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1 Introduction and main results
Let {Xn; n ≥ } be a sequence of random variables and define Sn =

∑n
i= Xi. Some results as

regards the limit theorem of products
∏n

j= Sj were obtained in recent years. Rempala and
Wesolowski [] obtained the following asymptotics for products of sums for a sequence of
i.i.d. random variables.

Theorem A Let {Xn; n ≥ } be a sequence of i.i.d. positive square integrable random vari-
ables with EX = μ, the coefficient of variation γ = σ /μ, where σ  = Var(X). Then

(∏n
k= Sk

n!μn

) 
γ
√

n d→ e
√

N as n → ∞. (.)

Here and in the sequel, N is a standard normal random variable and d→ denotes the con-
vergence in distribution.

Gonchigdanzan and Rempala [] discussed the almost sure central limit theorem
(ASCLT) for the products of partial sums and obtained the following result.

Theorem B Let {Xn; n ≥ } be a sequence of i.i.d. positive random variables with EX = μ,
Var(X) = σ  the coefficient of variation γ = σ /μ. Then

lim
N→∞


log N

N∑

n=


n

I
{(∏n

k= Sk

n!μn

) 
γ
√

n ≤ x
}

= F(x) a.s. for any x ∈R, (.)

where F is the distribution function of the random variable e
√

N . Here and in the sequel,
I{·} denotes the indicator function.
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Tan and Peng [] proved the result of Theorem B still holds for some class of unbounded
measurable functions and obtained the following result.

Theorem C Let {Xn; n ≥ } be a sequence of i.i.d. positive random variables with EX = μ,
Var(X) = σ , E|X| < ∞, the coefficient of variation γ = σ /μ. Let g(x) be a real valued
almost everywhere continuous function on R such that |g(ex)φ(x)| ≤ c( + |x|)–α with some
c >  and α > . Then

lim
N→∞


log N

N∑

n=


n

g
{(∏n

k= Sk

n!μn

) 
γ
√

n
}

=
∫ ∞


g(x) dF(x) a.s. for any x ∈R, (.)

where F(·) is the distribution function of the random variable e
√

N and φ(x) is the density
function of the standard normal random variable.

Zhang et al. [] discussed the almost sure central limit theory for products of sums of
partial sums and obtained the following result.

Theorem D Let {X, Xn; n ≥ } be a sequence of i.i.d. positive square integrable random
variables with EX = μ, Var(X) = σ  < ∞, the coefficient of variation γ = σ /μ. Denote Sn =
∑n

i= Xi, Tk =
∑k

i= Si. Then

lim
n→∞


log n

n∑

k=


k

I
{( k ∏k

j= Tj

k!(k + )!μk

) 
γ
√

k ≤ x
}

= F(x) a.s. for any x ∈R, (.)

where F(·) is the distribution function of the random variable e
√

/N .

The purpose of this article is to establish that Theorem D holds for some class of un-
bounded measurable functions.

Our main result is the following theorem.

Theorem . Let {Xn; n ≥ } be a sequence of i.i.d. positive random variables withEX = μ,
Var(X) = σ , E|X| < ∞, the coefficient of variation γ = σ /μ. Let g(x) be a real valued
almost everywhere continuous function on R such that |g(e

√
/x)φ(x)| ≤ c( + |x|)–α with

some c >  and α > . Denote Sn =
∑n

i= Xi, Tk =
∑k

i= Si. Then

lim
N→∞


log N

N∑

n=


n

g
((

n ∏n
k= Tk

n!(n + )!μn

) 
γ
√

n
)

=
∫ ∞


g(x) dF(x) a.s. for any x ∈R, (.)

where F(·) is the distribution function of the random variable e
√

/N . Here and in the
sequel, φ(x) is the density function of the standard normal random variable.

