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Abstract
In the article, we present several sharp bounds for the modified Bessel function of the
first kind I0(t) =

∑∞
n=0

t2n

22n(n!)2
and the Toader-Qi mean TQ(a,b) = 2

π

∫ π /2
0 acos

2 θbsin
2 θ dθ

for all t > 0 and a,b > 0 with a �= b.
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1 Introduction
Let a, b > , p : (,∞) → R

+ be a strictly monotone real function, θ ∈ (, π ) and

rn(θ ) =

{
(an cos θ + bn sin θ )/n, n �= ,
acos θ bsin θ , n = .

(.)

Then the mean Mp,n(a, b) was first introduced by Toader in [] as follows:

Mp,n(a, b) = p–
(


π

∫ π


p
(
rn(θ )

)
dθ

)

= p–
(


π

∫ π/


p
(
rn(θ )

)
dθ

)

, (.)

where p– is the inverse function of p.
From (.) and (.) we clearly see that

M/x,(a, b) =
π


∫ π/


dθ√

a cos θ+b sin θ

= AGM(a, b)

is the classical arithmetic-geometric mean, which is related to the complete elliptic integral
of the first kind K(r) =

∫ π/
 ( – r sin θ )–/ dθ . The Toader mean

Mx,(a, b) =

π

∫ π/



√
a cos θ + b sin θ dθ = T(a, b)

is related to the complete elliptic integral of the second kind E(r) =
∫ π/

 ( – r sin θ )/ dθ .
We have

Mxq ,(a, b) =
(


π

∫ π/


aq cos θ bq sin θ dθ

)/q

(q �= ).
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In particular,

Mx,(a, b) =

π

∫ π/


acos θ bsin θ dθ = TQ(a, b) (.)

is the Toader-Qi mean.
Recently, the arithmetic-geometric mean AGM(a, b) and the Toader mean T(a, b) have

attracted the attention of many researchers. In particular, many remarkable inequalities
for AGM(a, b) and T(a, b) can be found in the literature [–].

For q �= , the mean Mxq ,(a, b) seems to be mysterious, Toader [] said that he did not
know how to determine any sense for this mean.

Let z ∈ C, ν ∈ R\{–, –, –, . . .} and �(z) = limn→∞ n!nz/[�∞
k=(z + k)] be the classical

gamma function. Then the modified Bessel function of the first kind Iν(z) [] is given by

Iν(z) =
∞∑

n=

zn+ν

n!n+ν�(ν + n + )
. (.)

Very recently, Qi et al. [] proved the identity

Mxq ,(a, b) =
(


π

∫ π/


aq cos θ bq sin θ dθ

)/q

=
√

abI/q


(
q


log
a
b

)

(.)

and inequalities

L(a, b) < TQ(a, b) <
A(a, b) + G(a, b)


<

A(a, b) + G(a, b)


< I(a, b) (.)

for all q �=  and a, b >  with a �= b, where L(a, b) = (b – a)/(log b – log a), A(a, b) = (a + b)/,
G(a, b) =

√
ab, and I(a, b) = (bb/aa)/(b–a)/e are, respectively, the logarithmic, arithmetic,

geometric, and identric means of a and b.
Let b > a > , p ∈R, t = (log b – log a)/ > , and the pth power mean Ap(a, b) be defined

by

Ap(a, b) =
(

ap + bp



)/p

(p �= ), A(a, b) =
√

ab = G(a, b).

Then the logarithmic mean L(a, b), the identric mean I(a, b), and the pth power mean
Ap(a, b) can be expressed as

L(a, b) =
√

ab
sinh t

t
, I(a, b) =

√
abet/ tanh t–,

Ap(a, b) =
√

ab cosh/p(pt) (p �= )
(.)

and (.)-(.) lead to

TQ(a, b)√
ab

=
Mx,(a, b)√

ab
=


π

∫ π/


et cos(θ ) dθ = I(t)

=

π

∫ π/


cosh(t cos θ ) dθ =


π

∫ π/


cosh(t sin θ ) dθ . (.)
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The main purpose of this paper is to present several sharp bounds for the modified
Bessel function of the first kind I(t) and the Toader-Qi mean TQ(a, b).

2 Lemmas
In order to establish our main results we need several lemmas, which we present in this
section.

Lemma . (See []) Let
(n

k
)

be the number of combinations of n objects taken k at a time,
that is,

(
n
k

)

=
n!

k!(n – k)!
.

Then

∞∑

k=

(
n
k

)

=
(

n
n

)

.

