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Abstract
An operator A ∈ B(H), the algebra of bounded linear transformations on a complex
infinite dimensional Hilbert spaceH, belongs to classA(n) (resp.,A(∗ – n)) if
|A|2 ≤ |An+1| 2

n+1 (resp., |A∗|2 ≤ |An+1| 2
n+1 ) for some integer n ≥ 1, and an operator

A ∈ B(H) is called n-paranormal, denoted A ∈ P (n) (resp., ∗ – n-paranormal, denoted
A ∈P (∗ – n)) if ‖Ax‖n+1 ≤ ‖An+1x‖‖x‖n (resp., ‖A∗x‖n+1 ≤ ‖An+1x‖‖x‖n) for some
integer n ≥ 1 and all x ∈ H. In this paper, we prove that if A ∈ {A(n)∪P (n)} (resp.,
A ∈ {A(∗ – n)∪P (∗ – n)}) is a contraction without a non-trivial invariant subspace,
then A, |An+1| 2

n+1 – |A|2 and |An+1|2 – n+1
n |A|2 + 1 (resp., A, |An+1| 2

n+1 – |A∗|2 and
|An+2|2 – n+1

n |A|2 + 1≥ 0) are proper contractions.
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1 Introduction
Let B(H) denote the algebra of bounded linear operators on an infinite dimensional com-
plex Hilbert space H with inner product 〈·, ·〉. An operator A ∈ B(H) is a class A (resp.,
∗-class A) operator, [] and [], if |A| ≤ |A| (resp., |A∗| ≤ |A|). As a generalization of
class A, Yuan and Gao [] have introduced the class of A(n) operators as follows: An op-
erator A ∈ B(H) belongs to class A(n) (resp., A(∗ – n)) if |A| ≤ |An+| 

n+ (resp., |A∗| ≤
|An+| 

n+ ) for some integer n ≥ . An operator A ∈ B(H) is called n-paranormal, denoted
A ∈P(n) (resp., ∗ – n-paranormal, denoted A ∈P(∗ – n)) if ‖Ax‖n+ ≤ ‖An+x‖‖x‖n (resp.,
‖A∗x‖n+ ≤ ‖An+x‖‖x‖n) for some integer n ≥  and all x ∈ H is a generalization of the
class of paranormal (resp., ∗-paranormal) operators (see []).

Recall [] that a contraction A ∈ B(H) (i.e., an operator A ∈ B(H) such that ‖A‖ ≤ ;
equivalently, such that ‖Ax‖ ≤ ‖x‖ for every x ∈ H) is said to be a proper contraction
if ‖Ax‖ < ‖x‖ for every non-zero x ∈ H. A strict contraction (i.e., a contraction A such
that ‖A‖ < ) is a proper contraction, but a proper contraction is not necessarily a strict
contraction. Kubrusly and Levan [] have proved that if a hyponormal (‖Ax‖ ≥ ‖A∗x‖)
contraction A has no non-trivial invariant subspace, then

(a) A is a proper contraction and
(b) its self-commutator [A∗, A] = A∗A – AA∗ is a strict contraction.
Class A operators A satisfy the property that if A is a contraction with no non-trivial

invariant subspace, then the non-negative operator D = |A| – |A| is a proper contrac-
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tion, and hence of the class C of contractions []. Since 〈|A|x, x〉 ≤ 〈|A|x, x〉 
 ‖x‖ (by

the Hölder-McCarthy inequality: if T ∈ B(H) is a non-negative (i.e., ≥ ) operator, then
〈Tλx, x〉 ≤ 〈Tx, x〉λ‖x‖(–λ) for all  < λ ≤ ), if A ∈ A, then ‖Ax‖ ≤ ‖Ax‖‖x‖ for all
x ∈ H. Thus class A operators are paranormal. Paranormal operators A ∈ B(H) are char-
acterized by the positivity condition |A| – λ|A| + λ ≥  for all real λ > . Choosing
λ = , it follows that class A (also, paranormal) operators A satisfy the positivity property
D = |A| – |A| +  ≥ . If we now choose A to be a contraction without a non-trivial
invariant subspace, then D (along with A) is a proper contraction [].

Positivity properties of the type satisfied by class A operators are satisfied by other
classes of Hilbert space operators, some of them generalizations of the class A and others
distinct from class A.

It is easily seen (we prove so in Section ) that class A(n) and class P(n) satisfy the
positivity property that

∣
∣An+∣∣ –

n + 
n

|A| +  ≥ 

and class A(∗ – n) and class P(∗ – n) satisfy the positivity properties

∣
∣An+∣∣ –

n + 
n

∣
∣A∗∣∣ +  ≥ 

and

∣
∣An+∣∣ –

n + 
n

|A| +  ≥ .

