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1 Introduction and main results

Let {X,;; n > 1} be a sequence of random variables and define S, = Zle X;. Some results as
regards the limit theorem of products I—[;':1 S; were obtained in recent years. Rempala and
Wesolowski [1] obtained the following asymptotics for products of sums for a sequence of
i.i.d. random variables.

Theorem A Let {X,;n > 1} be a sequence of i.i.d. positive square integrable random vari-
ables with EX| = u, the coefficient of variation y = o/, where o = Var(X,). Then

n 1
(l_[kl Sk) i A N

nlu”

asn— 0. (1.1)
) . ) d

Here and in the sequel, N is a standard normal random variable and — denotes the con-

vergence in distribution.

Gonchigdanzan and Rempala [2] discussed the almost sure central limit theorem
(ASCLT) for the products of partial sums and obtained the following result.

Theorem B Let {X,;n > 1} be a sequence of i.i.d. positive random variables with EX; =
Var(X,) = o2 the coefficient of variation y = o /u. Then

N T, s
N—>0010gN21: {( AL k) x}=F(x) a.s. forany x € R, (1.2)

where F is the distribution function of the random variable eV?N' Here and in the sequel,
I{-} denotes the indicator function.
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Tan and Peng [3] proved the result of Theorem B still holds for some class of unbounded
measurable functions and obtained the following result.

Theorem C Let {X,;; n > 1} be a sequence of i.i.d. positive random variables with EX; = 1,
Var(X;) = 02, E|X;|3 < 0o, the coefficient of variation y = o /1. Let g(x) be a real valued
almost everywhere continuous function on R such that |g(e*)p(x)| < c(1 + |x])™* with some
¢>0anda >5. Then

R S 00
A}_)OO logNZ g{(l_ik'; k> }:/(; gx)dF(x) a.s. foranyxeR, (1.3)

where F(-) is the distribution function of the random variable VN and ¢(x) is the density
function of the standard normal random variable.

Zhang et al. [4] discussed the almost sure central limit theory for products of sums of
partial sums and obtained the following result.

Theorem D Let {X,X,;n > 1} be a sequence of i.i.d. positive square integrable random
variables with EX = p, Var(X) = 02 < 00, the coefficient of variation y = o /u. Denote S, =
S Xi, Tr = Y8, Si. Then

n

. 1 1 2¢ l_[,]‘(=1 T TR
nlgglo Togn E%I{ (m> §x} =F(x) a.s. foranyxeR, (1.4)

where F(-) is the distribution function of the random variable eV"N .

The purpose of this article is to establish that Theorem D holds for some class of un-
bounded measurable functions.

Our main result is the following theorem.

Theorem 1.1 Let {X,; n > 1} be a sequence of i.i.d. positive random variables with EX; = p,
Var(X;) = 02, E|X;|3 < oo, the coefficient of variation y = o /1. Let g(x) be a real valued
almost everywhere continuous function on R such that Ig(emx)(t)(x)l <c(l+ |x])7% with
some c>0and a >5. Denote S, =Y 1) X;, Ty = Zf;l S;. Then

i 1 ([ 2Tl Tk \ V5
N—)oo logN =~ n nl(n+ 1)\

= /oog(x) dF(x) a.s.foranyx€R, (1.5)
0

where F(-) is the distribution function of the random variable eV°*N . Here and in the

sequel, ¢(x) is the density function of the standard normal random variable.

Remark 1 Let f(x) = g(eV'93¥), t = ¢¥10/3* Then

3
x = \/glog L g(t) f(\/>log t)
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1

2 [T, Te \ 77\ \/j o
g((n!(n+1)!,u") >_f< IOIOg(ﬂk(k+1)u) )

1 - Ty
f—=S"log—F ).
f(y«/lOn/?: kX:I: o8 k(k + 1)u/2>

X

Since F(x) is the distribution function of the random variable e¥V°3V | we can get F(x) =

d( E log x), where ®(x) is the distribution function of the standard normal random vari-

able. Hence we have the following: Let f(x) = g(eV10/3%)

and f(x) be a real valued almost
everywhere continuous function on R such that [f(x)¢(x)| < c(1 + |x|)™® with some ¢ > 0

and « > 5, then (1.5) is equivalent to

1 X1 1 " Ty
lim —— fl—— N'lgg— %
N logN ; nf<y«/10n/3 le o8 k(k + I)M/2>
= / fx)ox)dx as. foranyx € R. (1.6)

Remark 2 By the proof of Theorem 2 of Berkes et al. [5], in order to prove (1.5), it suffices
to show (1.6) holds true for f(x)¢(x) = (1 + |x|)™ with « > 5. Here and in the sequel, f(x)
satisfies f(x)o(x) = (1 + |x|)™® with « > 5.

