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Abstract
In this paper, by extending the classical Newton method, we present the generalized
Newton method (GNM) with high-order convergence for solving a class of large-scale
linear complementarity problems, which is based on an additional parameter and a
modulus-based nonlinear function. Theoretically, the performance of high-order
convergence is analyzed in detail. Some numerical experiments further demonstrate
the efficiency of the proposed new method.
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1 Introduction
We consider the linear complementarity problem, abbreviated as LCP(q, A), to find a vec-
tor u ∈R

n such that

⎧
⎪⎨

⎪⎩

u ≥ ,
w := Au + q ≥ ,
wT u = ,

(.)

where A ∈ R
n×n and q ∈R

n are a given real matrix and a real vector, respectively.
The linear complementarity problem frequently arises in various scientific and engi-

neering applications, such as Nash equilibrium point of a bimatrix game, the contract
problem, and the free boundary problem for journal bearings; see [–].

In [], Lemke proposed first a solution for linear complementarity problem. Along these
ideas, Scarf has given the approximation of fixed-points of a continuous mapping []. The
relationship between the linear complementarity problem and the fixed-points problem
is well described by Eaves et al. [, ].

Many efficient methods were developed to solve linear complementarity problem. Es-
pecially, when the system matrix A is large and sparse. For instance, we have the projected
successive overrelaxation iteration [] and the general fixed-point iterations []. On the
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matrix splitting iterations approaches, Bai et al. have derived some fruitful research re-
sults [–], especially, in [], Bai proposed the modulus-based matrix splitting iteration
scheme which is a powerful method for solving the linear complementarity problem. Ma-
trix multisplitting iteration aspects, also, in many works were considered by Bai et al. to
solve the linear complementarity problem in [–]. A variety of accelerated modulus-
based matrix splitting iteration versions were also established; see [, ]. Furthermore,
the modulus-based synchronous multisplitting iteration methods for large sparse linear
complementarity problems are introduced in []. On the basis of [], Ljiljana et al.
avoided the assumption of the parameter constraint and improved the convergence area
[]. Recently, in [], by the vector divisions and the secant method, Foutayeni et al. in-
vestigated an efficient hybrid method for solving the linear complementarity problem.

As is well known the semismooth (or smooth) Newton method is very efficient for some
nonsmooth (or smooth) equations, which arise from the complementarity problem, the
nonlinear programming problem, the variational inequality problem, the discretization
problem of partial differential equations, the maximal monotone operator problem, etc.;
see [–] for a detailed discussion. These methods are competitive since they converge
rapidly for any sufficiently right initial guess. In order to ensure that the global convergence
of semismooth Newton methods, some merit functions, such as squared norm merit func-
tions, are often exploited; see [] and the references therein. However, just as the state-
ment in [], a globalization of the semismooth Newton method for nonsmooth equations
is very hard because the corresponding merit function is nondifferentiable in most cases.

In view of this, by introducing a smooth equation and some reasonable equivalent re-
formulations, we investigate a generalized Newton iteration method with high-order con-
vergence rate for solving a class of large-scale linear complementarity problem, which
make full use of the superiority of the second-order convergence rate of the classical New-
ton method. In this article, we suppose that the matrix A of the linear complementarity
problem (.) is a P-matrix, i.e., the determinants of all principal submatrices are positive.
Under this assumption, as is well known, the linear complementarity problem (.) has a
unique solution for every q.

For simplicity of the presentation, we use the following notations throughout the paper:
Let Nk = {, , . . . , k} denote the set of first k positive integers. For x ∈ R

n, ‖x‖ stands for
the Euclidean norm. Given two real n × m matrices A = (aij) and B = (bij), we write A ≥ B
(or A > B) if aij ≥ bij (or aij > bij) hold for all i ∈ Nn and j ∈ Nm. |A| and ρ(A) denote the
absolute value and spectral radius of the matrix A ∈ R

n×m, respectively. For a differential
function F(x), F ′(x) is referred to as the Jacobi matrix of the function F(x). For an invertible
matrix A, A– denotes the inverse matrix of A. The matrix Diag{a, a, . . . , an} denotes the
diagonal matrix, where ai (i ∈Nn) are the elements of the principal diagonal.

The outline of the paper is organized as follows. In Section , we first consider a gener-
alized Newton method (GNM) with high-order convergence rate for solving a class of the
linear complementarity problems (.). In Section , we analyze the performance and rate
of convergence of the GNIM in detail. Some numerical experiments are given to illustrate
that the GNM is efficient in Section . At last, we end the paper with some conclusions in
Section .