We prove in the following that there is a method as regards the ‘proper contraction prop-
erty satisfied by the operators D and D above’. We prove that if an A ∈ {A(n) ∪ P(n)}
(resp., A ∈ {A(∗ – n) ∪ P(∗ – n)}) is a contraction without a non-trivial invariant sub-
space, then A, |An+| 

n+ – |A| and |An+| – n+
n |A| +  (resp., A, |An+| 

n+ – |A∗| and
|An+| – n+

n |A| +  ≥ ) are proper contractions.

2 Results
We begin with the following lemma. Let A ∈ B(H).

Lemma .
(i) A ∈P(n) ∪P(∗ – n) if and only if

∣
∣An+∣∣ – (n + )λn|B| + nλn+ ≥ , all λ > ,

where B = A if A ∈P(n) and B = A∗ if A ∈P(∗ – n).
(ii) If A ∈P(∗ – n), then A ∈P(n + ).

Proof (i) If we let α = ‖An+x‖ and β = β = · · · = βn = λn+‖x‖ for real λ > , then the
generalized arithmetic-geometric inequality αββ · · ·βn ≤ ( α+β+β+···+βn

n+ )n+ [], p., says
that

λn(n+)∥∥An+x
∥
∥

‖x‖n ≤
(‖An+x‖ + nλn+‖x‖

n + 

)n+

.
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By definition A ∈ {P(n) ∪P(∗ – n)} if and only if

‖Bx‖n+ ≤ ∥
∥An+x

∥
∥‖x‖n

(where B = A if A ∈P(n) and B = A∗ if A ∈P(∗ – n)). Thus

(n + )λn‖Bx‖ ≤ (n + )λn∥∥An+x
∥
∥


n+ ‖x‖ n

n+ ≤ ∥
∥An+x

∥
∥

 + nλn+‖x‖

for all λ >  and all x ∈H. Equivalently, if A ∈P(n)∪P(∗– n), then |An+| – (n + )λn|B| +
nλn+ ≥  for all λ > .

To see the sufficiency, let λ →  in

‖Bx‖ ≤ 
(n + )λn

∥
∥An+x

∥
∥

 +
n

n + 
λ‖x‖, x ∈H,

if ‖An+x‖ =  (when it is seen that ‖Bx‖ = ) and let λ = ( ‖An+x‖
‖x‖ ) 

n+ otherwise (when it
follows that ‖Bx‖ ≤ (‖An+x‖‖x‖n) 

n+ , x ∈H).
(ii) If A ∈P(∗ – n), then, for all x ∈H,

‖Ax‖(n+) =
〈

A∗Ax, x
〉n+ ≤ ∥

∥A∗Ax
∥
∥

n+‖x‖n+ ≤ ∥
∥An+x

∥
∥‖Ax‖n‖x‖n+

�⇒ ‖Ax‖n+ ≤ ∥
∥An+x

∥
∥‖x‖n+,

i.e., A ∈P(n + ). �

It is immediate from Lemma . that the operators A ∈P(n) (resp., A ∈P(∗ – n)) satisfy
the positivity property, henceforth denoted property Qλ(n) (resp., property Qλ(∗–n)), that

∣
∣An+∣∣ – (n + )λn|B| + nλn+ ≥ 

for all λ > . (Here, as above, B = A if A ∈P(n) and B = A∗ if A ∈P(∗ – n).) We prove that
the operators A ∈A(n) (resp., A ∈A(∗ – n)) also satisfy property Qλ(n) (resp., Qλ(∗ – n)).
The following lemma, the Hölder-McCarthy inequality, is well known.

Lemma . If A ∈ B(H), then the following properties hold:
() 〈Aλx, x〉 ≥ 〈Ax, x〉λ‖x‖(–λ) for any λ >  and any vector x.
() 〈Aλx, x〉 ≤ 〈Ax, x〉λ‖x‖(–λ) for any λ ∈ (, ] and any vector x.

Lemma . The operators A ∈ A(n) (resp., A ∈ A(∗ – n)) satisfy property Qλ(n) (resp.,
property Qλ(∗ – n)).

