Dubey et al. Journal of Inequalities and Applications (2015) 2015:354 ® Journal of Inequalities and Applications
DOI10.11 86/51 3660-015-0876-0 a SpringerOpen Journal

RESEARCH Open Access

Optimality and duality results for a @

nondifferentiable multiobjective fractional
programming problem

Ramu Dubey', Shiv K Gupta'" and Meraj Ali Khan?

“Correspondence:
skgiitr@gmail.com Abstract

'Department of Mathematics, . . . . NN
Indian Institute of Technology, The purpose of this paper is to study a class of nondifferentiable multiobjective

Roorkee, 247 667, India fractional programming problems in which every component of objective functions
Ful list of author information is contains a term involving the support function of a compact convex set. For a
available at the end of the article . . . . . .

differentiable function, we introduce the definition of higher-order
(C,a,y, p,d)-convex function. A nontrivial example is also constructed which is in this
class but not (F, e, y, p,d)-convex. Based on the (C,«, v, p, d)-convexity, sufficient
optimality conditions for an efficient solution of the nondifferentiable multiobjective
fractional programming problem are established. Further, a higher-order Mond-Weir
type dual is formulated for this problem and appropriate duality results are proved
under higher-order (C, &, y, p, d)-assumptions.

MSC: 90C26; 90C30; 90C32; 90C46

Keywords: duality results; multiobjective programming problem; support function;
KKT conditions; efficient solution

1 Introduction

Higher-order duality is significant due to its computational importance as it provides
higher bounds whenever an approximation is used. By introducing two different func-
tions, #: R" X R" — Rand k: R" x R” — R™, Mangasarian [1] formulated a higher-order
dual for a nonlinear optimization problem, {minf(x), subject to g(x) < 0}. Inspired by this
concept, many researchers have worked in this direction. Chen [2] has formulated higher-
order multiobjective symmetric dual programs and established duality relations under
higher-order F-convexity assumptions. A higher-order vector optimization problem and
its dual have been studied by Kassem [3].

In the last several years, various optimality and duality results have been obtained for
multiobjective fractional programming problems. In Chen [2], multiobjective fractional
problem and its duality theorems have been considered under higher-order (F,«, p,d)-
convexity. Later on, Suneja et al. [4] discussed higher-order Mond-Weir and Schaible type
nondifferentiable dual programs and their duality theorems under higher-order (F, p,0)-
type I-assumptions. Recently, Ying [5] has studied higher-order multiobjective symmetric
fractional problem and formulated its Mond-Weir type dual. Further, duality results are
obtained under higher-order (F,, p, d)-convexity.
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Yuan et al. [6] introduced a class of functions called (C, «, p, d)-convex functions and de-
rived duality theorems for a nondifferentiable minimax fractional programming problem
under (C, a, p,d)-convexity. Chinchuluun et al. [7] later studied nonsmooth multiobjec-
tive fractional programming problems in the framework of (C, «, p, d)-convexity.

In this paper, we first introduce the definition of higher-order (C, «, y, p, d)-convex with
respect to a differentiable function H : X x R" — R (X C R"), p,s € R" and construct
a nontrivial example which is higher-order (C,«, y, p,d)-convex but not a (F,«, y, p,d)-
convex function. We prove that the ratio of higher-order (C, o, y, p, d)-convex functions
is also higher-order (C,a, 7, f,d)-convex. A sufficient optimality condition related to the
efficient solution of a multiobjective nondifferentiable fractional problem has been estab-
lished. Finally, we formulate a higher-order Mond-Weir type dual problem corresponding
to the multiobjective nondifferentiable fractional programming problem and established
usual duality relations under the aforesaid assumptions.

2 Preliminaries
Definition 2.1 A function C: X x X x R" — R (X C R") is said to be convex on R" iff,
for any fixed (x, u) € X x X and for any x,x, € R",

Cx,u ()\xl + (1 - )‘)xZ) = )\Cx,u(xl) + (1 - )\)Cx,u(xz), Vi e (0; 1)

We now introduce the definition of higher-order (C, o, y, p, d)-convex function. Let C be a
convex function with respect to the third variable such that C, ,(0) = 0, V(x, ) € X x X. Let
H:X x R" — R, ¢ : X — R be differentiable functions on X. Assume that o,y : X x X —
R\{0}, peR, d: X x X — R, satisfying d(x,x0) = 0 < x = xp and p,s € R".

Definition 2.2 The function ¢ is said to be higher-order (strictly) (C,«, y, p,d)-convex at
u with respect to H, p and s if for each x € X,

1
2 [9600) = 80] = CICau( VL) + VyHwp)
1 T pd(x, u)
+ Y (1) [H(u,s) —s" ViH(u,s)] + o

Remark 2.1 A differentiable function f = (f,f,...,ft) : X — RX is (C,a, v, p,d)-convex if
foralli=1,2,...,k, f; is (C,&;, vi, pi, d;)-convex.

Remark 2.2
(i) If H(u,-) = 0, then Definition 2.2 becomes that of a (C, «, p, d)-convex function as

given in [6, 8]. Further if a(x,u) =1, p = 0, and C, ,(a) = n* (x, u)a, for
n:X x X — R", then (C,«a, v, p,d)-convexity reduces to invexity (see Hanson [9]).

(it) If H(u,-) = %(o)TVZf(u)('), a(x,u) = y(x u), and p = s, then Definition 2.2 reduces to
the first expression of a second-order (C, a, p, d)-type I-convex function given in
Gupta et al. [10].