Lemma . (See []) Let {an}∞n= and {bn}∞n= be two real sequences with bn >  and
limn→∞ an/bn = s. Then the power series

∑∞
n= antn is convergent for all t ∈R and

lim
t→∞

∑∞
n= antn

∑∞
n= bntn = s

if the power series
∑∞

n= bntn is convergent for all t ∈R.

Lemma . The Wallis ratio

Wn =
�(n + 

 )
�( 

 )�(n + )
(.)

is strictly decreasing with respect to all integers n ≥  and strictly log-convex with respect
to all real numbers n ≥ .

Proof It follows from (.) that

Wn+

Wn
=  –


(n + )

<  (.)

for all integers n ≥ .
Therefore, Wn is strictly decreasing with respect to all integers n ≥  follows from (.).
Let f (x) = �(x + /)/�(x + ) and ψ(x) = �′(x)/�(x) be the psi function. Then it follows

from the monotonicity of ψ ′(x) that

[
log f (x)

]′′ = ψ ′
(

x +



)

– ψ ′(x + ) >  (.)

for all x ≥ .
Therefore, Wn is strictly log-convex with respect to all real numbers n ≥  follows from

(.) and (.). �
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Lemma . (See []) The double inequality


(x + a)–a <

�(x + a)
�(x + )

<


x–a

holds for all x >  and a ∈ (, ).

Lemma . Let sn = (n)!(n+)!/[n(n!)]. Then the sequence {sn}∞n= is strictly decreasing
and

lim
n→∞ sn =


π

. (.)

Proof The monotonicity of the sequence {sn}∞n= follows from

sn+

sn
=

(n + )(n + )
(n + ) < .

To prove (.), we rewrite sn as

sn = (n + )
[

(n – )!!
nn!

]

=
n + 
�( 

 )

[
�(n + 

 )
�(n + )

]

=
(n + 

 )
π

[
�(n + 

 )
�(n + )

]

. (.)

It follows from Lemma . and (.) that


π

=

π

n + 


n + 


< sn <

π

n + 


n
. (.)

Therefore, equation (.) follows from (.). �

Lemma . (See []) Let A(t) =
∑∞

k= aktk and B(t) =
∑∞

k= bktk be two real power series
converging on (–r, r) (r > ) with bk >  for all k. If the non-constant sequence {ak/bk} is in-
creasing (decreasing) for all k, then the function A(t)/B(t) is strictly increasing (decreasing)
on (, r).

Lemma . (See []) Let A(t) =
∑∞

k= aktk and B(t) =
∑∞

k= bktk be two real power series
converging on R with bk >  for all k. If there exists m ∈ N such that the non-constant
sequence {ak/bk} is increasing (decreasing) for  ≤ k ≤ m and decreasing (increasing) for
k ≥ m, then there exists t ∈ (,∞) such that the function A(t)/B(t) is strictly increasing
(decreasing) on (, t) and strictly decreasing (increasing) on (t,∞).

Lemma . The identity

I
(t) =

∞∑

n=

(n)!
n(n!) tn

holds for all t ∈ R.
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Proof From (.) and Lemma . together with the Cauchy product we have

I
(t) =

∞∑

n=

( n∑

k=


k(k!)


(n–k)[(n – k)!]

)

tn

=
∞∑

n=

(


n(n!)

n∑

k=

(n!)

(k!)[(n – k)!]

)

tn =
∞∑

n=

(n)!
n(n!) tn. �

Lemma . (See []) Let –∞ < a < b < ∞ and f , g : [a, b] →R. Then

∫ b

a
f (x)g(x) dx ≥ 

b – a

∫ b

a
f (x) dx

∫ b

a
g(x) dx

if both f and g are increasing or decreasing on (a, b).

Lemma . (See []) Let –∞ < a < b < ∞ and f , g : (a, b) →R. Then

∫ b

a
f (x)g(x) dx –


b – a

∫ b

a
f (x) dx

∫ b

a
g(x) dx

≥ 
(b – a)

∫ b

a

(

x –
a + b



)

f (x) dx
∫ b

a

(

x –
a + b



)

g(x) dx (.)

if both f and g are convex on the interval (a, b), and inequality (.) becomes an equality if
and only if f or g is a linear function on (a, b).

3 Main results
Theorem . The double inequalities

et

 + t
< I(t) <

et
√

 + t
(.)

and

b
 + log(b/a)

< TQ(a, b) <
b

√
 + log(b/a)

(.)

hold for all t >  and b > a > .