Proof The proof is a simple consequence of an application of Lemma .: If A ∈ A(n) ∪
A(∗ – n) and the operator B is defined as above, then, for all x ∈H,

〈|B|x, x
〉 ≤ 〈∣

∣An+∣∣


n+ x, x
〉 ≤ 〈∣

∣An+∣∣x, x
〉 

n+ ‖x‖ n
n+ ,

i.e., A ∈ A(n) implies A ∈ P(n) and A ∈ A(∗ – n) implies A ∈ P(∗ – n). Consequently the
operators A ∈A(n) satisfy property Qλ(n) and the operators A ∈A(∗ – n) satisfy property
Qλ(∗ – n). �



Duggal et al. Journal of Inequalities and Applications  (2016) 2016:116 Page 4 of 8

It is clear from Lemma . that the operators A ∈P(∗– n) satisfy property Qλ(n + ) (i.e.,
if A ∈P(∗ – n), then |An+| – (n + )λn+|B| + (n + )λn+ ≥  for all λ > ).

Given an operator A ∈ B(H), let B denote either A or A∗ (exclusive ‘or’), and let

M =
{

x ∈H : ‖Bx‖ = ‖B‖‖x‖ = ‖A‖‖x‖}.

Lemma . If A ∈ {P(n)∪P(∗–n)}, then M is a closed subspace ofH such that A(M) ⊆ M.

Proof M being the null space of the operator |B| – ‖A‖ is a closed subspace of H. Define
the operator B as before by letting B = A whenever A ∈ P(n) and B = A∗ whenever A ∈
P(∗ – n). Let x ∈ M, and let A ∈ {P(n) ∪P(∗ – n)}. Then

‖Bx‖ ≤ 〈∣
∣An+∣∣x, x

〉 
n+ ‖x‖ n

n+ =
∥
∥An+x

∥
∥


n+ ‖x‖ n

n+

≤ ‖A‖‖x‖ = ‖Bx‖,

and hence

‖Bx‖ =
∥
∥An+x

∥
∥


n+ ‖x‖ n

n+ = ‖A‖‖x‖

⇐⇒ ‖Bx‖n+ =
∥
∥An+x

∥
∥‖x‖n = ‖A‖n+‖x‖n+.

But then (for all x ∈ M and A ∈P(n) ∪P(∗ – n))

‖Bx‖n+ =
∥
∥An+x

∥
∥‖x‖n

≤ ‖A‖∥∥Anx
∥
∥‖x‖n =

∥
∥Anx

∥
∥‖x‖n–‖Bx‖

· · ·
≤ ‖Ax‖‖Bx‖n ≤ ‖Bx‖n+,

which implies

‖Bx‖m =
∥
∥Amx

∥
∥‖x‖m–, all integers  ≤ m ≤ n + .

In particular,

‖Bx‖ = ‖Ax‖ and
∥
∥Ax

∥
∥‖x‖ = ‖Bx‖.

Now if A ∈P(n) (so that B = A), then

∥
∥Ax

∥
∥‖x‖ = ‖Ax‖ = ‖A‖‖x‖ = ‖A‖‖Ax‖‖x‖

�⇒ ∥
∥Ax

∥
∥ = ‖A‖‖Ax‖ �⇒ A(M) ⊆ M,

and if A ∈P(∗ – n) (so that B = A∗), then (using Lemma .(ii))

‖Ax‖ = ‖Bx‖ =
∥
∥A∗x

∥
∥ = ‖A‖‖x‖

�⇒ {

x ∈H : ‖Ax‖ = ‖A‖‖x‖} =
{

x ∈H :
∥
∥A∗x

∥
∥ = ‖A‖‖x‖},

and hence A(M) ⊆ M. �
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Corollary . If a contraction A ∈ {P(n)∪P(∗–n)} has no non-trivial invariant subspace,
then A is a proper contraction.

Proof If A ∈ {P(n) ∪P(∗ – n)}, then AM ⊆ M. Now if A is not a proper contraction, then
(it is not a strict contraction, hence) ‖A‖ = ‖A∗‖ = . Hence, since A has no non-trivial in-
variant subspace, M = {} (for the reason that if M = H, then either A or A∗ is an isometry
and isometries have non-trivial invariant subspaces). Consequently, ‖Ax‖ ≤ ‖A‖‖x‖ < ‖x‖
for all x ∈H, i.e., A is a proper contraction. �

We say in the following that an operator A ∈ B(H) satisfies the positivity condition:

(D) if the operator D = |An+| 
n+ – |A| ≥ ,

(D) if the operator D = |An+| 
n+ – |A∗| ≥ , and

(D) if the operator D = |An+| – n+
n |A| +  ≥ .

