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Abstract
In this paper, we develop the weighted square integral inequalities for the difference
of two smooth superharmonic functions. Then we prove the existence and
integrability of the Sobolev derivative for superharmonic functions. The inequalities
are generalized for the difference of two weak superharmonic functions. We also
establish that the superharmonic approximation is indeed the better imitation of the
exact unknown solution rather than the usual uniform approximation.
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1 Introduction and statement of the main result
The role of mathematical inequalities within the mathematical branches as well as in its
enormous applications should not be underestimated. The square integral estimate for the
first derivative of convex function was established in [, ]. Then the results were improved
by Hussain et al. in []. Such kinds of inequalities are very useful for the hedging problems
in mathematical finance.

The negative of a convex function is concave (concave down) functions. It is well known
in modern calculus that the natural generalization of concave functions to a function of
several independent variables is a superharmonic function, related to the famous Laplace
operator. So it is also interesting to develop similar inequalities for the superharmonic
functions. The latter functions are often considered as a powerful tool for the study of
solvability of the classical Poisson and Dirichlet problems in the theory of partial differen-
tial equations.

Throughout the paper we will use the following notations:
D, D ⊂ Rn is bounded and having a smooth boundary, B = B(x, r) is the open ball in Rn

with center x and radius r (r > ), B is its closure. L∞(B) is the space of bounded (a.e. dx)
on B.

� is the n dimensional Laplace operator.
C

(B) is the space of twice continuously differentiable functions having compact support
on B.

u(x) is said to be smooth superharmonic if u(x) ∈ C(B),

�u(x) ≤ . (.)
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A bounded measurable function u(x) defined on the ball B is said to be weak superhar-
monic if for all non-negative functions φ ∈ C

(B) the following holds:

∫
B

u(x)�φ(x) dx ≤ . (.)

We will consider the arbitrary smooth weight function satisfying the following:

h(x) ≥  if x ∈ D, (.)

h(x) =
∂h(x)
∂xi

= , i = , , . . . , n, x ∈ ∂D. (.)

We will also take the particular form of the weight function for the ball B(x, r) in the
following way:

h(x) =
(
r – |x – x|

). (.)

We will find

∂h(x)
∂xi

= 
(
xi – x

i
)(

r – |x – x|
)
, i = , , . . . , n. (.)

It is clear by the definition of the weight function that h(x) = ∂h(x)
∂xi

= , i = , , . . . , n, for x
on the boundary of ball B(x, r).

Now we formulate our main result.

Theorem . Consider two arbitrary continuous weak superharmonic functions ui(x), i =
, , on the ball B, B = B(x, r), then the following energy estimate holds:

∫
B

∣∣grad u(x) – grad u(x)
∣∣h(x) dx

≤ 

‖u – u‖

L∞(B) +
(‖u – u‖L∞(B)

)(‖u‖L∞(B) + ‖u‖L∞(B)
)∫

B

∣∣�h(x)
∣∣dx, (.)

where h(x) is the weight function defined in (.).

We will organize the paper in the following way: In the second section we will establish
the inequality for the smooth superharmonic functions and then by a standard mollifi-
cation technique we will approximate the weak superharmonic functions by the smooth
ones. In the last section we will prove the existence and integrability of weak superhar-
monic functions and then establish the proof of our main result. At the end we will also
explain that a superharmonic approximation is better than the usual uniform approxima-
tion.

2 The case of smooth superharmonic functions and mollification of weak
superharmonic functions

Our starting point will be the following theorem.

Theorem . Consider two arbitrary smooth superharmonic functions ui(x), i = ,  over
the domain D, D ⊂ Rn (this domain is bounded, having a smooth boundary), i.e. ui(x) ∈
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CD, i = , , and �ui(x) ≤  if x ∈ D, i = , . Then the following holds:
∫

D

∣∣grad u(x) – grad u(x)
∣∣h(x) dx ≤ ∥∥̃u(x)

∥∥
Lp(D)

∥∥�h(x)
∥∥

Lq(D), (.)

where p and q are conjugates and

ũ(x) =


(
u(x) – u(x)

) –
∥∥u(x) – u(x)

∥∥
L∞

(
u(x) + u(x)

)

and h(x) is the weight function defined in (.).