Proof From (.) we have

I(t) =

π

∫ π/


cosh(t sin θ ) dθ =


π

∫ 



cosh(tx)√
 – x

dx (.)

and

e–tI(t) =

π

∫ π/


et[cos(θ )–] dθ =


π

∫ π/



dθ

et sin θ

<

π

∫ π/



dθ

 + t sin θ
=

√
 + t

. (.)
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We clearly see that both cosh(tx) and /
√

 – x are increasing with respect to x on (, ).
Then Lemma . and (.) lead to

I(t) ≥ 
π

∫ 



dx√
 – x

∫ 


cosh(tx) dx =

sinh t
t

=
et

t

(

 –


et

)

>
et

t

(

 –


 + t

)

=
et

 + t
. (.)

Therefore, inequality (.) follows from (.) and (.).
Let t = log(b/a)/. Then it follows from (.) and (.) that

√
b/a

 + log(b/a)
<

TQ(a, b)√
ab

<
√

b/a
√

 + log(b/a)
. (.)

Therefore, inequality (.) follows from (.). �

Remark . From Theorem . we clearly see that

lim
t→∞ e–tI(t) = lim

x→+
TQ(x, ) = .

Theorem . The double inequalities

α

√
sinh(t)

t
< I(t) < β

√
sinh(t)

t
(.)

and

α
√

L(a, b)A(a, b) < TQ(a, b) < β
√

L(a, b)A(a, b) (.)

hold for all t >  and a, b >  with a �= b if and only if α ≤ /
√

π , β ≥ √
/, α ≤ √

/π
and β ≥ .

Proof Let

R(t) =
I

(t)
sinh(t)/(t)

, (.)

an =
(n)!

n(n!) , bn =
n

(n + )!
. (.)

Then simple computation leads to

an

bn
=

(n)!(n + )!
n(n!) . (.)

It follows from Lemma . and (.) that the sequence {an/bn}∞n= is strictly decreasing
and

lim
n→∞

an

bn
=


π

. (.)



Yang and Chu Journal of Inequalities and Applications  (2016) 2016:40 Page 7 of 21

From Lemma . we have

R(t) =
∑∞

n= antn
∑∞

n= bntn . (.)

Lemma . and (.) together with the monotonicity of the sequence {an/bn}∞n= lead to
the conclusion that R(t) is strictly decreasing on the interval (,∞). Therefore, we have

lim
t→∞ R(t) < R(t) < lim

t→+
R(t) =

a

b
= . (.)

From Lemma ., (.), and (.) we know that

lim
t→∞ R(t) =


π

. (.)

Therefore, inequality (.) holds for all t >  if and only if α ≤ /
√

π and β ≥ √
/

follows easily from (.), (.), and (.) together with the monotonicity of R(t).
Let b > a >  and t = log(b/a)/. Then inequality (.) holds for a, b >  with a �= b if and

only if α ≤ √
/π , and β ≥  follows from (.) and (.) together with inequality (.)

for all t >  if and only if α ≤ /
√

π and β ≥ √
/. �

Remark . Equations (.) and (.) imply that

lim
t→∞ e–t√tI(t) =

√
π

or we have the asymptotic formula

I(t) ∼ et
√

π t
(t → ∞).

Theorem . Let λ,λ > , t = . . . . be the unique solution of the equation

d
dt

[
tI

(t) – sinh t
(cosh t – ) sinh t

]

=  (.)

on (,∞) and

λ =
tI

(t) – sinh t

(cosh t – ) sinh t
= . . . . . (.)

Then the double inequality

√

(λ cosh t +  – λ)
sinh t

t
< I(t) <

√

(λ cosh t +  – λ)
sinh t

t
(.)

or
√[

λA(a, b) + ( – λ)G(a, b)
]
L(a, b) < TQ(a, b) <

√[
λA(a, b) + ( – λ)G(a, b)

]
L(a, b)

holds for all t >  or a, b >  with a �= b if and only if λ ≤ /π , λ > λ.
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Proof Let

R(t) =
I

(t) – sinh t
t

(cosh t–) sinh t
t

, (.)

cn =
(n)!

n(n!) –


(n + )!
, dn =

n – 
(n + )!

, sn =
(n)!(n + )!

n(n!) , (.)

and

s′
n =

(
n + n + n + 

)
sn –

(
n + n + 

)
. (.)