It is evident from the definition of operators A ∈ A(n) (resp., A ∈ A(∗ – n)) that A(n)
operators satisfy condition (D) (resp., A(∗ – n) operators satisfy condition (D)). If we
choose  < λ = 

n√n in Qλ(n), then (since |An+| – n+
n |A| + 

n√n ≤ |An+| – n+
n |A| +  for

all integers n ≥ ) operators A ∈P(n) are seen to satisfy positivity condition (D). Again, if
we choose  < λ = n+

√
n+

n(n+) , then the fact that P(∗– n) operators satisfy property Qλ(n + )

implies that |An+| – n+
n |A| +  ≥ |An+| – n+

n |A| + (n + )( n+
n(n+) ) n+

n+ ≥ ; in particular,
P(∗ – n) contractions A satisfy positivity condition (D).

Remark . An interesting class of operators, which contains many a familiar class of
operators (such as p-hyponormal operators,  < p ≤ , w-hyponormal operators and class
A operators) considered by a large number of authors in the recent past, is that of the class
A(s, t) operators A ∈ B(H) defined by the positivity condition |A∗|t ≤ (|A∗|t|A|s|A∗|t) t

s+t ,
 < s, t []. Class A(s, t) operators satisfy the property that A ∈ A(s, t) implies A ∈ A(α,β)
for every α ≥ s and β ≥ t ([], Theorem ). Hence, if  < s, t ≤ , then every A ∈A(s, t) is an
A(, ) = A operator ([], Theorem ). Consequently the operators A ∈A(s, t),  < s, t ≤ ,
satisfy positivity conditions (D) and (D) (with n = ).

Lemma . If an operator A ∈ B(H) is a contraction such that Di ≥ ,  ≤ i ≤ , for an
i = i, then Di is a contraction.

Proof Let Di = R
i , let x ∈H and let Rm

i x = yi. Then

〈

Dm+
 x, x

〉

=
〈∣
∣An+∣∣


n+ y, y

〉

– ‖Ay‖

≤ ∥
∥An+y

∥
∥


n+ ‖y‖ n

n+ – ‖Ay‖

≤ ‖y‖ =
〈

Dm
 x, x

〉

(case i = ),
〈

Dm+
 x, x

〉

=
〈∣
∣An+∣∣


n+ y, y

〉

–
∥
∥A∗y

∥
∥



≤ ∥
∥An+y

∥
∥


n+ ‖y‖ n

n+ –
∥
∥A∗y

∥
∥



≤ ‖y‖ =
〈

Dm
 x, x

〉

(case i = ),
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〈

Dm+
 x, x

〉

=
〈∣
∣An+∣∣y, y

〉

–
n + 

n
‖Ay‖ + ‖y‖

=
∥
∥An+y

∥
∥

 –
n + 

n
‖Ay‖ + ‖y‖

≤ ‖Ay‖ –
n + 

n
‖Ay‖ + ‖y‖

= ‖y‖ –

n

‖Ay‖

≤ ‖y‖ =
〈

Dm
 x, x

〉

(case i = ).

Hence, in either of the cases i = ,  and , Di is a contraction. �

We remark here that it is in general false that if A ∈ B(H) is a P(n) (or P(∗ – n))
contraction, then the positive operator D = |An+| – (n + )λn|A| + nλn+ ≥  (resp.,
|An+| – (n + )λn|A∗| + nλn+ ≥ ), all λ > , characterizing P(n) (resp., P(∗ – n)) op-
erators is a contraction. Consider for example the forward unilateral shift U ∈ B(H).
Trivially, αU ∈ P() is a (proper) contraction for all positive α < . The operator D =
|αU| – λ|αU| + λ = α – αλ + λ = (α – λ) >  for all λ >  + α. It is possible
that, for contractions A ∈ P(∗ – n), the positive operator D = |An+| – n+

n |A∗| +  is a
contraction. We have, however, not been able to prove this.

The conclusion that Di is a contraction in Lemma . implies that the sequence {Dp
i}∞

being a monotonic decreasing bounded sequence of non-negative operators converges to
a projection Pi .

Lemma . If Di (i = , , ) is the non-negative contraction of Lemma . with
limp→∞ Dp

i = Pi for an i = i, then APi =  if i = ,  and A∗Pi =  if i = .