Proof Let us denote

u(x) = u(x) – u(x). (.)

Take
∫

D

∣∣grad u(x)
∣∣h(x) dx

=
∫

D

((
∂u
∂x

)

+
(

∂u
∂x

)

+ · · · +
(

∂u
∂xn

))
h(x) dx

=
∫

D

(
∂u
∂x

)

h(x) dx +
∫

D

(
∂u
∂x

)

h(x) dx + · · · +
∫

D

(
∂u
∂xn

)

h(x) dx. (.)

Take the first integral on the right hand side,

∫
D

(
∂u
∂x

)

h(x) dx =
∫

D

∂u
∂x

(
∂u
∂x

h(x)
)

dx.

Using integration by parts and the fact that the weight function vanishes on the boundary
of the domain, we get

= –
∫

D
u(x)

∂u
∂x


h(x) dx –

∫
D

u(x)
∂u
∂x

∂h(x)
∂x

= –
∫

D
u(x)

∂u
∂x


h(x) dx –




∫
D

∂u(x)
∂x

∂h(x)
∂x

dx.

Again using integration by parts on the second integral and also the definition of the weight
function, we obtain

= –
∫

D
u(x)

∂u
∂x


h(x) dx +




∫
D

u(x)
∂h(x)
∂x


dx.

Solving all integrals in a similar way, (.) becomes
∫

D

∣∣grad u(x)
∣∣h(x) dx =




∫
D

u(x)�h(x) dx –
∫

D
u(x)�u(x)h(x) dx

≤ 


∫
D

u(x)�h(x) dx + sup
x∈D

∣∣u(x)
∣∣
∫

D

∣∣�u(x)
∣∣h(x) dx.

From (.) we have |�u(x)| ≤ |�u(x)| + |�u(x)|.
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Since u and u are subharmonic, we have

∣∣�u(x)
∣∣ = –�u(x),

∣∣�u(x)
∣∣ = –�u(x).

So the above becomes
∫

D

∣∣grad u(x)
∣∣h(x) dx ≤ 



∫
D

u(x)�h(x) dx

– sup
∣∣u(x)

∣∣ ∫
D

(
�

(
u(x) + u(x)

))
h(x) dx. (.)

Using the Green theorem and the fact that h(x) and its derivative vanish on the boundary
of the domain, we have

∫
D

∣∣grad u(x)
∣∣h(x) dx

≤ 


∫
D

u(x)�h(x) dx – sup
x∈D

∣∣u(x)
∣∣
∫

D

(
u(x) + u(x)

)
�h(x) dx

≤
∫

D

[
u(x)


–

∥∥u(x)
∥∥

L∞
(
u(x) + u(x)

)]
�h(x) dx, (.)

∫
D

∣∣grad u(x)
∣∣h(x) dx ≤

∫
D

∣∣∣∣u(x)


–
∥∥u(x)

∥∥
L∞

(
u(x) + u(x)

)
�h(x)

∣∣∣∣dx.

Finally using the Hölder inequality yields the required result. �

Remark . Using the definition of modulus on (.) we obtain the following inequality:
∫

D

∣∣grad u(x)
∣∣h(x) dx ≤ 


∥∥u(x) – u(x)

∥∥
L∞(D) +

∥∥u(x) – u(x)
∥∥

L∞(D)

× (∥∥u(x)
∥∥

L∞(D) +
∥∥u(x)

∥∥
L∞(D)

)∫
D

∣∣�h(x)
∣∣dx. (.)

Writing the above remark for an arbitrary ball B, B = B(x, r) ⊂ Rn, we get

Remark .
∫

B

∣∣grad u(x)
∣∣h(x) dx ≤ 


∥∥u(x) – u(x)

∥∥
L∞(B) +

∥∥u(x) – u(x)
∥∥

L∞(B)

× (∥∥u(x)
∥∥

L∞(B) +
∥∥u(x)

∥∥
L∞(B)

)∫
B

∣∣�h(x)
∣∣dx. (.)

