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1 Introduction
Suppose that p > , 

p + 
q = , am, bn ≥ , a = {am}∞m= ∈ lp, b = {bn}∞n= ∈ lq, ‖a‖p =

(
∑∞

m= ap
m)


p > , ‖b‖q > . We have the following well-known Hardy-Hilbert inequality:

∞∑

n=

∞∑

m=

ambn

m + n
<

π

sin( π
p )

‖a‖p‖b‖q, ()

where the constant factor π
sin(π/p) is the best possible (cf. []). Also we have the following

Hilbert-type inequality:

∞∑

n=

∞∑

m=

ambn

max{m, n} < pq‖a‖p‖b‖q, ()

with the best possible constant factor pq (cf. []). Inequalities () and () are important in
analysis and its applications (cf. [–]).

In , Yang gave an extension of () as follows (cf. []): If  < λ,λ ≤ , λ + λ = λ,
am, bn ≥ ,  < ‖a‖p,ϕ = {∑∞

m= mp(–λ)–ap
m} 

p < ∞,  < ‖b‖q,ψ = {∑∞
n= nq(–λ)–bq

n} 
q < ∞,

then

∞∑

n=

∞∑

m=

ambn

(max{m, n})λ <
λ

λλ
‖a‖p,ϕ‖b‖q,ψ , ()

where the constant factor λ
λλ

is the best possible.
For λ = , λ = 

q , λ = 
p , inequality () reduces to (). Some other results relate to ()-()

are provided by [–].
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In this paper, by the use of weight coefficients and the technique of real analysis, an
extension of () in the whole plane is given as follows: For  < λ,λ ≤ , λ + λ = λ,
am, bn ≥ ,  <

∑∞
|m|= |m|p(–λ)–ap

m < ∞,  <
∑∞

|n|= |n|q(–λ)–bq
n < ∞, we have

∞∑

|n|=

∞∑

|m|=


(max{|m|, |n|})λ ambn

<
λ

λλ

[ ∞∑

|m|=

|m|p(–λ)–ap
m

] 
p
[ ∞∑

|n|=

|n|q(–λ)–bq
n

] 
q

. ()

Moreover, a generation of () with multi-parameters and a best possible constant factor is
proved. The equivalent forms, the operator expressions and a few particular inequalities
are also considered.

2 Some lemmas
In the following, we agree that N = {, , . . .}, p > , 

p + 
q = , α,β ∈ (,π ), λ,λ > –η,

λ + λ = λ, and for |x|, |y| > ,

k(x, y) :=
(min{|x| + x cosα, |y| + y cosβ})η

(max{|x| + x cosα, |y| + y cosβ})λ+η
. ()

Lemma  (cf. []) Suppose that g(t) (> ) is decreasing in R+ and strictly decreasing in
[n,∞) (n ∈ N), satisfying

∫ ∞
 g(t) dt ∈ R+. We have

∫ ∞


g(t) dt <

∞∑

n=

g(n) <
∫ ∞


g(t) dt. ()

Definition  Define the following weight coefficients:

ω(λ, m) :=
∞∑

|n|=

k(m, n)
(|m| + m cosα)λ

(|n| + n cosβ)–λ
, |m| ∈ N, ()


 (λ, n) :=
∞∑

|m|=

k(m, n)
(|n| + n cosβ)λ

(|m| + m cosα)–λ
, |n| ∈ N, ()

where
∑∞

|j|= · · · =
∑–∞

j=– · · · +
∑∞

j= · · · (j = m, n).

Lemma  If λ ≤  – η, then for kβ (λ) := (λ+η) csc β

(λ+η)(λ+η) , we have

kβ (λ)
(
 – θ (λ, m)

)
< ω(λ, m) < kβ (λ), |m| ∈ N, ()

where

θ (λ, m) :=
(λ + η)(λ + η)

λ + η

∫ +cosβ
|m|+m cosα



(min{, u})ηuλ–

(max{, u})λ+η
du

= O
(


(|m| + m cosα)η+λ

)

∈ (, ), |m| ∈ N. ()
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Proof For |x| > , we set

k()(x, y) :=
[min{|x| + x cosα, y(cosβ – )}]η

[max{|x| + x cosα, y(cosβ – )}]λ+η
, y < ,

k()(x, y) :=
[min{|x| + x cosα, y( + cosβ)}]η

[max{|x| + x cosα, y( + cosβ)}]λ+η
, y > ,

from which we have

k()(x, –y) =
[min{|x| + x cosα, y( – cosβ)}]η

[max{|x| + x cosα, y( – cosβ)}]λ+η
, y > .