Remark  Let f (x) = g(e
√

/x), t = e
√

/x. Then

x =
√




log t, g(t) = f
(√




log t
)

,
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g
((

n ∏n
k= Tk

n!(n + )!μn

) 
γ
√

n
)

= f

(√



log

( n∏

k=

Tk

k(k + )μ

) 
γ
√

n
)

= f

(


γ
√

n/

n∑

k=

log
Tk

k(k + )μ/

)

.

Since F(x) is the distribution function of the random variable e
√

/N , we can get F(x) =
�(

√

 log x), where �(x) is the distribution function of the standard normal random vari-

able. Hence we have the following: Let f (x) = g(e
√

/x) and f (x) be a real valued almost
everywhere continuous function on R such that |f (x)φ(x)| ≤ c( + |x|)–α with some c > 
and α > , then (.) is equivalent to

lim
N→∞


log N

N∑

n=


n

f

(


γ
√

n/

n∑

k=

log
Tk

k(k + )μ/

)

=
∫ ∞

–∞
f (x)φ(x) dx a.s. for any x ∈R. (.)

Remark  By the proof of Theorem  of Berkes et al. [], in order to prove (.), it suffices
to show (.) holds true for f (x)φ(x) = ( + |x|)–α with α > . Here and in the sequel, f (x)
satisfies f (x)φ(x) = ( + |x|)–α with α > .

2 Preliminaries
In the following, the notation an ∼ bn means that limn→∞ an/bn =  and an 	 bn means
that lim supn→∞ |an/bn| < +∞. We denote bk,n =

∑n
j=k


j , ck,n = 

∑n
j=k

j+–k
j(j+) , dk,n = n+–k

n+ ,
X̃i = Xi–μ

σ
, S̃k =

∑k
i= X̃i, Sk,n =

∑k
i= ci,nX̃i. By Lemma . of Wu [], we can get

ci,n = (bi,n – di,n),
n∑

i=

c
i,n ∼ n


.

Let

Yi =


γ
√

i/

i∑

k=

log
Tk

k(k + )μ/
.

Note that


γ

i∑

k=

(
Tk

k(k + )μ/
– 

)

=

γ

i∑

k=

(
∑k

j= Sj – k(k + )μ
k(k + )μ

)

=

γ

i∑

k=


k(k + )μ

k∑

j=

j∑

l=

(Xl – μ)

=

γ

i∑

k=


k(k + )μ

k∑

l=

k∑

j=l

(Xl – μ)
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=
μ

σ

i∑

k=


k(k + )μ

k∑

l=

(k +  – l)(Xl – μ)

=
i∑

k=

k∑

l=

(k +  – l)
k(k + )

Xl – μ

σ

=
i∑

l=

i∑

k=l

(k +  – l)
k(k + )

X̃l

=
i∑

l=

cl,iX̃l = Si,i.

By the fact that log( + x) = x + δ
 x, where |x| < , δ ∈ (–, ), thus we have

Yi =


γ
√

i/

i∑

k=

log
Tk

k(k + )μ/

=


γ
√

i/

i∑

k=

(
Tk

k(k + )μ/
– 

)

+


γ
√

i/

i∑

k=

δk



(
Tk

k(k + )μ/
– 

)

=
√

i/
Si,i +


γ
√

i/

i∑

k=

δk



(
Tk

k(k + )μ/
– 

)

=:
√

i/
Si,i + Ri.

By the fact that E|X| < ∞, using the Marcinkiewicz-Zygmund strong large number law,
we have

Sk – kμ = o
(
k/) a.s.,

∣
∣
∣
∣

Tk

k(k + )μ/
– 

∣
∣
∣
∣ =

∣
∣
∣
∣

∑k

j= Sj – k(k + )μ
k(k + )μ

∣
∣
∣
∣

≤ |∑k
j=(Sj – jμ)|

k(k + )μ

≤ 
∑k

j= j/

k(k + )μ
	 k/

k =


k/ .

Thus

|Ri| 	 √
i

i∑

k=


k

	 log i√
i

a.s. (.)

In order to prove Theorem ., we introduce the following lemmas.