Then it follows from Lemma ., Lemma ., Lemma ., and (.)-(.) that

R(t) =
∑∞

n= cntn
∑∞

n= dntn , (.)

lim
t→∞ R(t) = lim

n→∞
cn

dn
= lim

n→∞
nsn – 
n – 

=

π

, (.)

c

d
=




<
c

d
=




>
c

d
=




, (.)

cn+

dn+
–

cn

dn
= –

ns′
n

(n + )(n+ – )(n – )
, (.)

and we have the inequality

s′
n >


π

(
n + n + n + 

)
–

(
n + n + 

)

>


(
n + n + n + 

)
–

(
n + n + 

)
=



[
n –

(
n + n + 

)]
>  (.)

for all n ≥ .
From (.)-(.) we know that the sequence {cn/dn}∞n= is strictly increasing for  ≤

n ≤  and strictly decreasing for n ≥ . Then Lemma . and (.) lead to the conclusion
that there exists t ∈ (,∞) such that R(t) is strictly increasing on (, t) and decreasing
on (t,∞). Therefore, we have

min
{

R
(
+)

, lim
t→∞ R(t)

}
< R(t) ≤ R(t) (.)

for all t > , and t is the unique solution of equation (.) on (,∞).
Note that

R
(
+)

=
c

d
=




. (.)

From (.), (.), (.), (.), and (.) we get


π

< R(t) ≤ R(t) = λ. (.)

Therefore, inequality (.) holds for all t >  if and only if λ ≤ /π , λ ≥ λ follows from
(.) and (.) together with the piecewise monotonicity of R(t) on (,∞). Numerical
computations show that t = . . . . and λ = . . . . . �
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Theorem . Let p, q ∈R. Then the double inequality

cosh–p t
(

sinh t
t

)p

< I(t) < q
sinh t

t
+ ( – q) cosh t (.)

or

Lp(a, b)A–p(a, b) < TQ(a, b) < qL(a, b) + ( – q)A(a, b)

holds for all t >  or a, b >  with a �= b if and only if p ≥ / and q ≤ /.

Proof If the first inequality of (.) holds for all t > , then

lim
t→+

I(t) – cosh–p t( sinh t
t )p

t =



(

p –



)

≥ ,

which implies that p ≥ /.
It is not difficult to verify that the function cosh–p t(sinh t/t)p is strictly decreasing with

respect to p ∈ R for any fixed t > , hence we only need to prove the first inequality of
(.) for all t >  and p = /, that is,

I
 (t) >

(
sinh t

t

)

cosh t. (.)

Making use of the power series and Cauchy product formulas together with Lemma .
we have

I
 (t) –

(
sinh t

t

)

cosh t

=
∞∑

n=

[ n∑

k=

(
(k)!

k(k!)
((n – k))!

(n–k)((n – k)!)

)

–
n+ – n+

(n + )!

]

tn. (.)

Let Wn and sn be, respectively, defined by Lemma . and Lemma ., and

un =
n∑

k=

(
(k)!

k(k!)
((n – k))!

(n–k)((n – k)!)

)

–
n+ – n+

(n + )!
. (.)

Then simple computations lead to

u = u = , u =



, u =




. (.)

It follows from Lemma . and Lemmas .-. together with (.) that

un =
n∑

k=

(


(k!)((n – k)!)
(k)!

k(k!)
((n – k))!

(n–k)((n – k)!)

)

–
n+ – n+

(n + )!

=
n∑

k=

(


(k!)((n – k)!) WkWn–k

)

–
n+ – n+

(n + )!
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>
n∑

k=

(


(k!)((n – k)!) W 
n/

)

–
n+ – n+

(n + )!

=
n∑

k=

[


(k!)((n – k)!)

(
�(n/ + /)

�(/)�(n/ + )

)]

–
n+ – n+

(n + )!

>
n∑

k=

(


π (n/ + /)(k!)((n – k)!)

)

–
n+ – n+

(n + )!

=


π (n + )(n!)

n∑

k=

(n!)

(k!)((n – k)!) –
n+ – n+

(n + )!

=


π (n + )(n!)
(n)!
(n!) –

n+ – n+

(n + )!

=
n+(n+ – )

π (n + )!

[
n+

n+ – 

(

n +



)

sn – π

]

>
n+(n+ – )

π (n + )!

[(

 +



)

π

– π

]

>  (.)

for all n ≥ .
Therefore, inequality (.) follows from (.)-(.).
If the second inequality of (.) holds for all t > , then we have

lim
t→+

I(t) – q sinh t
t – ( – q) cosh t

t =



(

q –



)

≤ ,

which implies that q ≤ /.
Since cosh t > sinh t/t, we only need to prove that the second inequality of (.) holds for

all t >  and q = /, that is,

cosh t – I(t)
cosh t – sinh t/t

>



. (.)

Let

αn =
nn! – (n – )!!

nn!(n)!
, βn =

n
(n + )!