2 The generalized Newton method
We first introduce some useful results which are vital for the equivalent reformulation
as regards the LCP(q, A). Furthermore, these conclusions contribute significantly to the
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analysis of the convergence rate of the generalized Newton iteration method which will
be presented in the following.

Lemma . The LCP(q, A) (.) is equivalent to the system of nonlinear equations

(I + A)x + (I – A)|x| – q = , (.)

where A, q are given matrix and vector in (.), respectively. I is an identity matrix with
appropriate dimension, x ∈R

n is a vector to be determined.

Proof Let x be the solution of equation (.). Then it yields

|x| + x = A
(|x| – x

)
+ q. (.)

Set

w := |x| + x, u := |x| – x. (.)

It is apparent from (.) and (.) that

w = Au + q, w ≥ , u ≥ , and wT u = ,

which means that u is the solution of LCP(q, A) (.).
On the other hand, we assume u is the solution of LCP(q, A) (.). It is obvious that

w ≥ , u ≥ , wT u = , where w := Au + q.

We also set

w := |x| + x, u := |x| – x,

it turns out that

x =



(w – u)

satisfies equation (.). �

Now, we introduce the smooth function F : Rn+ →R
n by

F(z) := (I – A)
√

x + εe + (I + A)x – q, (.)

where z = (ε, xT )T ∈ R
n+, ε is a positive variable, e is a vector with all elements equal ,

i.e., e = (, , . . . , )T ∈ R
n,

√
x + εe :=

[√

x
 + ε,

√

x
 + ε, . . . ,

√

x
n + ε

]T ∈R
n. (.)
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We further define the nonlinear and differentiable function

�(z) :=

(
ε

F(z)

)

∈R
n+. (.)

Lemma . LCP(q, A) (.) is equivalent to the nonlinear system

�(z) = , (.)

where �(z) is defined by (.), z = (ε, xT )T ∈R
n+.

Proof The conclusion can easily be drawn by equation (.) and Lemma .. �

Lemma . The Jacobi matrix of equation (.) is

� ′(z) =

(
 

(I – A)gε (I – A)Dx + A + I

)

∈R
(n+)×(n+), (.)

where g(ε) = (g, g, . . . , gn)T ∈ R
n, gi = ε√

x
i +ε , Dx = Diag(d, d, . . . , dn) ∈ R

n×n, di =
xi√

x
i +ε , i ∈Nn, and  ∈ R

×n is a zero vector.

Proof It follows from the derivatives for the variable z on both sides of equation (.) that

� ′(z) =

(
 

F ′
ε F ′

x

)

. (.)

According to equations (.) and (.), we immediately have

F ′
ε = (I – A)

(
ε

√
x

 + ε
,

ε
√

x
 + ε

, . . . ,
ε

√
x

n + ε

)T

∈R
n (.)

and

F ′
x = (I – A) Diag

(
x

√
x

 + ε
,

x
√

x
 + ε

, . . . ,
xn

√
x

n + ε

)

+ A + I ∈R
n×n. (.)

This completes the proof. �

Now, we show the generalized Newton iteration method for the nonlinear smooth sys-
tem (.). A detailed description follows.

Algorithm . (The generalized Newton method)
Step  Input the initial guess z = (ε, (x)T )T , give the matrix A and vector q and any

small positive numbers σ,σ ∈ (, ), preset a positive integer m ≥ . Set k := .
Step  Compute �(zk), the Jacobi matrix � ′(zk), and its inverse matrix Ak := (� ′(zk))–.
Step  Set zk, = zk , j := .
Step  Evaluate �(zk,j), update the vector sequence

zk,j+ = zk,j – Akb,

then calculate �(zk,j+), where b = �(zk,j).
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Step  Set j := j + , zk,j = zk,j+, �(zk,j) = �(zk,j+), y := Akb. If j = m, return to Step ,
otherwise go to Step .

Step  If ‖y‖ < σ or ‖�(zk,m)‖ < σ, let zk,m = z∗, otherwise k := k + , return to Step .

The generalized Newton iteration method (GNIM) also can be written with the follow-
ing iterative scheme:

⎧
⎪⎨

⎪⎩

zk, = zk ,
zk,j = zk,j– – (� ′(zk))–�(zk,j–), j = , , . . . , m,
xk+ = xk,m, k = , , , . . . .