Lemma . Let X and Y be random variables. Set F(x) = P(X < x), G(x) = P(X + Y < x),
then for any ε >  and x ∈R,

F(x – ε) – P
(|Y | ≥ ε

) ≤ G(x) ≤ F(x + ε) + P
(|Y | ≥ ε

)
.
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Proof See Lemma  on p. of Petrov []. �

Lemma . Let {Xn; n ≥ } be a sequence of i.i.d. positive random variables. Denote Sn =
∑n

i= Xi, Fs denotes the distribution function obtained from F by symmetrization and choose
L >  so large that

∫
|x|≤L x dFs(x) ≥ . Then, for any n ≥ , λ > , there exists a c >  such

that

sup
a

P
(

a ≤ Sn√
n

≤ a + λ

)

≤ cλ

holds for λ
√

n ≥ L.

Proof See () on p. of Berkes et al. []. �

Let

Zk =
k+
∑

i=k +


i

f (Yi),

Z∗
k =

k+
∑

i=k +


i

f (Yi)I
{

f (Yi) ≤ k
(log k)β

}

,

where  < β < (α – )/.

Lemma . Under the conditions of Theorem ., we get

P
(
Zk �= Z∗

k , i.o.
)

= .

Proof It is easy to get

{
Zk �= Z∗

k
} ⊆ {|Yi| ≥ f –(k/(log k)β

)
for some k < i ≤ k+}

=
{∣
∣
∣
∣

√
i/

Si,i + Ri

∣
∣
∣
∣ ≥ f –(k/(log k)β

) ≥ (
 log k + (α – β) log log k

)/

for some k < i ≤ k+
}

.

Since |Ri| 	 log i√
i

a.s.; see (.). By the law of iterated logarithm (Feller [], Theorem ), we
get

P
(
Zk �= Z∗

k , i.o.
) ≤ P

(∣
∣
∣
∣

√
i/

Si,i

∣
∣
∣
∣ ≥ (

 log log i + (α – β) log log log i – O()
)/, i.o.

)

= .

We complete the proof of Lemma .. �

Let Gi, Fi, F denote the distribution functions of Yi, S̃i√
i , X̃, respectively. � denotes the

distribution function of the standard normal distribution function. Set

σ 
i =

∫ √
i

–
√

i
x dF(x) –

(∫ √
i

–
√

i
x dF(x)

)

,
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εi = sup
x

∣
∣
∣
∣Fi(x) – �

(
x
σi

)∣
∣
∣
∣, θi = sup

x

∣
∣
∣
∣Gi(x) – �

(
x
σi

)∣
∣
∣
∣.

Obviously σi ≤ , limi→∞ σi = .

Lemma . Under the conditions of Theorem ., we have

N∑

k=

E
(
Z∗

k
) 	 N

(log N)β
.

Proof Note that the estimation

∣
∣
∣
∣

∫ a

–a
�(x) d

(
H(x) – H(x)

)
∣
∣
∣
∣ ≤ sup

–a≤x≤a

∣
∣�(x)

∣
∣ · sup

–a≤x≤a

∣
∣H(x) – H(x)

∣
∣ (.)

holds for any bounded, measurable function �(x) and the distribution functions H(x),
H(x). Thus for k < i ≤ k+, we get

Ef (Yi)I
{

f (Yi) ≤ k
(log k)β

}

=
∫

|x|≤ak

f (x) dGi(x)

≤
∫

|x|≤ak

f (x) d�

(
x
σi

)

+ θi
k

(log k)β

	
∫

|x|≤ak

f (x) d�(x) + θi
k

(log k)β
;

here and in the sequel ak = f –( k
(log k)β ). Hence, by the Cauchy-Schwarz inequality and the

fact that f (x)φ(x) = ( + |x|)–α , we obtain

E
(
Z∗

k
) 	 E

(( k+
∑

i=k +

(

i

)
)/( k+

∑

i=k +

f (Yi)I
{

f (Yi) ≤ k
(log k)β

})/)

	
( k+

∑

i=k +


i

)( k+
∑

i=k +

(∫

|x|≤ak

f (x) d�(x) + θi
k

(log k)β

))

	 
k

(

k
∫

|x|≤ak

f (x) d�(x) +
k

(log k)β

k+
∑

i=k +

θi

)

	
∫

|x|≤ak

ex/

( + |x|)α
dx +

k

(log k)β

k+
∑

i=k +

θi

i
.