, γn =
(n + )(n + )

(n + )
Wn,

and Wn be defined by (.).
Then simple computations lead to

cosh t – I(t)
cosh t – sinh t/t

=
∑∞

n= αntn
∑∞

n= βntn , (.)

αn+

βn+
–

αn

βn
=

n + 
n + 

( – Wn+) –
n + 

n
( – Wn) =

γn – 
n(n + )

, (.)

γn+

γn
=  +

n + 
(n + ) > , γ =




> . (.)

From (.) and (.) we clearly see that the sequence {αn/βn}∞n= is strictly increasing,
then Lemma . and (.) lead to the conclusion that the function (cosh t – I(t))/[cosh t –
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sinh t/t] is strictly increasing on the interval (,∞). Therefore, inequality (.) follows
from the monotonicity of (cosh t – I(t))/[cosh t – sinh t/t] and the fact that

lim
t→+

cosh t – I(t)
cosh t – sinh t/t

=
α

β
=




. �

Theorem . Let p, q > , t be the unique solution of the equation

d[ p(I(t)–)
cosh(pt)– ]

dt
=  (.)

and

μ =
p(I(t) – )
cosh(pt) – 

. (.)

Then the following statements are true:
(i) The double inequality

 –


p +


p cosh(pt) < I(t) <  –


q +


q cosh(qt) (.)

or
(

 –


p

)

G(a, b) +


p Ap
p(a, b)G–p(a, b)

< TQ(a, b) <
(

 –


q

)

G(a, b) +


q Aq
q(a, b)G–q(a, b)

holds for all t >  or a, b >  with a �= b if and only if p ≤ √
/ and q ≥ .

(ii) The inequality

I(t) ≥  –
μ

p +
μ

p cosh(pt) (.)

or

TQ(a, b) ≥
(

 –
μ

p

)

G(a, b) +
μ

p Ap
p(a, b)G–p(a, b)

holds for all t >  or a, b >  with a �= b if p ∈ (
√

/, ).

Proof (i) Let

R(t) =
p(I(t) – )
cosh(pt) – 

, (.)

un =


n(n!) , vn =
pn–

(n)!
.

Then simple computations lead to

R(t) =
∑∞

n= untn
∑∞

n= vntn , (.)
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un+

vn+
–

un

vn
= –

(n)!
(p)n(n!)

(

p –
n + 
n + 

)

. (.)

From (.) we clearly see that the sequence {un/vn}∞n= is strictly decreasing if p ≥  and
strictly increasing if p ≤ √

/. Then Lemma . and (.) lead to the conclusion that the
function R(t) is strictly decreasing if p ≥  and strictly increasing if p ≤ √

/. Hence, we
have

R(t) < lim
t→+

R(t) =
u

v
=




(.)

for all t >  if p ≥  and

R(t) > lim
t→+

R(t) =
u

v
=




(.)

for all t >  if p ≤ √
/.

Therefore, inequality (.) holds for all t >  if p ≤ √
/ and q ≥  follows easily from

(.) and (.) together with (.).
If the first inequality (.) holds for all t > , then we have

lim
t→+

I(t) – ( – 
p + 

p cosh(pt))

t =




(



– p
)

≥ ,

which implies that p ≤ √
/.

If there exists q ∈ (
√

/, ) such that the second inequality of (.) holds for all t > ,
then we have

lim
t→∞

I(t) – ( – 
q


+ 

q


cosh(qt))

eqt ≤ . (.)

But the first inequality of (.) leads to

I(t) – ( – 
q


+ 

q


cosh(qt))

eqt

>
e(–q)t

 + t
–

(

 –


q


)

e–qt –
 + e–qt

q


→ ∞ (t → ∞),

which contradicts inequality (.).
(ii) If p ∈ (

√
/, ), then from (.) we know that there exists n ∈ N such that the

sequence {un/vn}∞n= is strictly decreasing for n ≤ n and strictly increasing for n ≥ n.
Then (.) and Lemma . lead to the conclusion that there exists t ∈ (,∞) such that
the function R(t) is strictly decreasing on (, t] and strictly increasing on [t,∞). We
clearly see that t satisfies equation (.). It follows from (.) and (.) together with
the piecewise monotonicity of R(t) that

R(t) ≥ R(t) = μ. (.)

Therefore, inequality (.) holds for all t >  follows from (.) and (.). �
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It is not difficult to verify that the function

 –


p +


p cosh(pt)

is strictly increasing with respect to p on the interval (,∞) and

 cosh

(
t


)

–  > cosh/ t

for t > .
Letting p =

√
/, /,

√
/, /, / and q =  in Theorem .(i), then we get Corol-

lary . immediately.