(.)

Remark . From Lemma ., we know that the iterative solution z∗ generated by Algo-
rithm . is also the solution u∗ of LCP(q, A) (.).

Remark . The update of parameter εk can be chosen with εk = εm
k–. Since the posi-

tive integer m is selected at least greater than or equal to  in Algorithm ., the positive
sequence {εk}∞ declines monotonically and tends to zero.

Remark . Once we set m = , then the GNIM reduces to the classical Newton iterative
method.

3 The analysis of convergence
Definition . ([]) Let F : D ⊂ R

n → R
n, x∗ ∈ D is the solution of system F(x) = .

There is a region S ⊂ D for the point x∗, for any initial approximation x ∈ S, if the iteration
sequence {xk , k = , , . . .} is always well defined and converges to x∗, we call it the attractive
point of the iteration sequence.

The classical Newton iteration features a convergence rate of at least order two. We have
the following results; for more details see [] and the references therein.

Lemma . ([]) Let F : D ⊂ R
n → R

n be Fréchet differentiable on the open interval of
S ∈ D, and F ′(x∗) be nonsingular, where x∗ is the solution of system F(x) = . Then the
mapping G(x) = x – F ′(x)–F(x) is well defined on S for the closed sphere S = S̄(x∗, δ) ⊂ S.
Moreover, if the inequality

∥
∥F ′(x) – F ′(x∗)∥∥ ≤ β

∥
∥x – x∗∥∥ (.)

holds, where β is a constant, x ∈ S, then the classical Newton iteration method has at least
a convergence rate of order two.

Lemma . ([]) Let F : D ⊂ R
n → R

n be Fréchet differentiable on the fixed-point x∗ ∈
int(D), and the spectral radius of F ′(x∗)

ρ
(
F ′(x∗)) = σ ≤ . (.)

Then x∗ is the attractive point of the iterative sequence xk+ = F(xk) (k = , , . . .) for the open
sphere S = S(x∗, δ) ⊂ D and any initial guess x ∈ S.
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Lemma . [] Let F : D ⊂ R
n → R

m be continuous and differentiable on the convex set
D ⊂ D, and satisfy

∥
∥F ′(u) – F ′(v)

∥
∥ ≤ β‖u – v‖p, u, v ∈ D. (.)

Then we have

∥
∥F(y) – F(x) – F ′(x)(y – x)

∥
∥ ≤ β

 + p
‖y – x‖+p, x, y ∈ D, (.)

where the constants β ≥ , p ≥ .

We are now in a position to derive the main convergence result of the generalized New-
ton iteration method.

Theorem . Let � : D ⊂ R
n+ → R

n+ be Fréchet differentiable on the circle region of
S(z∗, δ) ∈ D, and � ′(z∗) be nonsingular, where z∗ is the solution of �(z) = . Assume that
for arbitrary z ∈ S, there is a constant β >  such that

∥
∥� ′(z) – � ′(z∗)∥∥ ≤ β

∥
∥z – z∗∥∥ (.)

holds. Then z∗ is the attractive point of the iterative sequence {zk}∞ generated by Algo-
rithm ., and

∥
∥zk+ – z∗∥∥ ≤ L

∥
∥zk – z∗∥∥m+, (.)

where L is a constant independent of iteration number k.

Proof To begin with, we consider the iterative equation (.) with the case m = , i.e.,

zk+ = zk –
(
� ′(zk))–[

�
(
zk) – �

(
zk –

(
� ′(zk))–

�
(
zk))], k = , , . . . . (.)

By applying Lemma ., P(z) := z – (� ′(z))–�(z) is well defined on S := S̄(z∗, δ) ⊂ S and

∥
∥P(z) – z∗∥∥ ≤ ξ

∥
∥zk – z∗∥∥, z ∈ S, (.)

where ξ is a positive constant. Hence, the mapping M(z) = P(z) – (� ′(z))–�(P(z)) is well
defined on the closed sphere S = S̄(z∗, δ) ⊂ S, where δ ≤ δ

ξ
and

M′(z∗) = I –
(
� ′(z∗))–

�
(
P
(
z∗)) = .

So, ρ(M′(z∗)) =  < . It follows from Lemma . that z∗ is the attractive point of equation
(.).