By the same methods as that on p. of Berkes et al. [], we get

∫

|x|≤ak

ex/

( + |x|)α
dx 	 k

(log k)β+(α+)/ .
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Now we estimate θi. By Lemma ., for any ε > , we have

θi = sup
x

∣
∣
∣
∣Gi(x) – �

(
x
σi

)∣
∣
∣
∣

≤ sup
x

∣
∣Gi(x) – Fi(x)

∣
∣ + sup

x

∣
∣
∣
∣Fi(x) – �

(
x
σi

)∣
∣
∣
∣

= sup
x

∣
∣
∣
∣P(Yi ≤ x) – P

(
S̃i√

i
≤ x

)∣
∣
∣
∣ + εi

≤ sup
x

∣
∣
∣
∣P(Yi ≤ x) – P

(
Si,i√
i/

≤ x
)∣

∣
∣
∣ + sup

x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x
)

– P
(

S̃i√
i
≤ x

)∣
∣
∣
∣ + εi

≤ sup
x

∣
∣
∣
∣P

(
Si,i√
i/

+ Ri ≤ x
)

– P
(

Si,i√
i/

≤ x + ε

)∣
∣
∣
∣

+ sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x + ε

)

– P
(

Si,i√
i/

≤ x
)∣

∣
∣
∣

+ sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x
)

– P
(

S̃i√
i
≤ x

)∣
∣
∣
∣ + εi

≤ P
(|Ri| ≥ ε

)
+ sup

x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x + ε

)

– P
(

Si,i√
i/

≤ x
)∣

∣
∣
∣

+ sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x
)

– P
(

S̃i√
i
≤ x

)∣
∣
∣
∣ + εi.

By the Markov inequality and (.), we have

P
(|Ri| ≥ ε

) ≤ E|Ri|
ε

	 log i√
iε

.

By Lemma ., we have

sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x + ε

)

– P
(

Si,i√
i/

≤ x
)∣

∣
∣
∣ 	 ε.

By the Berry-Esseen inequality, we have

sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x
)

– P
(

S̃i√
i
≤ x

)∣
∣
∣
∣

≤ sup
x

∣
∣
∣
∣P

(
Si,i√
i/

≤ x
)

– �(x)
∣
∣
∣
∣ + sup

x

∣
∣
∣
∣P

(
S̃i√

i
≤ x

)

– �(x)
∣
∣
∣
∣

	 
i/ +


i/ .

Let ε = i–/, then

θi 	 log i
i/ +


i/ +


i/ + εi.

Therefore, there exists ε >  such that

θi 	 
iε

+ εi.
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By Theorem  of Friedman et al. [], we have

∞∑

i=

εi

i
< ∞.

Hence

∞∑

i=

θi

i
	

∞∑

i=


iε + εi

i
< ∞.

By the fact that (α + )/ > β , we have

N∑

k=

E
(
Z∗

k
) 	

N∑

k=

k
(log k)β+(α+)/ +

N∑

k=

k

(log k)β

k+
∑

i=k +

θi

i
	 N

(log N)β
.

We complete the proof of Lemma .. �

Lemma . Under the conditions of Theorem ., for l ≥ l, we have

∣
∣Cov

(
Z∗

k , Z∗
l
)∣
∣ 	 kl

(log k)β (log l)β
–(l–k)τ ,

where τ is a constant  < τ ≤ /.

Proof For  ≤ i ≤ j/, j ≥ j and any x, y, we first prove

∣
∣P(Yi ≤ x, Yj ≤ y) – P(Yi ≤ x)P(Yj ≤ y)

∣
∣ 	

(
i
j

)τ

. (.)

