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Abstract
In the article, we prove that the double inequalitiesMα (a,b) < SQA(a,b) <Mβ (a,b) and
Mλ(a,b) < SAQ(a,b) <Mμ(a,b) hold for all a,b > 0 with a �= b if and only if
α ≤ log2/[1 + log2 –

√
2 log(1 +

√
2)] = 1.5517 . . . , β ≥ 5/3,

λ ≤ 4 log2/[4 + 2 log2 –π ] = 1.2351 . . . and μ ≥ 4/3, where
SQA(a,b) = A(a,b)eQ(a,b)/M(a,b)–1 and SAQ(a,b) = Q(a,b)eA(a,b)/T (a,b)–1 are the Sándor-type
means, A(a,b) = (a + b)/2, Q(a,b) =

√
(a2 + b2)/2,

T (a,b) = (a – b)/[2 arctan((a – b)/(a + b))], andM(a,b) = (a – b)/[2 sinh–1((a – b)/(a + b))]
are, respectively, the arithmetic, quadratic, second Seiffert, and Neuman-Sándor
means.
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1 Introduction
For p ∈ R and a, b >  with a �= b, the pth power mean Mp(a, b) and Schwab-Borchardt
mean SB(a, b) [, ] of a and b are, respectively, given by

Mp(a, b) =

⎧
⎨

⎩

( ap+bp

 )/p, p �= ,√
ab, p = 

(.)

and

SB(a, b) =

⎧
⎨

⎩

√
b–a

cos– (a/b) , a < b,
√

a–b

cosh– (a/b) , a > b,

where cos–(x) and cosh–(x) = log(x +
√

x – ) are the inverse cosine and inverse hyper-
bolic cosine functions, respectively.

It is well known that the power mean Mp(a, b) is continuous and strictly increas-
ing with respect to p ∈ R for fixed a, b >  with a �= b, the Schwab-Borchardt mean
SB(a, b) is strictly increasing in both a and b, nonsymmetric and homogeneous of de-
gree  with respect to a and b. Many symmetric bivariate means are special cases of
the Schwab-Borchardt mean. For example, P(a, b) = (a – b)/[ arcsin((a – b)/(a + b))] =
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SB[G(a, b), A(a, b)] is the first Seiffert mean, T(a, b) = (a – b)/[ arctan((a – b)/(a + b))] =
SB[A(a, b), Q(a, b)] is the second Seiffert mean, M(a, b) = (a–b)/[ sinh–((a–b)/(a+b))] =
SB[Q(a, b), A(a, b)] is the Neuman-Sándor mean, L(a, b) = (a – b)/[ tanh–((a – b)/(a +
b))] = SB[A(a, b), G(a, b)] is the logarithmic mean, where sinh–(x) = log(x +

√
 + x) is

the inverse hyperbolic sine function, tanh–(x) = log[( + x)/( – x)]/ is the inverse hyper-
bolic tangent function, and G(a, b) =

√
ab, A(a, b) = (a + b)/, and Q(a, b) =

√
(a + b)/

are the geometric, arithmetic, and quadratic means of a and b, respectively.
The Sándor mean X(a, b) = A(a, b)eG(a,b)/P(a,b)– [] can be rewritten as X(a, b) =

A(a, b)eG(a,b)/ SB[G(a,b),A(a,b)]–. Yang [] proved that S(a, b) = bea/ SB(a,b)– is a mean of a and
b, and introduced two Sándor-type means SQA(a, b) and SAQ(a, b) as follows:

SQA(a, b) � S
[
Q(a, b), A(a, b)

]

= A(a, b)eQ(a,b)/ SB[Q(a,b),A(a,b)]– = A(a, b)eQ(a,b)/M(a,b)–, (.)

SAQ(a, b) � S
[
A(a, b), Q(a, b)

]

= Q(a, b)eA(a,b)/ SB[A(a,b),Q(a,b)]– = Q(a, b)eA(a,b)/T(a,b)–. (.)

Recently, the bounds involving the power mean for certain bivariate means and Gaussian
hypergeometric function have attracted the attention of many researchers [–].

Radó [] (see also [–]) proved that the double inequalities

Mp(a, b) < L(a, b) < Mq(a, b), Mλ(a, b) < I(a, b) < Mμ(a, b)

hold for all a, b >  with a �= b if and only if p ≤ , q ≥ /, λ ≤ /, and μ ≥ log , where
I(a, b) = (bb/aa)/(b–a)/e is the identric mean of a and b.