We obtain

ω(λ, m) =
–∞∑

n=–

k()(m, n)
(|m| + m cosα)λ

[n(cosβ – )]–λ

+
∞∑

n=

k()(m, n)
(|m| + m cosα)λ

[n( + cosβ)]–λ

=
(|m| + m cosα)λ

( – cosβ)–λ

∞∑

n=

k()(m, –n)
n–λ

+
(|m| + m cosα)λ

( + cosβ)–λ

∞∑

n=

k()(m, n)
n–λ

. ()

For fixed |m| ∈ N, λ ≤  – η, we find that

k()(m, –y)
y–λ

=
[min{|m| + m cosα, y( – cosβ)}]η

y–λ [max{|m| + m cosα, y( – cosβ)}]λ+η

=

⎧
⎨

⎩

(–cosβ)η
(|m|+m cosα)λ+η


y–(λ+η) ,  < y < |m|+m cosα

–cosβ
,

(|m|+m cosα)η
(–cosβ)λ+η


y+(λ+η) , y ≥ |m|+m cosα

–cosβ

is decreasing for y >  and strictly decreasing for y ≥ |m|+m cosα

–cosβ
. Under the same assump-

tions, it is evident that

k()(m, y)
y–λ

=
[min{|m| + m cosα, y( + cosβ)}]η

y–λ [max{|m| + m cosα, y( + cosβ)}]λ+η

=

⎧
⎨

⎩

(+cosβ)η
(|m|+m cosα)λ+η


y–(λ+η) ,  < y < |m|+m cosα

+cosβ
,

(|m|+m cosα)η
(+cosβ)λ+η


y+(λ+η) , y ≥ |m|+m cosα

+cosβ

is decreasing for y >  and strictly decreasing for y ≥ |m|+m cosα

+cosβ
.

By () and (), we have

ω(λ, m) <
(|m| + m cosα)λ

( – cosβ)–λ

∫ ∞



k()(m, –y)
y–λ

dy

+
(|m| + m cosα)λ

( + cosβ)–λ

∫ ∞



k()(m, y)
y–λ

dy.
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Setting u = y(–cosβ)
|m|+m cosα

( y(+cosβ)
|m|+m cosα

) in the above first (second) integral, by simplifications, we
find

ω(λ, m) <
(


 – cosβ

+


 + cosβ

)∫ ∞



(min{, u})ηuλ–

(max{, u})λ+η
du

=  csc β

(∫ 


uη+λ– du +

∫ ∞



uλ–

uλ+η
du

)

=
(λ + η) csc β

(λ + η)(λ + η)
= kβ (λ).

Still by () and (), we have

ω(λ, m) >
(|m| + m cosα)λ

( – cosβ)–λ

∫ ∞



k()(m, –y)
y–λ

dy

+
(|m| + m cosα)λ

( + cosβ)–λ

∫ ∞



k()(m, y)
y–λ

dy

≥ 
 – cosβ

∫ ∞

+cosβ
|m|+m cosα

(min{, u})ηuλ–

(max{, u})λ+η
du

+


 + cosβ

∫ ∞

+cosβ
|m|+m cosα

(min{, u})ηuλ–

(max{, u})λ+η
du

= kβ (λ)
(
 – θ (λ, m)

)
> .

We obtain for |m| + m cosα ≥  + cosβ

 < θ (λ, m) =
(λ + η)(λ + η)

λ + η

∫ +cosβ
|m|+m cosα



(min{, u})ηuλ–

(max{, u})λ+η
du

=
(λ + η)(λ + η)

λ + η

∫ +cosβ
|m|+m cosα


uη+λ– du

=
λ + η

λ + η

(
 + cosβ

|m| + m cosα

)η+λ

.

Then we have () and (). �

In the same way, we have the following.