Let ρ = i
j . By the Chebyshev inequality, we have

P
(∣

∣
∣
∣

Si,i
√

j/

∣
∣
∣
∣ ≥ ρ/

)

= P
(∣

∣
∣
∣

Si,i√
i/

∣
∣
∣
∣ ≥

√
j
i
ρ/

)

≤ i
j
ρ–/ ≤ ρ/ ≤ ρτ ,

where τ is a constant  < τ ≤ /.
By the Markov inequality and (.), for j ≥ j, we have

P
(|Rj| ≥ ρ/) ≤ E|Rj|

ρ/ 	 log j
j/ρ/ = ρ/ log j

j/i/ 	 ρτ ,

where τ is a constant,  < τ ≤ /.
By the Markov inequality, we have

P
(∣

∣
∣
∣
√

 – ρ
ci+,j̃Si

√
(j – i)/

∣
∣
∣
∣ ≥ ρ/

)

= P
(∣

∣
∣
∣

S̃i√
i

∣
∣
∣
∣ ≥

√
/j

i


ci+,j
ρ/

)

≤ 


ρ/(ci+,j) =



ρ/(bi+,j – di+,j)
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=



ρ/

[(


j∑

k=i+


k

)

+ 
(

j +  – i – 
j + 

)

– 

( j∑

k=i+


k

)
j +  – i – 

j + 

]

	 ρ/
[(

log
j
i

)

+
(

j – i
j + 

)

–
j – i
j + 

log
j
i

]

	 ρτ ,

where τ is a constant that satisfies  < τ ≤ /.
By Lemma . and the fact that ρ = i

j ,  ≤ i ≤ j/, we have

P
(

y – ρ/ ≤ √
 – ρ

Sj,j – Si,i – ci+,j̃Si
√

(j – i)/
≤ y

)

	 ρ/
√

 – ρ
	 ρ/.

Set τ = min{τ, τ, τ, /}, we get

P(Yi ≤ x, Yj ≤ y)

= P
(

Yi ≤ x,
Sj,j

√
j/

+ Rj ≤ y
)

= P
(

Yi ≤ x,
Si,i

√
j/

+
√

 – ρ
Sj,j – Si,i – ci+,j̃Si

√
(j – i)/

+
√

 – ρ
ci+,j̃Si

√
(j – i)/

+ Rj ≤ y
)

≥ P
(

Yi ≤ x,
√

 – ρ
Sj,j – Si,i – ci+,j̃Si

√
(j – i)/

≤ y
)

– P
(

y – ρ/ ≤ √
 – ρ

Sj,j – Si,i – ci+,j̃Si
√

(j – i)/
≤ y

)

– P
(∣

∣
∣
∣

Si,i
√

j/

∣
∣
∣
∣ ≥ ρ/

)

– P
(∣

∣
∣
∣
√

 – ρ
ci+,j̃Si

√
(j – i)/

∣
∣
∣
∣ ≥ ρ/

)

– P
(|Rj| ≥ ρ/)

≥ P
(

Yi ≤ x,
√

 – ρ
Sj,j – Si,i – ci+,j̃Si

√
(j – i)/

≤ y
)

– ρτ

= P(Yi ≤ x)P
(

√
 – ρ

Sj,j – Si,i – ci+,j̃Si
√

(j – i)/
≤ y

)

– ρτ .

We can get a similar upper estimate for P(Yi ≤ x, Yj ≤ y) in the same way. Thus there exists
some constant M such that

P(Yi ≤ x, Yj ≤ y) = P(Yi ≤ x)P
(

√
 – ρ

Sj,j – Si,i – ci+,j̃Si
√

(j – i)/
≤ y

)

+ Mρτ .