Now we approximate the weak superharmonic function (.) by the smooth ones. To
this aim, we will use the classical mollification technique.

Define

η(x) =

⎧⎨
⎩

c exp 
x– if |x| < ,

 if |x| ≥ ,
(.)

where x ∈ Rn, c >  is constant such that
∫

Rn η(x) dx = .
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Let us define the mollification of the bounded measurable function u(x) on the ball B

uε(x) =
∫

B
η

(
x – y

ε

)
u(y) dy. (.)

Let us denote ηε(x – y) = η( x–y
ε

). Then it is clear that

∂

∂x
i
ηε(x – y) =

∂

∂y
i
ηε(x – y), ∀i = , , . . . , n. (.)

Using (.) in (.), we have

�xuε(x) =
∫

B
u(y) · �yηε(x – y) dy, (.)

where �x and �y are the Laplace operator with respect to x and y, respectively. Also define
the balls Bk in the following way:

Bk = B(x, rk) where rk = r
(

k + 
k + 

)
.

The following theorem states that the functions uε(x) are smooth superharmonic func-
tions on Bk for sufficiently small ε.

Theorem . Let u(x) be a weak superharmonic function on the ball B = B(x, r). Then
for any k = , , , . . . there exists ε̂ >  such that for  < ε < ε̂ each function uε(x) is smooth
superharmonic on the ball Bk , that is,

�uε(x) ≤  if x ∈ Bk . (.)

Proof Take ε̂ = r
(k+) . By definition it is trivial that uε(x), ε > , is infinitely differentiable

w.r.t. x. Now we will see that for arbitrary x ∈ Bk the function ηε(x–y) has compact support
on B as a function of y.

Take the ball B̂k in the following way:

B̂k = B
(

x,
k + 
k + 

r
)

.

Take y ∈ B̂k , then

|y – x| >


(k + )
r > ε.

Hence we have ηε(x – y) = . Therefore the non-negative function ηε(x – y) has a compact
support in B as a function of y. So by the definition of a weak superharmonic function
u(x), we have

∫
B

u(y) · �ηε(x – y) ≤ .

From (.) we get �uε(x) ≤  if x ∈ Bk and ε < ε̂. �
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3 Sobolev gradient existence and proof of the main result
Let us introduce the weight function hk(x) corresponding to the balls Bk

hk(x) =
(
r

k – |x – x|
), x ∈ B, k = , , . . . . (.)

The following theorem will show the existence of a weak derivative and square integrability
with respect to the weight function.

Theorem . Let u(x) be a continuous weak superharmonic function, then it has weak
partial derivatives ∂u(x)

∂xi
, i = , , . . . , n, in the ball B and they are square integrable with

respect to the weight function h(x), i.e.
∫

B(x,r)

∣∣grad u(x)
∣∣h(x) dx < ∞. (.)

Proof If u(x) is continuous in the ball B then on any compact set K , K ⊂ B, we have the
uniform convergence (see, for example, the work by Evans),

sup
K

∣∣uε(x) – u(x)
∣∣ → , ε → , (.)

where uε(x) is the mollification of the weak superharmonic function u(x).
Taking ε = 

m , m = , , . . . , the latter convergence takes the form

sup
K

∣∣um(x) – u(x)
∣∣ → , m → ∞. (.)

Since by definition it is clear that Bk ⊂⊂ B (compactly embedded) we see from Remark .
for any k that there is such an mk that each um(x) is smooth subharmonic in the ball Bk if
m ≥ mk .

Now writing the inequality (.) for the ball Bk+l and for the functions

u(x) = um(x), u(x) = up(x), m, p ≥ mk+l,

we get
∫

Bk+l

∣∣grad up(x) – grad um(x)
∣∣hk+l(x) dx

≤ 

∥∥up(x) – um(x)

∥∥
L∞Bk+l

+
∥∥up(x) – um(x)

∥∥
L∞(Bk+l)

(∥∥up(x)
∥∥

L∞(Bk+l)

+
∥∥um(x)

∥∥
L∞(Bk+l)

)∫
Bk+l

∣∣�h(x)
∣∣dx. (.)