Proof Letting Di = R
i and Rm

i x = yi for x ∈H and  ≤ i ≤ , we have

‖y‖ – ‖Ry‖ = ‖y‖ –
〈∣
∣An+∣∣


n+ y, y

〉

+ ‖Ay‖

≥ ‖y‖ –
∥
∥An+y

∥
∥


n+ ‖y‖ n

n+ + ‖Ay‖

≥ ‖Ay‖ (case i = ),

‖y‖ – ‖Ry‖ = ‖y‖ –
〈∣
∣An+∣∣


n+ y, y

〉

+
∥
∥A∗y

∥
∥



≥ ‖y‖ –
∥
∥An+y

∥
∥


n+ ‖y‖ n

n+ +
∥
∥A∗y

∥
∥



≥ ∥
∥A∗y

∥
∥

 (case i = ), and

‖y‖ – ‖Ry‖ = ‖y‖ –
〈∣
∣An+∣∣y, y

〉

+
n

n + 
‖Ay‖ – ‖y‖

= –
∥
∥An+y

∥
∥

‖y‖ +
n + 

n
‖Ay‖

≥ 
n

‖Ay‖ (case i = ).
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Let the operator B stand for A if i =  or , and let B = A∗ if i = . Letting a =  if i =  or
, and a = /n if i = , we then have

a
p

∑

m=

∥
∥BRm

i x
∥
∥

 ≤
p

∑

m=

∥
∥Rm

i x
∥
∥

 –
p

∑

m=

∥
∥Rm+

i x
∥
∥

 = ‖x‖ –
∥
∥Rp+

i x
∥
∥

 ≤ ‖x‖

for every x ∈ H and integer p ≥ . The positive integer n being fixed, it follows that
‖BRp

i x‖ →  as p → ∞; hence

 = lim
p→∞ BRp

i x = B lim
p→∞ Dp

i x = BPi

for every x ∈H. Consequently, APi =  if i = ,  and A∗Pi =  if i = . �

Recall that T ∈ B(H) is a C·-contraction (resp., C·-contraction) if ‖Tnx‖ converges to 
for all x ∈H (resp., does not converge to  for all non-trivial x ∈H); T is of class C·, or C·,
if T∗ is of class C·, respectively C·. All combinations are allowed, leading to the classes
C, C, C, and C of contractions ([], p.). We say that a contraction T ∈ B(H) is
strongly stable if Tn converges strongly to the  operator as n → ∞.

The following theorem is our main result.

Theorem . If a contraction  �= A ∈ B(H) has no non-trivial invariant subspace, and if
A satisfies the positivity condition (Di) (i = , , ) for an i = i, then Di is a strongly stable
(hence C) proper contraction.

Proof Start by recalling that A has a non-trivial invariant subspace if and only if A∗ does.
The hypotheses imply that the sequence {Dp

i} of non-negative contractions converges to
a projection Pi such that APi =  whenever i =  or  and A∗Pi =  whenever i = .
Equivalently, Pi A∗ =  whenever i =  or  and Pi A =  whenever i = . Thus P–

i () is
a non-zero invariant subspace for A∗ in the case in which i =  or , and P–

 () is a non-
zero invariant subspace for A in the case in which i = . Hence we must have P–

i () = H
for every choice of i (= , , ), and then the sequence {Dp

i} converges strongly to the
 operator. Since strong stability coincides with proper contractiveness for non-negative
operators [], Di is a proper contraction (of the class C of contractions). �

Remark . A generalization of the class A(n) of operators in B(H) is obtained by con-
sidering operators A ∈ B(H) for which

Dm(n) = A∗m(∣
∣An+∣∣


n+ – |A|)Am ≥ 

for integers m ≥ . (Similar generalizations of the classes A(∗ – n), P(n), and P(∗ – n) are
obtained by considering A∗m(|An+| 

n+ – |A∗|)Am ≥ , A∗m(|An+| – λ|A| + λ)Am ≥ ,
and A∗m(|An+| – λ|A∗| + λ)Am ≥ , respectively.) Calling this class of operators A the
class of m-quasi(A(n)) operators, denoted A ∈ m-Q(A(n)), it is seen that the operators
A ∈ m-Q(A(n)) have an upper triangular matrix representation

A =

(

A C
 A

)(

ran Am

A∗m–()

)

,
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where A ∈ A(n) and A∗
 is (m + )-nilpotent. An argument similar to that used above

(cf. [] to see the minor changes in detail that are required) shows that, if A is a contrac-
tion, then the sequence {Dp

m(n)} of positive operators converges strongly to a projection
P such that Am+P = . The operators A ∈ m-Q(A(n)) are not normaloid. If a contraction
A ∈ m-Q(A(n)) has no non-trivial invariant subspaces, then A is a quasi-affinity (i.e., A is
injective and has a dense range), and hence A ∈A(n). Thus Theorem . has the following
analog for contractions A ∈ m-Q(A(n)): If a contraction A ∈ m-Q(A(n)) has no non-trivial
invariant subspace, then A is a proper contraction such that Dm(n) ∈ C is a strongly stable
contraction.
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