On the other hand, note the nonsingularity of � ′(z∗), hence ‖(� ′(z))–‖ ≤ ζ for z ∈ S.
Then it follows from Lemma . and the assumptions that

∥
∥M(z) – z∗∥∥ ≤ ∥

∥
(
� ′(z)

)–∥∥
∥
∥� ′(z)

[
P(z) – z∗] – �

(
P(z)

)∥
∥

≤ ζ
[∥
∥�

(
P(z)

)
– �

(
z∗) – � ′(z∗)(P(z) – z∗)∥∥
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+
∥
∥
(
� ′(z∗) – � ′(z)

)(
P(z) – z∗)∥∥]

≤ ζ

[


β
∥
∥P(z) – z∗∥∥ + β

∥
∥z – z∗∥∥∥

∥P(z) – z∗∥∥
]

≤ βζ

[


ξ ∥∥z – z∗∥∥ + ξ

]
∥
∥z – z∗∥∥

≤ βζξ

[


ξδ + 

]
∥
∥z – z∗∥∥. (.)

Let L := βζξ [ 
ξδ + ], evidently, it is a constant independent of the iteration number k.

When we choose zk+ = M(zk) for the left of the inequality (.), it yields

∥
∥zk+ – z∗∥∥ ≤ L

∥
∥zk – z∗∥∥, (.)

which implies (.) holds for m = .
Now, we state that the iterative scheme (.) has at least a convergence rate of order

m + . The result will be shown by mathematical induction.
Noting that (.), one has the argument

∥
∥zk, – z∗∥∥ ≤ L

∥
∥zk – z∗∥∥ = O

(∥
∥zk – z∗∥∥). (.)

Next, we assume that

∥
∥zk,m– – z∗∥∥ ≤ L

∥
∥zk – z∗∥∥m = O

(∥
∥zk – z∗∥∥m)

(.)

holds. Now, we will verify the statement

∥
∥zk,m – z∗∥∥ ≤ L

∥
∥zk – z∗∥∥m+ = O

(∥
∥zk – z∗∥∥m+), (.)

where L, L are constants independent of the iteration number k.
As a matter of fact, observing (.), also by Lemma . and (.), one obtains

∥
∥zk,m – z∗∥∥ ≤ ∥

∥
(
� ′(zk))–∥∥

[∥
∥�

(
zk,m–) – �

(
z∗) – � ′(z∗)(zk,m– – z∗)∥∥

+
∥
∥
(
� ′(z∗) – � ′(zk))(zk,m– – z∗)∥∥]

≤ ζ

[


β
∥
∥zk,m– – z∗∥∥ + β

∥
∥zk – z∗∥∥∥

∥zk,m– – z∗∥∥
]

≤ ζβ

[



L

∥
∥zk – z∗∥∥m– + L

]
∥
∥zk – z∗∥∥m+

≤ ζβ

[



L
δ

m–
 + L

]
∥
∥zk – z∗∥∥m+

= L
∥
∥zk – z∗∥∥m+ = O

(∥
∥zk – z∗∥∥m+), (.)

where L := ζβ[ 
 L

δ
m–
 + L], which completes the proof. �
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4 Numerical experiments
In this section, we report some numerical results to illustrate the effectiveness of the
GNIM for solving the linear complementarity problem. We compare the GNIM with the
Fischer-based semismooth Newton method which we call FBSN (see [, ]), and the
cosh-based smoothing Newton method which we call CBSN (see []) by the iteration
step (denoted as ‘IT’), the elapsed CPU time in seconds (denoted as ‘CPU’), and the resid-
ual error (denoted as ‘RES’). In actual computations, all runs are terminated if the current
iterations satisfy

RES :=
∥
∥�

(
zk)∥∥ < –,

or if the number of iterations exceeds the prescribed number of iteration steps kmax.
The numerical experiments have been carried out by MATLAB Rb (.), Intel(R)
Core(TM) i-QM, CPU .GHZ, RAM .GB PC Environment, and Windows  op-
erating system.

In fact, our approach can be considered as the version of speeding up on the basis of the
smoothing Newton method. Thereby, high precision is the advantage of the GNIM. Once
we set m = , the GNIM will reduce to the classical Newton method. But we know that
the larger m may lead to the consumption of more CPU time since there is an increased
number of inner iterations. We usually choose m =  in concrete tests, which also can
ensure the rapid convergence rate. To confirm this judgment, we can observe the following
examples.

Example . ([]) We consider the linear complementarity problem (.) with

A = tridiag(–, , –), q = (–, . . . , –)T .