Let us denote

αk+l =
∫

Bk+l

|�hk+l|dx

and

α̂ = inf
x∈Bk

hk+l(x).



Pečarić et al. Journal of Inequalities and Applications  (2015) 2015:400 Page 7 of 11

Also by the definition Bk ⊂ Bk+l , so the above can be written as

α̂

∫
Bk

∣∣grad up(x) – grad um(x)
∣∣ dx

≤ αk+l

[


∥∥up(x) – um(x)

∥∥
L∞Bk+l

+
∥∥up(x) – um(x)

∥∥
L∞(Bk+l)

(∥∥up(x)
∥∥

L∞(Bk+l)

+
∥∥um(x)

∥∥
L∞(Bk+l)

)]
. (.)

We also have

∥∥up(x) – um(x)
∥∥ → , if m, p → ∞.

Taking the limit m, p → ∞ on (.), we get

lim
m,p→∞

n∑
i=

∫
Bk

(
∂up(x)

∂xi
–

∂um(x)
∂xi

)

dx = .

Since L(Bk) is complete, ∃ a family of measurable function vk,i(x) ∈ L(Bk), i = , , . . . , n,

lim
m→∞

n∑
i=

∫
Bk

(
∂um

∂xi
– vk,i(x)

)

dx = .

Let us define ṽk,i(x) in the following way:

ṽk,i(x) =

⎧⎨
⎩

vk,i(x) if x ∈ Bk ,

 if x ∈ B – Bk ,
(.)

ṽk,i(x) = vk,i(x) if x ∈ Bk ,

and

ṽk,i(x) =  if x ∈ B – Bk .

Now define

vi(x) = lim sup
k→∞

ṽk,i(x), i = , , . . . , n.

By definition it is clear that

vi(x) = vk,i(x) (a.e. dx) on ball Bk .

Thus the functions vi(x) are locally square integral on the ball B. Now we claim that vi(x),
i = , , . . . , n, is a Sobolev weak derivative of the function u(x). To prove this, take

φ(x) ∈ C∞
 (B).
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The support

φ(x) ⊆ Bk for some k,
∫

Bk

∂um

∂xi
φ(x) dx = –

∫
Bk

um
∂φm

∂xi
dx

for any m ≥ m(k).
Hence passing to the limits as m → ∞, we have

∫
Bk

vi(x)φ(x) dx = –
∫

Bk

u(x)
∂φ

∂xi
dx.

This shows vi(x), i = , , . . . , n, is a partial derivative of u(x).
Again writing the inequality (.) for the ball Bk+ ⊆ B and for the function u(x) = ,

u(x) = um(x), we get

∫
Bk+l

∣∣grad um(x)
∣∣hk+l(x) dx ≤ 


∥∥um(x)

∥∥
∫

Bk+l

∣∣�hk+l(x)
∣∣dx.

Passing to the limit as m → ∞
∫

Bk+l

∣∣grad u(x)
∣∣hk+l(x) dx ≤ 


∥∥u(x)

∥∥
L∞Bk+l

∫
Bk+l

∣∣�hk+l(x)
∣∣dx.

Since Bk +  ⊆ B, taking the left hand integral on the small ball, we have

∫
Bk

∣∣grad u(x)
∣∣hk+l(x) dx ≤ 


∥∥u(x)

∥∥
L∞Bk+l

∫
Bk+l

∣∣�hk+l(x)
∣∣dx.

Now let the integer l go to infinity; we have

∫
Bk

∣∣grad u(x)
∣∣h(x) dx ≤ 


∥∥u(x)

∥∥∞
L (B)

∫
B

∣∣�h(x)
∣∣dx < ∞.

If the left hand side is increasing and bounded, then it has a finite limit and so

∫
B

∣∣grad u(x)
∣∣h(x) dx <



∥∥u(x)

∥∥∞
L (B)

∫
B

∣∣�h(x)
∣∣dx < ∞. �

Now we will give a proof of our main result.

Proof of Theorem . Take um,i(x), i = , , the mollification of the weak superharmonic
functions ui(x), i = , .