In [–], the authors proved that the double inequality

Mp(a, b) < T∗(a, b) < Mq(a, b)

holds for all a, b >  with a �= b if and only if p ≤ / and q ≥ log /(logπ – log ), where
T∗(a, b) = 

π

∫ π/


√
a cos θ + b sin θ dθ is the Toader mean of a and b.

Jagers [], Hästö [, ], Costin and Toader [], and Li et al. [] proved that p =
log / logπ , q = /, p = log /(logπ – log ), and q = / are the best possible parame-
ters such that the double inequalities

Mp (a, b) < P(a, b) < Mq (a, b), Mp (a, b) < T(a, b) < Mq (a, b)

hold for all a, b >  with a �= b.
In [–], the authors proved that the double inequalities

Mλ (a, b) < M(a, b) < Mμ (a, b),

Mλ (a, b) < U(a, b) < Mμ (a, b),

Mλ (a, b) < X(a, b) < Mμ (a, b)

hold for all a, b >  with a �= b if and only if λ ≤ log / log[ log( +
√

)], μ ≥ /, λ ≤
 log /( logπ – log ), μ ≥ /, λ ≤ /, and μ ≥ log /( + log ), where U(a, b) = (a –
b)/[

√
 arctan( a–b√

ab
)] is the Yang mean of a and b.
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The main purpose of this paper is to present the best possible parameters α, β , λ, and
μ such that the double inequalities

Mα(a, b) < SQA(a, b) < Mβ (a, b), Mλ(a, b) < SAQ(a, b) < Mμ(a, b)

hold for all a, b >  with a �= b.

2 Lemmas
In order to prove our main results we need two lemmas, which we present in this section.

Lemma . Let p ∈R and

f (x) = (p – )xp+ – xp + xp– + ( – p)xp– + xp– + xp– – x – . (.)

Then the following statements are true:
() f (x) >  for all x ∈ (,∞) if p = /;
() there exists σ ∈ (,∞) such that f (x) <  for x ∈ (,σ ) and f (x) >  for x ∈ (σ ,∞) if

p = log /[ + log  –
√

 log( +
√

)] = . . . . .

Proof For part (), if p = /, then (.) leads to

f (x) =
(x 

 – )(x 
 – )

x 


(
x


 + x


 + x + x


 + x


 + x + x


 + x


 + 

)
. (.)

Therefore, part () follows from (.).
For part (), let p = log /[ + log  –

√
 log( +

√
)] = . . . . , f(x) = f ′(x), f(x) =

x–pf ′
 (x) and f(x) = f ′

(x). Then simple computations lead to

f () = , lim
x→+∞ f (x) = +∞, (.)

f() = 
(

p –



)

< , lim
x→+∞ f(x) = +∞, (.)

f() = 
(

p –



)(

p –



)

< , lim
x→+∞ f(x) = +∞, (.)

f(x) = 
(
p – 

)
(p – )xp + p(p – )(p – )xp–

+ p
(
p – 

)
x – p(p – )x + (p – )(p – ). (.)

Note that

p(p – )(p – )xp– > p(p – )(p – )xp, –p(p – )x > –p(p – )x, (.)

p(p – )(p – )x > p(p – )(p – ) (.)

for x > , and

p – p +  >  × . –  × . +  = . > , (.)

p – p – p +  >  × . –  × . –  × . +  = . > . (.)
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It follows from (.)-(.) that

f(x) > 
(
p – 

)
(p – )xp + p(p – )(p – )xp

+ p
(
p – 

)
x – p(p – )x + (p – )(p – )

=
(
p – p + 

)
xp + p(p – )(p – )x + (p – )(p – )

>
(
p – p + 

)
xp + p(p – )(p – ) + (p – )(p – )

=
(
p – p + 

)
xp +

(
p – p – p + 

)
>  (.)

for x > .
Inequality (.) implies that f(x) is strictly increasing on (,∞). Then from (.) we

know that there exists σ >  such that f(x) is strictly decreasing on (,σ] and strictly
increasing on [σ,∞).

It follows from (.) and the piecewise monotonicity of f(x) that there exists σ >  such
that f (x) is strictly decreasing on (,σ] and strictly increasing on [σ,∞).