Corollary . The inequalities

cosh/(t) <  cosh

(
t


)

–  <



cosh

(
t


)

–



< cosh

(√
t



)

<



cosh

(
t


)

+



<



cosh

(√
t



)

+



< I(t) <
 + cosh t



or

G/(a, b)A/(a, b) < A/
/(a, b)G/(a, b) – G(a, b)

<



A/
/(a, b)G/(a, b) –




G(a, b)

< A
√

/√
/(a, b)G–

√
/(a, b)

<



A/
/(a, b)G/(a, b) +




G(a, b)

<



A
√

/√
/(a, b)G–

√
/(a, b) +




G(a, b)

< TQ(a, b) <
A(a, b) + G(a, b)



hold for all t >  or all a, b >  with a �= b.

Theorem . Let p > . Then the following statements are true:
(i) The inequality

I(t) >
[
cosh(pt)

] 
p (.)

or

TQ(a, b) > G– 
p (a, b)A


p
p (a, b) (.)

holds for all t >  or a, b >  with a �= b if and only if p ≥ √
/.

(ii) The inequality (.) or (.) is reversed if and only if p ≤ /.
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(iii) The inequalities

cosh/ t < cosh

(√
t



)

<
[

cosh

(√
t



)]/

< I(t) < cosh
(

t


)

< et/ (.)

or

G/(a, b)A/(a, b) < A
√

/√
/(a, b)G–

√
/(a, b)

< A
√

/√
/(a, b)G–

√
/(a, b)

< TQ(a, b) <
A(a, b) + G(a, b)



< G(a, b)e(A(a,b)–G(a,b))/(L(a,b))

hold for all t >  or all a, b >  with a �= b.

Proof (i) If inequality (.) holds for all t > , then we have

lim
t→+

I(t) – [cosh(pt)]


p

t =




(

p –



)

≥ ,

which implies that p ≥ √
/.

It follows from Lemma  of [] that the function [cosh(pt)]/(p) is strictly decreasing
with respect to p ∈ (,∞) for any fixed t > , hence we only need to prove that inequality
(.) holds for all t >  and p =

√
/. From the sixth inequality of Corollary . we clearly

see that it suffices to prove that




cosh

(√
t



)

+



>
[

cosh

(√
t



)]/

for all t > , which is equivalent to

log

[



cosh(
√

x) +



]

>



log(cosh x) (.)

for all x > , where x =
√

t/.
Let

f(x) = log

[



cosh(
√

x) +



]

–



log(cosh x), (.)

f(x) = 
√

 sinh(
√

x) cosh x –  cosh(
√

x) sinh x –  sinh x,

ξn = (
√

 – )(
√

 + )n– + (
√

 + )(
√

 – )n– – ,

ηn = (
√

 + )n–.

Then simple computations lead to

f() = , (.)
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f ′
 (x) =

f(x)
 cosh x[ cosh(

√
x) + ]

, (.)

f(x) =
∞∑

n=

ξn

(n – )!
xn–, (.)

ξ = ξ = , (.)

ηnξn = (
√

 – )(ηn – η)(ηn – η). (.)

From (.)-(.) and ηn > η > η >  for n ≥  we know that

f(x) >  (.)

for all x > .
Therefore, inequality (.) follows easily from (.)-(.) and (.).
(ii) The sufficiency follows easily from the monotonicity of the function p →

[cosh(pt)]/(p) and the last inequality in Corollary . together with the identity ( +
cosh t)/ = cosh(t/).

Next, we prove the necessity. If there exists p ∈ (/,
√

/) such that I(t) <
[cosh(pt)]/(p

) for all t > , then we have

lim
t→∞

I(t) – [cosh(pt)]/(p
)

et/(p) ≤ . (.)