Example . We consider the linear complementarity problem (.) with A = (aij), i, j ∈
Nn, where aij = iδij

n , δ is the Kronecker delta (δii = , δij = , when i �= j), and q = (qi), i ∈ Nn

such that qi = –.

In these examples, we choose m =  for the GNIM, and ρ = ., β = ., p = . for the
FBSN (for more details, see []). Especially, the RES will be regarded as  if RES < –

in the numerical results. The initial guess will be selected with z
() or z

() by [ε, qT ]T or the
zero vector, respectively. First, we compare the performance of the numerical results of the
GNIM with the CBSN by arranging different n. From Tables  and , we find the GNIM
and the CBSN are all effective methods whose solution pairs (u∗, w∗) are also displayed in
the last column of tables. However, from the aspects of the iteration number or CPU, the
CBSN does not stand comparison with our method. In Table , we provide the numerical
results for the GNIM and the CBSN with larger dimensions. Furthermore, the merit of
the GNIM is reflected clearly and incisively.

It is observed from Table  that the GNIM is much more competitive than the FBSN for
the large-scale linear complementarity problem. The numerical results of Example . is
shown by Tables -. Especially, from Table , we find that the FBSN is unable to obtain
the convergence result in less iteration steps, such as within , for Example ..

To sum up, by all numerical results, we illustrate the effectiveness of the GNIM.
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Table 1 The GNIM numerical results for Example 4.1 with initial z0
(1)

The performance of
numerical results

The solution pairs (u∗, w∗)

n = 3 It 3 u∗ = (0.3571, 0.4286, 0.3571)
CPU 0.0068
RES 0 w∗ = (0, 0, 0)

n = 5 It 3 u∗ = (0.3654, 0.4615, 0.4808, 0.4615, 0.3654)
CPU 0.0073
RES 0 w∗ = 1.0e–015 ∗ (0.4441, 0, 0, 0, 0)

n = 8 It 3
u∗ = (0.3660, 0.4641, 0.4902, 0.4967,

0.4967, 0.4902, 0.4641, 0.3660)
CPU 0.0074
RES 0 w∗ = (0, 0, 0, 0, 0, 0, 0, 0)

n = 10 It 3
u∗ = (0.3660, 0.4641, 0.4904, 0.4974, 0.4991,

0.4991, 0.4974, 0.4904, 0.4641, 0.3660)
CPU 0.0075

RES 0
w∗ = 1.0e–015 ∗ (–0.1110, 0.4441, –0.4441,

0, 0, 0, 0.2220, 0, 0, 0)

Table 2 The CBSN numerical results for Example 4.1 with initial z0
(1)

The performance of
numerical results

The solution pairs (u∗, w∗)

n = 3 It 4 u∗ = (0.3571, 0.4286, 0.3571)
CPU 0.0104
RES 0 w∗ = 1.0e–011 ∗ (0.8880, –0.5869, 0.8880)

n = 5 It 4 u∗ = (0.3654, 0.4615, 0.4808, 0.4615, 0.3654)
CPU 0.0106
RES 6.1063e–016 w∗ = 1.0e–015 ∗ (0, 0, 0, 0, –0.1110)

n = 8 It 4
u∗ = (0.3660, 0.4641, 0.4902, 0.4967, 0.4967,

0.4902, 0.4641, 0.3660)
CPU 0.0113

RES 6.2042e–016
w∗ = 1.0e–011 ∗ (0.4839, –0.1609, –0.0001, 0, 0,

– 0.0001, –0.1608, 0.4839)

n = 10 It 3
u∗ = (0.3660, 0.4641, 0.4904, 0.4974, 0.4991,

0.4991, 0.4974, 0.4904, 0.4641, 0.3660)
CPU 0.0115

RES 6.2232e–016
w∗ = 1.0e–011 ∗ (0.4835, –0.1607, –0.0001, 0, 0,

0, 0, –0.0001, –0.1607, 0.4835)

Table 3 Numerical results for Example 4.1

Initials z0
(1) z0

(1) z0
(2) z0

(2)

Methods GNIM CBSN GNIM CBSN

n = 50 It 2 3 3 4
CPU 0.0084 0.0250 0.0119 0.0447
RES 5.7787e–016 1.7554e–016 5.3787e–016 1.8619e–016

n = 100 It 2 3 3 4
CPU 0.0135 0.0230 0.0142 0.0364

RES 6.1815e–016 2.1678e–016 5.6610e–016 2.7616e–016
n = 300 It 2 3 3 4

CPU 0.0376 0.0547 0.0562 0.0905
RES 6.2315e–016 2.2648e–016 5.7610e–016 2.9616e–016
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Table 4 Numerical results for Example 4.1