Lemma  If λ ≤  – η, then for kα(λ) = (λ+η) csc α

(λ+η)(λ+η) , we have

kα(λ)
(
 – ϑ(λ, n)

)
< 
 (λ, n) < kα(λ), |n| ∈ N, ()

where

ϑ(λ, n) :=
(λ + η)(λ + η)

λ + η

∫ +cosα|n|+n cosβ



(min{, u})ηuλ–

(max{, u})λ+η
du

= O
(


(|n| + n cosβ)η+λ

)

∈ (, ), |n| ∈ N. ()
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Lemma  If θ ∈ (,π ), then for ρ > , Hρ(θ ) :=
∑∞

|n|=


(|n|+n cos θ )+ρ , we have

Hρ(θ ) =
[


( + cos θ )+ρ

+


( – cos θ )+ρ

]
 + ρO()

ρ

(
ρ → +)

. ()

Proof We have

Hρ(θ ) =
–∞∑

n=–


[n(cos θ – )]+ρ

+
∞∑

n=


[n(cos θ + )]+ρ

=
[


( – cos θ )+ρ

+


( + cos θ )+ρ

] ∞∑

n=


n+ρ

.

By (), we find

Hρ(θ ) =
[


( – cos θ )+ρ

+


( + cos θ )+ρ

](

 +
∞∑

n=


n+ρ

)

<
[


( – cos θ )+ρ

+


( + cos θ )+ρ

](

 +
∫ ∞



dy
y+ρ

)

=

ρ

[


( – cos θ )+ρ
+


( + cos θ )+ρ

]

( + ρ),

Hρ(θ ) >
[


( – cos θ )+ρ

+


( + cos θ )+ρ

]∫ ∞



dy
y+ρ

=

ρ

[


( – cos θ )+ρ
+


( + cos θ )+ρ

]

.

Hence we have (). �

3 Main results
Theorem  If λ,λ ≤  – η, am, bn ≥  (|m|, |n| ∈ N),

 <
∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m < ∞,

 <
∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n < ∞,

kα,β (λ) := k

p
β (λ)k


q
α (λ) =

(λ + η) csc

p β csc


q α

(λ + η)(λ + η)
, ()

then we have the following equivalent inequalities:

I :=
∞∑

|n|=

∞∑

|m|=

k(m, n)ambn

< kα,β(λ)

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
q

, ()
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J :=

[ ∞∑

|n|=

(|n| + n cosβ
)pλ–

( ∞∑

|m|=

k(m, n)am

)p] 
p

< kα,β(λ)

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

. ()

In particular, for α = β = π
 , we have the following equivalent inequalities:

∞∑

|n|=

∞∑

|m|=

(min{|m|, |n|})η
(max{|m|, |n|})λ+η

ambn

<
(λ + η)

(λ + η)(λ + η)

[ ∞∑

|m|=

|m|p(–λ)–ap
m

] 
p
[ ∞∑

|n|=

|n|q(–λ)–bq
n

] 
q

, ()

[ ∞∑

|n|=

|n|pλ–

( ∞∑

|m|=

(min{|m|, |n|})η
(max{|m|, |n|})λ+η

am

)p] 
p

<
(λ + η)

(λ + η)(λ + η)

[ ∞∑

|m|=

|m|p(–λ)–ap
m

] 
p

. ()

Proof By Hölder’s inequality (cf. []) and (), we have

( ∞∑

|m|=

k(m, n)am

)p

=

[ ∞∑

|m|=

k(m, n)
(|m| + m cosα)(–λ)/qam

(|n| + n cosβ)(–λ)/p
(|n| + n cosβ)(–λ)/p

(|m| + m cosα)(–λ)/q

]p

≤
∞∑

|m|=

k(m, n)
(|m| + m cosα)(–λ)p/q

(|n| + n cosβ)–λ
ap

m

×
[ ∞∑

|m|=

k(m, n)
(|n| + n cosβ)(–λ)q/p

(|m| + m cosα)–λ

]p–

=
(
 (λ, n))p–

(|n| + n cosβ)pλ–

∞∑

|m|=

k(m, n)
(|m| + m cosα)(–λ)p/q

(|n| + n cosβ)–λ
ap

m.