Therefore, part () follows from (.) and the piecewise monotonicity of f (x). �

Lemma . Let p ∈R, and

g(x) = (p – )xp+ – (p + )xp + (p + )xp– + ( – p)xp– + xp– + xp– – x – . (.)

Then the following statements are true:
() g(x) >  for all x ∈ (,∞) if p = /;
() there exists τ ∈ (,∞) such that g(x) <  for x ∈ (, τ ) and g(x) >  for x ∈ (τ ,∞) if

p =  log /[ +  log  – π ] = . . . . .

Proof For part (), if p = /, then (.) becomes

g(x) =
(x/ – )

x/

(
x + x/ + x/ + x + x/ + x/ + 

)
. (.)

Therefore, part () follows from (.).
For part (), let p =  log /[ +  log  –π ] = . . . . , g(x) = g ′(x), g(x) = x–pg ′

(x)/(p –
), and g(x) = g ′

(x). Then simple computations lead to

g() = , lim
x→+∞ g(x) = +∞, (.)

g() = 
(

p –



)

< , lim
x→+∞ g(x) = +∞, (.)

g() = 
(

p –



)

< , lim
x→+∞ g(x) = +∞, (.)

g(x) = (p + )(p – )xp + p(p – )xp–

+ p(p + )x – p(p + )x + (p + )(p – ). (.)

Note that

p(p – )xp– > p(p – )xp,
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p(p + )x < p(p + )x, (.)

(p + )(p – ) > (p + )(p – )x

for x > .
It follows from (.) and (.) that

g(x) > (p + )(p – )xp + p(p – )xp + p(p + )x

– p(p + )x + (p + )(p – )x

= 
(
p – p – 

)
xp + 

(
p – 

)
x >  (.)

for x > .
Inequality (.) implies that g(x) is strictly increasing on (,∞). Then from (.) we

know that there exists τ ∈ (,∞) such that g(x) is strictly decreasing on (, τ] and strictly
increasing on [τ,∞).

It follows from (.) and the piecewise monotonicity of g(x) that there exists τ ∈ (,∞)
such that g(x) is strictly decreasing on (, τ] and strictly increasing on [τ,∞).

Therefore, part () follows from (.) and the piecewise monotonicity of g(x). �

3 Main results
Theorem . The double inequality

Mα(a, b) < SQA(a, b) < Mβ (a, b)

holds for all a, b >  with a �= b if and only if α ≤ log /[ + log  – log( +
√

)] = . . . .
and β ≥ /.

Proof Since both SQA(a, b) and Mp(a, b) are symmetric and homogeneous of degree one,
we assume that a > b. Let x = a/b >  and p > . Then (.) and (.) lead to

log
[
SQA(a, b)

]
– log

[
Mp(a, b)

]

= log

(
x + 



)

+
√

(x + ) sinh–( x–
x+ )

x – 
–


p

log

(
xp + 



)

– . (.)

Let

F(x) = log

(
x + 



)

+
√

(x + ) sinh–( x–
x+ )

x – 
–


p

log

(
xp + 



)

– . (.)

Then elaborated computations lead to

F
(
+)

= , (.)

lim
x→+∞ F(x) =

√
 log( +

√
) – ( + log ) +


p

log , (.)

F ′(x) =
(x + )

(x – )
√

(x + )
F(x), (.)
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where

F(x) =
√

(x + )(x – )(xp– + )
(x + )(xp + )

– sinh–
(

x – 
x + 

)

,

F() = , lim
x→∞ F(x) =

√



– log( +

√
) = –. . . . < , (.)

F ′
(x) = –

x(x – )
(x + )(xp + )

√
(x + )

f (x), (.)

where f (x) is defined by (.).
We divide the proof into four cases.
Case .. p = log /[ + log  – log( +

√
)]. Then it follows from Lemma .() and (.)

that there exists σ ∈ (,∞) such that F(x) is strictly increasing on (,σ ] and strictly de-
creasing on [σ ,∞).

Equations (.) and (.) together with the piecewise monotonicity of F(x) lead to the
conclusion that there exists σ ∈ (,∞) such that F(x) is strictly increasing on (,σ] and
strictly decreasing on [σ,∞).

Note that (.) becomes

lim
x→+∞ F(x) = . (.)

Therefore,

SQA(a, b) > Mlog /[+log –log(+
√

)](a, b)

for all a, b >  with a �= b follows from (.)-(.) and (.) together with the piecewise
monotonicity of F(x).