But the first inequality of (.) leads to

I(t) – [cosh(pt)]/(p
)

et/(p) >


 + t
et

et/(p) –
(

 + e–pt



)/(p
)

→ ∞ (t → ∞),

which contradicts (.).
(iii) Let p = ,

√
/,

√
/, /, +. Then parts (i) and (ii) together with the monotonicity

of the function p → [cosh(pt)]/(p) lead to (.). �

Theorem . Let θ ∈ [,π/]. Then the inequality

I(t) >
cosh(t cos θ ) + cosh(t sin θ )


(.)

or

TQ(a, b) >
Acos θ

cos θ (a, b)G–cos θ (a, b) + Asin θ
sin θ (a, b)G–sin θ (a, b)



holds for all t >  or all a, b >  with a �= b if and only if θ ∈ [π/, π/]. In particular, the
inequalities

I(t) >



[

cosh

(√
 –

√



t
)

+ cosh

(√
 +

√



t
)]

>



[

cosh

(√



t
)

+ cosh

(



t
)]

> cosh

(√



t
)

(.)
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or

TQ(a, b) >
A

√
–

√
/√

–
√

/
(a, b)G–

√
–

√
/(a, b) + A

√
+

√
/√

+
√

/
(a, b)G–

√
+

√
/(a, b)



>
A

√
/√
/(a, b)G–

√
/ + A/

/(a, b)G/(a, b)


> A

√
/√
/(a, b)G–

√
/(a, b)

hold for all t >  or all a, b >  with a �= b.

Proof If inequality (.) holds for all t > , then we have

lim
t→+

I(t) – cosh(t cos θ )+cosh(t sin θ )


t = –



cos(θ ) ≥ ,

which implies that θ ∈ [π/, π/].
Next, we prove the sufficiency of inequality (.). Simple computations lead to

∂[cosh(t cos θ ) + cosh(t sin θ )]
∂θ

=
t sin(θ )



[
sinh(t sin θ )

t sin θ
–

sinh(t cos θ )
t cos θ

]

, (.)

(
sinh x

x

)′
=


x

(

cosh x –
sinh x

x

)

>  (.)

for x > .
Equation (.) and inequality (.) imply that the function θ → [cosh(t cos θ ) +

cosh(t sin θ )] is decreasing on [,π/] and increasing on [π/,π/] for any fixed t > .
Hence, it suffices to prove that inequality (.) holds for all t >  and θ = θ = π/.

Let

ρn =
( –

√


 )n + ( +
√


 )n

(n)!
, σn =


n(n!) ,

R(t) =
cosh(t cos θ) + cosh(t sin θ)

I(t)
. (.)

Then simple computations lead to

R(t) =
∑∞

n= ρntn
∑∞

n= σntn , (.)

ρ

σ
=

ρ

σ
=

ρ

σ
=

ρ

σ
= , (.)

ρn+
σn+
ρn
σn

–  = –
√

[(n +
√

 – )(
√

 – )n– + (n –
√

 – )(
√

 + )n–]
(n + )[(

√
 – )n + (

√
 + )n]

<  (.)

for n ≥ .
It follows from Lemma . and (.)-(.) that R(t) is strictly decreasing on (,∞).

Therefore,

I(t) >
cosh(t cos θ) + cosh(t sin θ)


(.)

follows from (.) and the monotonicity of R(t) together with R(+) = ρ/σ = .



Yang and Chu Journal of Inequalities and Applications  (2016) 2016:40 Page 17 of 21

Let θ = π/,π/,π/. Then inequality (.) follows easily from (.) and the mono-
tonicity of the function θ → [cosh(t cos θ ) + cosh(t sin θ )]. �

Theorem . The inequality

I(t) >
sinh t

t
+

( – π )(t sinh t –  cosh t + )
π t (.)

holds for all t > .

Proof It is easy to verify that

d

dx

(
√

 – x

)

=
 + x

( – x)/ > ,
∂ cosh(tx)

∂x = t cosh(tx) > 

for all t >  and x ∈ (, ), which implies that the two functions /
√

 – x and cosh(tx) are
convex with respect to x on the interval (, ). Then from Lemma . and (.) we have

π


I(t) –

π


sinh t

t

=
∫ 



cosh(tx)√
 – x

dx –
∫ 



dx√
 – x

∫ 


cosh(tx) dx

> 
∫ 



x – 
√

 – x
dx

∫ 



(

x –



)

cosh(tx) dx

=
( – π )(t sinh t –  cosh t + )

t . (.)

Therefore, inequality (.) follows from (.). �

Remark . The inequality I(t) > sinh(t)/t in (.) is equivalent to the first inequality
TQ(a, b) > L(a, b) in (.). Therefore, Theorem . is an improvement of the first inequality
in (.).

Let p ∈R and M(a, b) be a bivariate mean of two positive a and b. Then the pth power-
type mean Mp(a, b) is defined by

Mp(a, b) = M/p(ap, bp) (p �= ), M(a, b) =
√

ab.

We clearly see that

Mλp(a, b) = M/λ
p

(
aλ, bλ

)

for all λ, p ∈R and a, b >  if M is a bivariate mean.