By (), we have

J < k

q
α (λ)

[ ∞∑

|n|=

∞∑

|m|=

k(m, n)
(|m| + m cosα)(–λ)(p–)

(|n| + n cosβ)–λ
ap

m

] 
p

= k

q
α (λ)

[ ∞∑

|m|=

∞∑

|n|=

k(m, n)
(|m| + m cosα)(–λ)(p–)

(|n| + n cosβ)–λ
ap

m

] 
p

= k

q
α (λ)

[ ∞∑

|m|=

ω(λ, m)
(|m| + m cosα

)p(–λ)–ap
m

] 
p

. ()

By (), we have ().
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By Hölder’s inequality (cf. []), we have

I =
∞∑

|n|=

[
(|n| + n cosβ

)λ– 
p

∞∑

|m|=

k(m, n)am

]
(|n| + n cosβ

) 
p –λ bn

≤ J

[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
q

. ()

Then by (), we have ().
On the other hand, assuming that () is valid, we set

bn :=
(|n| + n cosβ

)pλ–
( ∞∑

|m|=

k(m, n)am

)p–

, |n| ∈ N.

Then it follows that

J =

[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
p

.

By (), we find J < ∞. If J = , then () is evidently valid; if J > , then by (), we have

 <
∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n = Jp = I

< kα,β (λ)

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
q

,

J =

[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
p

< kα,β(λ)

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

,

namely, () follows, which is equivalent to (). �

Theorem  As regards the assumptions of Theorem , the constant factor kα,β (λ) in ()
and () is the best possible.

Proof For any ε ∈ (, q(λ + η)), we set λ̃ = λ + ε
q (> –η), λ̃ = λ – ε

q (∈ (–η,  – η)), and

ãm :=
(|m| + m cosα

)(λ– ε
p )– =

(|m| + m cosα
)̃λ–ε– (|m| ∈ N

)
,

b̃n :=
(|n| + n cosβ

)(λ– ε
q )– =

(|n| + n cosβ
)̃λ– (|n| ∈ N

)
.
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Then by () and (), we find

Ĩ :=

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ãp

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–̃bq

n

] 
q

=

[ ∞∑

|m|=


(|m| + m cosα)+ε

] 
p
[ ∞∑

|n|=


(|n| + n cosβ)+ε

] 
q

=

ε

[


( + cosα)+ε
+


( – cosα)+ε

] 
p (

 + εO()
) 

p

×
[


( + cosβ)+ε

+


( – cosβ)+ε

] 
q (

 + εO()
) 

q ,

Ĩ :=
∞∑

|n|=

∞∑

|m|=

k(m, n)̃amb̃n

=
∞∑

|m|=

∞∑

|m|=

k(m, n)
(|m| + m cosα)λ̃–ε–

(|n| + n cosβ)–̃λ

=
∞∑

|m|=

ω(̃λ, m)
(|m| + m cosα)ε+ ≥ kβ (̃λ)

∞∑

|m|=

 – θ (̃λ, m)
(|m| + m cosα)ε+

= kβ (̃λ)

[ ∞∑

|m|=


(|m| + m cosα)ε+ –

∞∑

|m|=


O((|m| + m cosα)( ε

p +λ+η)+)

]

=
kβ (̃λ)

ε

{[


( + cosα)+ε
+


( – cosα)+ε

]
(
 + εO()

)
– εO()

}

.

If there exists a constant k ≤ kα,β (λ), such that () is valid when replacing kα,β(λ) by
k, then in particular, we have ε̃I < εk̃I, namely,

kβ (̃λ)
{[


( + cosα)+ε

+


( – cosα)+ε

]
(
 + εO()

)
– εO()

}

< k
[


( + cosα)+ε

+


( – cosα)+ε

] 
p (

 + εO()
) 

p

×
[


( + cosβ)+ε

+


( – cosβ)+ε

] 
q (

 + εO()
) 

q .

It follows that

(λ + η)
(λ + η)(λ + η)

csc β csc α ≤ k csc

p α csc


q β

(
ε → +)

,
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namely,

kα,β (λ) =
(λ + η) csc


p β csc


q α

(λ + η)(λ + η)
≤ k.

Hence, k = kα,β (λ) is the best possible constant factor of ().
The constant factor kα,β (λ) in () is still the best possible. Otherwise, we would reach

a contradiction by () that the constant factor in () is not the best possible. �

4 Operator expressions
We set functions �(m) and �(n) as follows:

�(m) :=
(|m| + m cosα

)p(–λ)– (|m| ∈ N
)
,

�(n) :=
(|n| + n cosβ

)q(–λ)– (|n| ∈ N
)
,

from which we have

�–p(n) =
(|n| + n cosβ

)pλ– (|n| ∈ N
)
.