2 Preliminaries

In the following, the notation a, ~ b, means that lim,_, a,/b, =1 and a, < b, means

. 1 j+1-k 1-k
that limsup,,_, ., |@,/b,| < +00. We denote by, = Z;’:k jr Chn = 22;’:,(’1.(].71), din = 2257,

X; = X"U;", Si = Zle)N(i, Sk = Zle c,»,,,)N(i. By Lemma 2.1 of Wu [6], we can get
lOn
Cin= Z(bi,n - di,n)r Z Cz " .
Let

1 XL:IO Ty
" V03 &= klk s 2’

Note that
1 Z T, .
Yo k(k +1)u/2

1 221 1 Si—kk+ 1
;( k(k +1)p )

_y:

k+1)MZZXI

1
J/k j=1 =1

L
Ty k(k+1)uZZ(Xl 2

=1 j=I
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2
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=1 k=l ( * )
= CllNIZSll

By the fact that log(1 + x) = x + %xz, where |x| <1, § € (-1, 0), thus we have

B 1 Xi:lo Tk
 yV10i3 4= &k + D/2

1 Sk Ty 2
Vv10l/ Z( +1)u/2 ) y+/10i/3 ; <k(k+1)u/2_1)

1 8 ( Ty )2
= Si,i + Z — -1
V10i/3 " yN10i/3 4= 2 \k(k +1)u/2

1
= —S,‘i + Rl‘.
V10i/3

By the fact that E|X;|? < 0o, using the Marcinkiewicz-Zygmund strong large number law,

we have

Sk —ku = o(kl/z) a.s.,

Ty |2 Yory S - k(k + 1)
k(k + 1) /2 N k(k + 1)
_ AT —jw)
k(k+1)u

2 Z}’lejlﬂ B2l
<=
k(k+1)u K2 k2

Thus

i

101
IR < — Z g as. @1)

In order to prove Theorem 1.1, we introduce the following lemmas.

Lemma 2.1 Let X and Y be random variables. Set F(x) = P(X < x), G(x) = P(X + Y < x),
then for any ¢ >0 and x € R,

F(x-¢) —P(|Y| > 8) <Gx)<F(x+s) +P(|Y| > 8).
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Proof See Lemma 3 on p.16 of Petrov [7]. O

Lemma 2.2 Let {X,;n > 1} be a sequence of i.i.d. positive random variables. Denote S, =
> Xi, FS denotes the distribution function obtained from F by symmetrization and choose
L > 0 so large that f|x|<L x> dFS(x) > 1. Then, for any n > 1, A > 0, there exists a ¢ > 0 such

that
su P(a< & <a+k) <cA
p T JnT -
holds for A/n > L.
Proof See (20) on p.73 of Berkes et al. [5]. O
Let
2k+1 1
Zy = -f(Y;
k=Y S (X0),
i=2k+1
2k+1
7= 3 Yool < S
e 7= (logh)? |’
i=2K+

where 1< 8 < (a — 3)/2.
Lemma 2.3 Under the conditions of Theorem 1.1, we get
P(Zk # Z;;,i0.) = 0.
Proof 1t is easy to get
(2 # 2} < {1Vl = £ (k/(log k)?) for some 2% < i < 2K}

1
=S+ R
H«/lOi/?» v

for some 2% < i < 2k }

> £} (k/(logh)) = (2logk + (o — 28) loglog k)"

Since |R;| K % a.s.; see (2.1). By the law of iterated logarithm (Feller [8], Theorem 2), we

get
]P’(Zk #Zz,i.o.) < ]P’(‘ L Sii| = (2loglogi + (o —2B)logloglog i — O(l))m,i.o.>
+/10i/3
=0.
We complete the proof of Lemma 2.3. O

Let G;, F;, F denote the distribution functions of Y, %, )N(l, respectively. ® denotes the
distribution function of the standard normal distribution function. Set

Vi Vi 2
of = /_ﬁxzdl-"(x) - (/_ﬂxdF(x)) ,
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Gilx) - d><i>‘.
(o]

Fix) - @(f>
o

Obviously 0; <1, lim;, o 0; = 1.