A similar argument,

P(Yi ≤ x)P(Yj ≤ y) = p(Yi ≤ x)P
(

√
 – ρ

Sj,j – Si,i – ci+,j̃Si
√

(j – i)/
≤ y

)

+ M′ρτ ,

holds for some constant M′. Thus we prove that (.) holds.
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Let Gi,j(x, y) be the joint distribution function of Yi and Yj. By (.) and (.), for k < i ≤
k+, l < j ≤ l+, l – k ≥ , l ≥ l, we can get

∣
∣
∣
∣Cov

(

f (Yi)I
{

f (Yi) ≤ k
(log k)β

}

, f (Yj)I
{

f (Yj) ≤ l
(log l)β

})∣
∣
∣
∣

=
∣
∣
∣
∣

∫

|x|≤ak

∫

|y|≤al

f (x)f (y) d
(
Gi,j(x, y) – Gi(x)Gj(y)

)
∣
∣
∣
∣

	 kl
(log k)β (log l)β

(
i
j

)τ

	 kl
(log k)β (log l)β

–(l–k–)τ .

Thus we have

∣
∣Cov

(
Z∗

k , Z∗
l
)∣
∣ 	 kl

(log k)β (log l)β
–(l–k)τ .

We complete the proof of Lemma .. �

Lemma . Under the conditions of Theorem ., denoting ηk = Z∗
k – EZ∗

k , we have

E

( N∑

k=

ηk

)

= O
(

N

(log N)β–

)

.

Proof It follows from Lemma . and Lemma . that Lemma . also holds true. The
proof is similar to that of Lemma  of Berkes et al. []. So we omit it here. �

3 Proof of theorem
By Lemma ., we have

E

(

N

N∑

k=

ηk

)

= O
(
(log N)–β

)
.

Letting Nk = [ekλ], (β – )– < λ < , we get

E

(


Nk

Nk∑

k=

ηk

)

< ∞,

which implies

lim
k→∞


Nk

Nk∑

k=

ηk =  a.s. (.)

Note that for k < i ≤ k+,

Ef (Yi)I
{

f (Yi) ≤ k
(log k)β

}

=
∫

|x|≤ak

f (x) dGi(x) =
∫

|x|≤ak

f (x) d�

(
x
σi

)

+
∫

|x|≤ak

f (x) d
(

Gi(x) – �

(
x
σi

))

. (.)
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Set a =
∫ ∞

–∞ f (x) d�(x). Noting that σi ≤ , limi→∞ σi = , we have

lim
k→∞

sup
k <i≤k+

∣
∣
∣
∣

∫

|x|≤ak

f (x) d�

(
x
σi

)

– a
∣
∣
∣
∣ = . (.)

Then by (.), (.), and (.) we get

∣
∣
∣
∣Ef (Yi)I

{

f (Yi) ≤ k
(log k)β

}

– a
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

|x|≤ak

f (x) d�

(
x
σi

)

– a
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

|x|≤ak

f (x) d
(

Gi(x) – �

(
x
σi

))∣
∣
∣
∣

≤ ok() +
kθi

(log k)β
.

Thus

EZ∗
k = a

k+
∑

i=k +


i

+ ζk
k

(log k)β

k+
∑

i=k +

θi

i
+ ok(), |ζk| ≤ .

Using
∑L

i= /i = log L + O() and
∑∞

i=
θi
i < ∞, we get

∣
∣
∣
∣
E(

∑N
k= Z∗

k )
log N+ – a

∣
∣
∣
∣ 	 

N

N∑

k=

k
(log k)β

k+
∑

i=k +

θi

i
+ oN ()

= O
(
(log N)–β

)
+ oN ()

= oN ().

Thus by (.), we get

lim
k→∞

∑Nk
k= Z∗

k
log Nk+ = a a.s.

Then by Lemma ., we have

lim
k→∞

∑Nk
k= Zk

log Nk+ = a a.s. (.)

The relation λ <  implies limk→∞ Nk+/Nk = , thus (.) and the positivity of the Zk yield

lim
N→∞

∑N
k= Zk

log N+ = a a.s.,

i.e. (.) holds for the subsequence N = k . Using again the positivity of the terms, we get
(.). We complete the proof of Theorem ..
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