Theorem . The inequality

TQ(a, b) < Ip(a, b)

holds for all a, b >  with a �= b if and only if p ≥ /.
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Proof The second inequality (.) can be rewritten as

TQ(a, b) < A/(a, b). (.)

In [, ], the authors proved that the inequality

I(a, b) > A/(a, b) (.)

holds for all distinct positive real numbers a and b with the best possible constant /.
Inequalities (.) and (.) lead to

TQ(a, b) < A/(a, b) = A/
/

(
a/, b/) < I/(a/, b/) = I/(a, b) (.)

for all a, b >  with a �= b.
If p ≥ /, then TQ(a, b) < I/(a, b) ≤ Ip(a, b) follows from (.) and the function p →

Ip(a, b) is strictly increasing [].
If TQ(a, b) < Ip(a, b) for all a, b >  with a �= b. Then

I(t) – et/ tanh(pt)–/p <  (.)

for all t > .
Inequality (.) leads to

lim
t→+

I(t) – et/ tanh(pt)–/p

t =



(



– p
)

≤ ,

which implies that p ≥ /. �

Remark . For all a, b >  with a �= b, the Toader mean T(a, b) satisfies the double in-
equality [, ]

A/(a, b) < T(a, b) < Alog /(logπ–log )(a, b) (.)

with the best possible constants / and log /(logπ – log ), and the one-sided inequal-
ity []

T(a, b) < I/(a, b). (.)

It follows from (.) and (.) that

A/
/(a, b) = A/

(
a/, b/) < T

(
a/, b/)

= T /
/ (a, b) < I/

(
a/, b/) = I/

/(a, b),

which can be rewritten as

A/(a, b) < T/(a, b) < I/(a, b). (.)



Yang and Chu Journal of Inequalities and Applications  (2016) 2016:40 Page 19 of 21

Inequalities (.) and (.) lead to the inequalities

TQ(a, b) < A/(a, b) < T/(a, b) < I/(a, b) (.)

for all a, b >  with a �= b.

Remark . For all a, b >  with a �= b, Theorem . shows that

L/(a, b)A/(a, b) < TQ(a, b) <
L(a, b) + A(a, b)


. (.)

It follows from L(a, b) < A(a, b)/ + G(a, b)/, given by Carlson in [], and A(a, b) >
L(a, b) that

L(a, b) < L/(a, b)A/(a, b),
A(a, b) + G(a, b)


>

L(a, b) + A(a, b)


.

Therefore, inequality (.) is an improvement of the first and second inequalities
of (.).

Remark . In [, , ], the authors proved that the inequalities

L(a, b) < AGM(a, b) < L/(a, b)A/(a, b) < L/(a, b) (.)

hold for all a, b >  with a �= b.
Inequalities (.)-(.) lead to the chain of inequalities

L(a, b) < AGM(a, b) < L/(a, b)A/(a, b)

< TQ(a, b) < A/(a, b) < T/(a, b) < I/(a, b) (.)

for all a, b >  with a �= b.

Motivated by the first inequality in (.) and the third inequality in (.), we propose
Conjecture ..

Conjecture . The inequality

TQ(a, b) > L/(a, b)

holds for all a, b >  with a �= b.

For all a, b >  with a �= b, inspired by the double inequality

√
A(a, b)G(a, b) < TQ(a, b) <

A(a, b) + G(a, b)


given in Corollary . and the inequalities

√
A(a, b)G(a, b) <

√
I(a, b)L(a, b) <

I(a, b) + L(a, b)


<
A(a, b) + G(a, b)



proved by Alzer in [] we propose Conjecture ..
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Conjecture . The inequality

TQ(a, b) <
√

I(a, b)L(a, b)

holds for all a, b >  with a �= b.

Remark . Let Wn be the Wallis ratio defined by (.), and cn, dn, and sn be defined by
(.). Then it follows from Lemma . and the proof of Theorem . that the sequence
{sn}∞n= is strictly decreasing and limn→∞ sn = /π , and the sequence {cn/dn}∞n= is strictly
increasing for n = ,  and strictly decreasing for n ≥ . Hence, we have


π

< sn = (n + )W 
n ≤ s =




(.)

and


π

= min

{
c

d
, lim

n→∞
cn

dn

}

<
cn

dn
=

nsn – 
n – 

≤ c

d
=




(.)

for all n ∈N.
Inequalities (.) and (.) lead to the Wallis ratio inequalities


√

π (n + 
 )

< Wn ≤
√




√

n + 


and
√

–n(π – ) + 
π (n + )

< Wn ≤
√

 +  × –n

(n + )

for all n ∈N.
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27. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
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