We also set the following weight normed spaces:

lp,� :=

{

a = {am}∞|m|=;‖a‖p,� =

{ ∞∑

|m|=

�(m)|am|p
} 

p

< ∞
}

,

lq,� :=

{

b = {bn}∞|n|=;‖b‖q,� =

{ ∞∑

|n|=

�(n)|bn|q
} 

q

< ∞
}

,

lp,�–p :=

{

c = {cn}∞|n|=;‖c‖p,�–p =

{ ∞∑

|n|=

�–p(n)|cn|p
} 

p

< ∞
}

.

Then for a = {am}∞|m|= ∈ lp,�, c = {cn}∞|n|=, cn =
∑∞

|m|= k(m, n)am, in view of (), we have
‖c‖p,�–p < kα,β (λ)‖a‖p,� < ∞, namely, c ∈ lp,�–p .

Definition  Define a Hilbert-type operator T : lp,� → lp,�–p as follows: For any a =
{am}∞|m|= ∈ lp,�, there exists a unique representation c = Ta ∈ lp,�–p . We also define the
formal inner product of Ta and b = {bn}∞|n|= ∈ lq,� (bn ≥ ) as follows:

(Ta, b) :=
∞∑

|n|=

∞∑

|m|=

k(m, n)ambn. ()

Then for am ≥  (|m| ∈ N), we may rewrite () and () as follows:

(Ta, b) < kα,β (λ)‖a‖p,�‖b‖q,� , ()

‖Ta‖p,�–p < kα,β (λ)‖a‖p,�. ()
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We define the norm of operator T as follows:

‖T‖ := sup
a ( �=θ )∈lp,�

‖Ta‖p,�–p

‖a‖p,�
. ()

Then ‖Ta‖p,�–p ≤ ‖T‖ · ‖a‖p,�. Since by Theorem , the constant factor kα,β (λ) in ()
is the best possible, we have

‖T‖ = kα,β (λ) =
(λ + η) csc


p β csc


q α

(λ + η)(λ + η)
. ()

Remark  (i) For η = , () reduces to the following inequality:

∞∑

|n|=

∞∑

|m|=


(max{|m| + m cosα, |n| + n cosβ})λ ambn

<
λ

λλ
csc


p β csc


q α

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
q

. ()

In particular, for α = β = π
 , () reduces to (). If a–m = am, b–n = bn (m, n ∈ N), then ()

reduces to (). Hence, () is an extension of () with multi-parameters.
(ii) For η = –λ, – ≤ λ, λ <  in (), we have

∞∑

|n|=

∞∑

|m|=


(min{|m| + m cosα, |n| + n cosβ})λ ambn

<
(–λ)
λλ

csc

p β csc


q α

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(–λ)–bq

n

] 
q

. ()

In particular, for α = β = π
 , we have

∞∑

|n|=

∞∑

|m|=


(min{|m|, |n|})λ ambn

<
(–λ)
λλ

[ ∞∑

|m|=

|m|p(–λ)–ap
m

] 
p
[ ∞∑

|n|=

|n|q(–λ)–bq
n

] 
q

. ()
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(iii) For λ =  in (), we have λ = –λ, |λ| < η (η > ) and

∞∑

|n|=

∞∑

|m|=

(
min{|m| + m cosα, |n| + n cosβ}
max{|m| + m cosα, |n| + n cosβ}

)η

ambn

<
η

η – λ


csc

p β csc


q α

[ ∞∑

|m|=

(|m| + m cosα
)p(–λ)–ap

m

] 
p

×
[ ∞∑

|n|=

(|n| + n cosβ
)q(+λ)–bq

n

] 
q

. ()

In particular, for α = β = π
 , we have

∞∑

|n|=

∞∑

|m|=

(
min{|m|, |n|}
max{|m|, |n|}

)η

ambn

<
η

η – λ


[ ∞∑

|m|=

|m|p(–λ)–ap
m

] 
p
[ ∞∑

|n|=

|n|q(–λ)–bq
n

] 
q

. ()

The above particular inequalities are all with the best possible constant factors.
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