&; = sup , 6; = sup
X X

Lemma 2.4 Under the conditions of Theorem 1.1, we have

N

+) 2 N2
;E(Zk) < Tog N

Proof Note that the estimation

< sup |W()|- sup |Hi() ~Ho)| (2.2)

—a<x<a —a=x=a

‘ / " W@ (i) - Hy(x))

holds for any bounded, measurable function W(x) and the distribution functions H;(x),
Hy(x). Thus for 2% < i < 2%*1, we get

k
]Efz(Yz)I{f(Yz) =< (log—k)ﬂ}

= (%) dGi(x)

[x|<ay

k2
20 do( ) +6———
= \x\sakf ) (@) * (logk)?#

2

< 2(%)dP() + 61—
\x\sakf (log k)%

here and in the sequel a; = f _I(quLk)ﬁ)' Hence, by the Cauchy-Schwarz inequality and the

fact that f(x)¢(x) = (1 + |x])~%, we obtain

ok+1 1 2 12, ok+1 k 1/2\ 2
]E(ZZ)2 <<E(< Z <;> ) < Z fz(Yz)I{f(Yz) = W}) )

i=2K+1 i=2k+1
< % 1 Zki ( fz(x)dfb(x)+04k72)
i=2k 41 # jaokgr Y I=ak (logk)??

1 k2 2/<+1
<« —|2* 2(x) dD(x) + ——— 9;
2! ( \x\sakf (log k)># ,':szzl
2k+1

2
e /2 k2 ei
<</ dx + —.
|x|<ax (1 + |x|)2a (logk)zﬁ iZQZkH i

By the same methods as that on p.72 of Berkes et al. [5], we get

2/2
dx < .
/xsak (1 + [as])> (log k)12
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Now we estimate 6;. By Lemma 2.1, for any ¢ > 0, we have

-2
o]

< sup|Gi(x) - Fi(x)| + sup

6; = sup

X

o)
Oi

S;
=supP(Yi§x)—P(—§x + &
x Vi
< P(Y; <x) P( Si < > P( Si < > P(E < )
su T <x)— <x||+su <x|-Pl—<x])|+¢g
=P V10i/3 W V10i/3 Vi

S Sii
<sup|P| —=—==+R <x|-P —— <x+¢
=P («/101’/3 ) («/101'/3 * >‘
(5 =) ( <)
x
10i/3
o5 =2)- (
10i/3
) i
101/ 101/
e

(=) (

By the Markov inequality and (2.1), we have

+ sup|P
X

+ sup
X

xrw

I /\

P(|R,'| > 8) + sup

+ sup|P
X

<x

a| 2

E|R;| logl
P(IRi|z¢) = — <K
(1= ) =

By Lemma 2.2, we have

sup|P Le.

X

Sii Sii
— <x+¢)-P — <x
<«/10i/3 - ) <«/10i/3 N )
By the Berry-Esseen inequality, we have
Sii S
V10i/3 Vi

<sup|P

X

sup
X

(=)o

+ sup

( S ) o)
J10i3 ¥

1

Let & = i"1/3, then

logi 1 1
91' < —i1/6 + 11? + ll? + &;.

Therefore, there exists g9 > 0 such that

1
9[ < — +&;.

%0
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By Theorem 1 of Friedman et al. [9], we have

By the fact that (« + 1)/2 > 8, we have

ok+1 2

; %) <<Z logk)ﬂ+a+l>/2 Z(logk)zﬂ Z logN)z‘9

We complete the proof of Lemma 2.4. O

Lemma 2.5 Under the conditions of Theorem 1.1, for [ > Iy, we have

ki e

ICVZLZD| < Gogrpiog i >

where T is a constant 0 < T <1/8.

Proof For1<1i<j/2,j>j, and any x, y, we first prove
i T
P(Y; <5, Y; <9)— P(Y, < 0P(Y; < )| < <1> . (23)

Let p = ; By the Chebyshev inequality, we have
\/7/()1/8) ]fp VU8 < o

By the Markov inequality and (2.1), for j > j;, we have

o al=) -+l 7
10j/3 10i/3

where 1; is a constant 0 < 7; <1/8.

E|R)| logj
,01/8)< J gJ _ g/

P(|R1'| z = pl/8 J12pl8 }1/411/4 <P

where 15 is a constant, 0 < 75 <1/8.