By the definition of mollification, we know that for a ball Bk+l , there exists an integer
mk+l such that each function um,i, i = , , is a smooth superharmonic function on the ball
Bk+l if m ≥ mk+l .

Also we have the following convergence:

∥∥um,i(x) – ui(x)
∥∥ → , if m → ∞, i = , .
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Now we write the inequality (.) for the functions um,(x) and um,(x) for the ball Bk+l . We
have

∫
Bk+l

∣∣grad um,(x) – grad um,(x)
∣∣hk+l(x) dx

≤ αk+l

[


‖um, – um,‖

L∞(Bk+l) +
(‖um, – um,‖L∞(Bk+l)

)

× (‖um,‖L∞(Bk+l) + ‖um,‖L∞(Bk+l)
)]

. (.)

Passing to the limit as m → ∞, we obtain

∫
Bk+l

∣∣grad u(x) – grad u(x)
∣∣hk+l(x) dx

≤ αk+l

[


‖u – u‖

L∞(Bk+l) + (‖u – u‖L∞(Bk+l))

× (‖u‖L∞(Bk+l) + ‖u‖L∞(Bk+l)
)]

. (.)

Since the ball Bk ⊆ Bk+l , writing the left hand side for the smaller ball and passing to the
limit l → ∞, the above becomes

∫
Bk

∣∣grad u(x) – grad u(x)
∣∣h∞(x) dx

≤ c∞
[



‖u – u‖

L∞(B) +
(‖u – u‖L∞(B)

)(‖u‖L∞(B) + ‖u‖L∞(B)
)]

. (.)

By Theorem ., we have

∫
B

∣∣grad ui(x)
∣∣h(x) dx < ∞, i = , .

Passing to the limit as k → ∞, we obtain the required result.
For a continuous function in B, Wilson and Zwick [] described the best continuous sub-

harmonic approximation. He found that the best subharmonic approximation of a con-
tinuous function f (x) is just the greatest subharmonic minorant of the function. But in
the case of a superharmonic approximation it will be smallest superharmonic majorant.
The details are given below. In the problem when the analytic unknown exact solution
must be superharmonic in the ball B, it is of interest to find numerical approximation ε

that are superharmonic themselves. One expects that they will be better approximations
to the unknown solution u(x) than the ones somehow constructed through the uniform
approximation uh(x). Suppose uh(x) is the uniform approximation to the unknown super-
harmonic function u(x) in B. Then –u(x) will be the subharmonic function and –uh(x) will
approximate –u(x). We have

–vh(x) = sup
{

–g(x)| – g(x) is subharmonic and –g(x) ≤ –uh(x)
}

,

–vh(x) = sup
{

–g(x)| – g(x) is subharmonic and g(x) ≥ uh(x)
}

,
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vh(x) = inf
{

g(x)|g(x) is superharmonic in B and g(x) ≥ uh(x)
}

.

Denote

δ =
∥∥u(x) – uh(x)

∥∥
L∞ ,

where

δ = sup
x∈B

|u – uh|,

|u – uh| ≤ δ ⇒ –δ ≤ u – uh ≤ δ.

Thus

vh(x) ≥ uh(x)
(
by the definition of vh(x)

)
,

vh(x) + δ ≥ uh(x) + δ ≥ u(x),

so

vh(x) – u(x) ≥ –δ. (.)

Also

u(x) + δ is a majorant of uh(x).

So

u(x) + δ ≥ vh(x),

vh(x) – u(x) ≤ δ. (.)

From (.) and (.)

∥∥vh(x) – u(x)
∥∥

L∞ ≤ ∥∥uh(x) – u(x)
∥∥

L∞ .

Both vh(x) and u(x) are superharmonic in B, and we also assume that they are continuous
and bounded. By the use of inequality (.), we obtain the following important estimate:

∫
B(x,r)

∣∣grad vh(x) – grad u(x)
∣∣h(x) dx

≤ 

‖uh – u‖

L∞(B(x,r)) +
(‖uh – u‖L∞(B(x,r))

)(‖u‖L∞(B(x,r))

+ ‖uh‖L∞(B(x,r))
)∫

B(x,r)

∣∣�h(x)
∣∣dx. (.)

�
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