Case .. p = /. Then it follows from Lemma .() and (.) that F(x) is strictly de-
creasing on (,∞).

Therefore,

SQA(a, b) < M/(a, b)

for all a, b >  with a �= b follows from (.)-(.), (.), (.), and the monotonicity of F(x).
Case .. p > log /[ + log  – log( +

√
)]. Then (.) leads to

lim
x→+∞ F(x) < . (.)

Equations (.) and (.) together with inequality (.) imply that there exists large
enough C >  such that

SQA(a, b) < Mp(a, b)

for all a, b >  with a/b ∈ (C,∞).
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Case ..  < p < /. Let x > , x → , then making use of (.) and (.) together with
the Taylor expansion we get

SQA(,  + x) – Mp(,  + x)

=
(

 +
x


)

e
√

(x+x+) sinh–[x/(+x)]/x– –
[

 + ( + x)p



]/p

=
 – p


x + o

(
x). (.)

Equation (.) implies that there exists small enough δ >  such that

SQA(,  + x) > Mp(,  + x)

for x ∈ (, δ).
Therefore, Theorem . follows easily from Cases .-. and the monotonicity of the

function p → Mp(a, b). �

Theorem . The double inequality

Mλ(a, b) < SAQ(a, b) < Mμ(a, b)

holds for all a, b >  with a �= b if and only if λ ≤  log /[ +  log  – π ] = . . . . and
β ≥ /.

Proof Since both SAQ(a, b) and Mp(a, b) are symmetric and homogeneous of degree one,
we assume that a > b. Let x = a/b >  and p > . Then (.) and (.) lead to

log
[
SAQ(a, b)

]
– log

[
Mp(a, b)

]

=



log

(
x + 



)

+
x + 
x – 

arctan

(
x – 
x + 

)

–

p

log

(
xp + 



)

– . (.)

Let

G(x) =



log

(
x + 



)

+
x + 
x – 

arctan

(
x – 
x + 

)

–

p

log

(
xp + 



)

– . (.)

Then elaborated computations lead to

G
(
+)

= , (.)

lim
x→+∞ G(x) =

π


–




log  –  +

p

log , (.)

G′(x) =


(x – ) G(x), (.)

where

G(x) =
(x – )(xp– + )

(xp + )
– arctan

(
x – 
x + 

)

,
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G() = , lim
x→+∞ G(x) =




–
π


< , (.)

G′
(x) = –

x – 
(x + )(xp + ) g(x), (.)

where g(x) is defined by (.).
We divide the proof into four cases.
Case .. p =  log /[ +  log  – π ]. Then it follows from Lemma .() and (.) that

there exists τ ∈ (,∞) such that G(x) is strictly increasing on (, τ ] and strictly decreasing
on [τ ,∞).

Equations (.) and (.) together with the piecewise monotonicity of G(x) lead to
the conclusion that there exists τ ∈ (,∞) such that G(x) is strictly increasing on (, τ]
and strictly decreasing on [τ,∞).

Note that (.) becomes

lim
x→+∞ G(x) = . (.)

Therefore,

SAQ(a, b) > M log /[+ log –π ](a, b)

follows from (.)-(.) and (.) together with the piecewise monotonicity of G(x).
Case .. p = /. Then Lemma .() and (.) imply that G(x) is strictly decreasing

on (,∞).
Therefore,

SAQ(a, b) < M/(a, b)

follows easily from (.)-(.), (.), (.), and the monotonicity of G(x).
Case .. p >  log /[ +  log  – π ]. Then (.) leads to

lim
x→+∞ G(x) < . (.)

Equations (.) and (.) and inequality (.) imply that there exists large enough
C >  such that

SAQ(a, b) < Mp(a, b)

for all a, b >  with a/b ∈ (C,∞).
Case ..  < p < /. Let x >  and x → . Then making use of (.) and (.) together

with the Taylor expansion we get

SAQ(,  + x) – Mp(,  + x)

=
√

 + ( + x)


e(+x) arctan[x/(+x)]/x– –

[
 + ( + x)p



]/p

=
 – p


x + o

(
x). (.)
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Equation (.) implies that there exists small enough δ >  such that

SAQ(,  + x) > Mp(,  + x)

for x ∈ (, δ).
Therefore, Theorem . follows easily from Cases .-. and the monotonicity of the

function p → Mp(a, b). �
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