By the Markov inequality, we have
<‘ F Cz+1 J

> 1/8)
,/10(,-;)/ P
T(EE /lo(sf;pl/g
14 L Ciyy

3 3. 3 2
=< 07 (cis))* = 0° (2b;+1/ 2d;,1)
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where 713 is a constant that satisfies 0 < 13 <1/8.
By Lemma 2.2 and the fact that p = }’, 1<i<j/2, we have

T /
#HUSSJ})<< ’018 <<p1/8

l/8< 2
(-39 <v1 VOG-0 Ny

Set T = min{ty, 7o, 73,1/8}, we get

Sij
:P }/tfxy +R}§}’
10,3
Sii Sjj = Sii — i1 Si Ci1,Si
=Y <x, +/1_pu+ 1—p7’}+R'§)
( N EOE JoG—g3 7

S]]_Sll_cl+1} )
10(]—l

= Su= S
~3 1/8 < jij il i+l < ) (‘ Ll ‘ > 1/8>
( Pro=y J0G-93 " N

Citl, S

Sjj = Sii — i1 Si
ZP<Yi§x:\/l_pu Sy) -p"
J10G-0/3

Sjyj = Sii — i1 S;
P(Y; Ex)P<\/1 —p sy) -
J10G-0/3

We can get a similar upper estimate for P(Y; < x, ¥; < y) in the same way. Thus there exists

some constant M such that

Sjj = Sii = €iv1Si

Y <5,Y, <) = (Y, Sx)P<\/1 P

< y) +Mp".
A similar argument,

Sjj = Sii — i1y Si ,
P(Y; < x)P(Y; <) =p(Y; Sx)P<\/1 —p MU §y> +Mp7,

holds for some constant M’. Thus we prove that (2.3) holds.
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Let G;;(x,7) be the joint distribution function of ¥; and Y;. By (2.2) and (2.3), for 2k i<
2k ol «j< 2P [k >3,1> Iy, we can get

k )
Cov (f(n)z{f(m < G } f(Y,-)I{f(Y,-) < o D‘

/| ol S ) d(Gijlx,y) —Gi(x)G/(y))’
x| <a Jyl<a

< ki i ! < ki o-k-1ye
(log k)P (log )P \ j (logk)? (log 1)P '

Thus we have

ki
- ke
Cov(Z;,27)| < (log k)# (log 1)#

We complete the proof of Lemma 2.5. d

Lemma 2.6 Under the conditions of Theorem 1.1, denoting ny = Z;; — IEZ}, we have

N 2 N2
E nk) :o<7).
<k2=1: (log N)2A-1

Proof 1t follows from Lemma 2.4 and Lemma 2.5 that Lemma 2.6 also holds true. The
proof is similar to that of Lemma 4 of Berkes et al. [5]. So we omit it here. O

3 Proof of theorem

By Lemma 2.6, we have

N 2
]E(% > r/k) = O((logN)'=?#).
k=1

Letting Ni = [é], 28 —1)"' < A <1, we get
1 &\
El — ) m ] <oo,

which implies

1 ok
lim — =0 as. (3.1)
k—o0 Nk k;

Note that for 2% < j < 2k+1,

Ef(mf{f(m < (log—k)f,}

= / f(x)dGi(x) = / f(x)dcb(f)+ f(x)d(Gi(x)—d>(ﬁ)>. (3.2)
x| <a x| <ay Oj x| <ay [of
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Seta = ffo;f(x) d®(x). Noting that 0; <1, lim;_, o 0; = 1, we have

f(x)dcb(f> —a
x| <ay o}

Then by (3.2), (3.3), and (2.2) we get

=0. (3.3)

lim  sup
k—o00 2k <j<ok+1

k
’Efy)l{f(y)—(l k)ﬂ} “‘

: \x\sakf(x) d@(%) il |x|5ukf(x) d(Gi(x) - CD(%))'
<or(1) + (10/;76/2)/3.
Thus
Jrt 2l
EZ}=a Z (logk)ﬂ Z +or@), &Gl <1

i=2k 41
Using Y7, 1/i =log L + O(1) and Y_% % < 0o, we get

ok+1

E( 3 Z))
‘ log2*1 ‘ Z(logk)ﬂ Z o)

= O((logN)_ﬁ) +opn(1)

= ON(l).
Thus by (3.1), we get
Ni *
Z;
k=L a.s.

k—o0 log 2Nk+1 B

Then by Lemma 2.3, we have

Ny z
DR L (3.4)
k—00 log 2N+l

The relation A < 1 implies limg_, oo Ni11/Ni = 1, thus (3.4) and the positivity of the Z; yield

N
i1 Zk _

N—co log 2N+1

a.s.,

i.e. (1.6) holds for the subsequence N = 2, Using again the positivity of the terms, we get
(1.6). We complete the proof of Theorem 1.1.
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