p K
)– p(n+q)

n(n–q) ,

that is, for  < q < n and p ≥ ,

�̃q
(
�τ ,∗

p K
) ≤ �̃q

(
�±,∗

p K
)
.

This is the right-hand side inequality (.).
According to the equality condition of inequality (.), equality holds in the right-hand

side inequality of (.) if and only if �+,∗
p K and �–,∗

p K are dilates. This and (.) give
�+,∗

p K = �–,∗
p K , that is, �+

pK = �–
p K . From this, by Theorem .A, it follows that if K is not

origin-symmetric and p is not an odd integer, then equality holds in the right-hand side
inequality of (.) if and only if τ = ±.

On the other hand, by (.) and inequality (.), noticing that

�̃q
(
�–τ ,∗

p K
)

= �̃q
(
–�τ ,∗

p K
)

= �̃q
(
�τ ,∗

p K
)
, (.)

we obtain that, for  < q < n, p ≥  and τ ∈ [–, ],

�̃q
(
�∗

pK
) ≤ �̃q

(
�τ ,∗

p K
)
.

This yields the left-hand side inequality of (.).
According to the equality condition of (.) and using (.), we know that equality

holds in the left-hand side inequality of (.) if and only if �τ
pK = �–τ

p K . This, combined
with Theorem ., implies that if K is not origin-symmetric and p is not an odd integer,
then equality holds in the left-hand side inequality of (.) if and only if τ = . �
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