Initials z0
(1) z0

(1) z0
(2) z0

(2)

Methods GNIM FBSN GNIM FBSN

n = 500 It 2 11 3 11
CPU 0.0886 0.3229 0.1366 0.3831
RES 6.1815e–016 6.6613e–016 5.6610e–016 1.1047e–015

n = 1000 It 2 11 3 11
CPU 0.5114 1.0758 0.7728 1.3069
RES 6.2113e–016 6.6723e–016 5.6720e–016 1.3027e–015

n = 3000 It 2 11 3 11
CPU 9.1418 26.6155 11.1484 11.5429
RES 6.2812e–016 6.6921e–016 5.5610e–016 1.2123e–015

n = 5000 It 2 11 3 11
CPU 42.9507 71.3675 66.0831 79.3341
RES 6.4615e–016 6.6990e–016 5.7810e–016 1.3056e–015

Table 5 The GNIM numerical results for Example 4.2 with initial z0
(1)

The performance of
numerical results

The solution pairs (u∗, w∗)

n = 3 It 2 u∗ = (3, 1.5, 1)
CPU 0.0067
RES 0 w∗ = (0, 0, 0)

n = 5 It 2 u∗ = (5, 2.5, 1.6667, 1.25, 1)
CPU 0.0070
RES 0 w∗ = 1.0e–015 ∗ (0.2220, 0, 0, 0, 0)

n = 8 It 2 u∗ = (8, 4, 2.6667, 2, 1.6, 1.3333, 1.1429, 1)
CPU 0.0072
RES 0 w∗ = (0, 0, 0, 0, 0, 0, 0, 0)

n = 10 It 2
u∗ = (10, 5, 3.3333, 2.5, 2, 1.6667, 1.4286,

1.25, 1.1111, 1)
CPU 0.0075

RES 0
w∗ = 1.0e–015 ∗ (0, 0.2220, –0.1110, 0, 0,

0, 0.2220, 0, 0, 0)

Table 6 The CBSN numerical results for Example 4.2 with initial z0
(1)

The performance of
numerical results

The solution pairs (u∗, w∗)

n = 3 It 4 u∗ = (3, 1.5, 1)
CPU 0.0155
RES 0 w∗ = (0, 0, 0)

n = 5 It 4 u∗ = (5, 2.5, 1.6667, 1.25, 1)
CPU 0.0161
RES 0 w∗ = 1.0e–015 ∗ (0.4441, 0, 0, 0, 0)

n = 8 It 4 u∗ = (8, 4, 2.6667, 2, 1.6, 1.3333, 1.1429, 1)
CPU 0.0163

RES 2.2204e–016
w∗ = 1.0e–011 ∗ (–0.1110, 0.2220, 0, 0,

0.2220, 0, 0, 0)

n = 10 It 4
u∗ = (10, 5, 3.3333, 2.5, 2, 1.6667,

1.4286, 1.25, 1.1111, 1)
CPU 0.0147

RES 8.8818e–016
w∗ = 1.0e–014 ∗ (–0.1221, 0.0444, –0.0111,

0.0222, 0, –0.0111, 0.0222, 0, 0, 0)
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Table 7 Numerical results for Example 4.2

Initials z0
(1) z0

(1) z0
(2) z0

(2)

Methods GNIM FBSN GNIM FBSN

n = 500 It 2 11 3 11
CPU 0.0957 0.3025 0.1421 0.3308
RES 2.3182e–015 1.7073e+001 2.1006e–015 1.8073e+001

n = 1000 It 2 11 3 11
CPU 0.5016 0.9461 0.6327 1.1754
RES 6.6438e–014 2.4129e+001 6.6351e–014 2.6249e+001

5 Conclusion
In this paper, we establish the generalized Newton method (GNM) for solving the large-
scale linear complementarity problem. The GNM features the high-order convergence
rate, at least convergence order m + , which has been verified from theoretical analysis
section in detail. The new strategy will increase the efficiency remarkably. In fact, it can
be regarded as an accelerated process for the classical Newton approach. Experimental
tests provide the comparison of the numerical performance for some existing efficient
methods, which testify to the viability of the proposed approach.
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