(i) Fa(u) = y(6u) =1, p =0, H,) = 1TV @)(), p = 5, and @) = 07 (v, 1)a,
where n: X x X — R", the above definition becomes that of n-bonvexity
introduced by Pandey [11].
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(iv) If Cis sublinear with respect to third variable and p = s, then the above definition
reduces to higher-order (F,«, y, p, d)-convexity as given in Gulati and Saini [12].
Furthermore, if y (x, u) = a(x, u), then Definition 2.2 reduces to higher-order
(F,a, p,d)-convexity as in Ying [5]. Moreover, if H(u, -) = 0, then Definition 2.2
becomes that of a (F,«, p, d)-convex function as introduced by Liang et al. [13].

Remark 2.3 Every (F,a,y, p,d)-convex function is (C,«,y, p,d)-convex. However, the
converse need not be true. This is illustrated by the following example.

Example 2.1 Let X ={x:2x> 1} CR f: X >R C: X XX XR— R, H:X xR— R,and
d: X x X — R, be defined as
X rx+2 )

_ _ 20 2 N
f@=—-="—  Cu@=a@-u,  Hu)=—"=

, d(x,u) = (x — u)>.

Clearly, the function C (defined above) is convex with respect to the third variable satis-
tying C,,(0) =0, Vx,u € X. Also, d(x,u) =0 < x = u.

Letp:—landa:y:%.Thenatu=1,forallxeX,wehave

2_
! Umrfwn=§ﬁ’x)ngWﬂm+mem)

o(x, u)

A _ Ly,

ale,u) 3

[H(u,s) —sTVsH(u,s)] +

)

Hence, f is a higher-order (C,«, y, p, d)-convex function with respect to H, p, and s. But
considering the same C, f is not higher-order (F, o, y, p, d)-convex because C is not a sub-
linear functional with respect to the third variable.

Definition 2.3 [14] Let C be a compact convex set in R”. The support function of C is
defined by

Sx|C) = max{xTy:y € C}.

3 Problem formulation and optimality conditions
Consider the following nondifferentiable multiobjective programming problem:

(MEP) Minimize F(x) = {ﬁ(x) +8x|C1) folx) + S(x|Cy) Jfre(x) + S(x|Cx) }

g1(%) = S(xID1)’ g2(x) — S(xID2)" "™ gk(x) — S(x1Dx)
subjectto x e X = {x € X CR": hj(x) + S(x|E) <0,j = 1,2,...,m},

where f;,g;: X - R (i=1,2,...,k)and /1 : X — R (j=1,2,...,m) are continuously differ-
entiable functions. Assume that f;(-) + S(:|C;) > 0 and g;(:) - S(:|D;) > 0; C;, D;, and E; are
compact convex sets in R” and S(x|C;), S(x|D;), and S(x|E;) denote the support functions
of compact convex sets, C;, D;,and Ej, i = 1,2,...,k, j=1,2,...,m, respectively.

Definition 3.1 [15] A point x° € X° is a weakly efficient solution of (MFP), if there exists

0 _ [@+SHIC) _ fix0)+8:01C)
no x € X° such that for everyi=1,2,...,k, G@-SD) < H@)S@IDy "
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Definition 3.2 [16] A point x° € X? is an efficient solution (or a Pareto optimal solution)
0
of (MFP), if there exists no x € X° such that for every i=1,2,...,k f’ *S(x‘cl < Lie)SE2IC)

~SGiD) = gi(x0)-S:0ID;)
_ F+SE@C)  fa0)+5x0ICp)
and for some r =1,2,.... k, =55y < g,(xo) S(x()l D"

Lemma 3.1 [17] If for a given x>0 (X >0 and A #0),i=12,...,k, x € X is an optimal
solution for the following single-objective problem:

k
(FP;) minimize G(x) = Zi(

=1

filoe) + S( x|C))
8i(x) — S(x|D;)

subjectto x€X CR",
then x is an efficient solution (a weakly efficient solution) for (MFP).

Theorem 3.1 For some t, assume f;(-) + (-)Tz; and —(g:(-) — v,) are (C,ay, Vi, Pr, dy)-

fi() Zt
- - _ gz(')
(C, 0, V4 pr, dy)-convex at u € X with respect to Hy, p, and. s, where

convex at u € X with respect to Hy, p, and s. Then (£ ) is also higher-order

a(x,u) = <M)at(x, u), Vel u) = v, u),
(%) —xTv,
Sfi(u) +ulz, - ~ 1 fiw) +uz
p= p‘( e uTw) Hilue )= ((gt(m —v) " () - uTw)Z)Ht(”")’
- ~ ds(x, u)
il u) = (gt(x) —xTvt)’
and

C.la) = () + u” 2 + gy (u) —u Vt) —uTv)?a
= < (ge(u) — uTv,)? (f(u )+ ulz +gt(u) uTvt>’

4 V(ﬁ(u) +ulz,

V,H,(u,p).
gAu)—uTw)* pHiP)

Proof For any x,u € X,

(ft(x)+xth _ft(u)+uth) ~ (ﬁ(x) +xlz, —ft(u)—uth)

&) —xTve  g(u)—uTv, &) —xTv,

&%) xTVt —-g(u) + MTVt >

~ L +u Zf]((gxx) ~ T (g u) — uTv,)

Since £;(-) + (-)Tz; and —(g;(-) = (-)Tv;) are (C, s, ¥4, oy, d;)-convex at u € X with respect to
H;, p, and s, we have

1 (ft(x)+xth fiu) +u zt>
o (o, ) \ (%) —xTve  gi(u) —uTv,
1
> - @0
T (@) —xTvy)

1 T ptdt(xr M)
+ ) [H(u,s) —s" ViH,(u,5)] + W}

{Cx,u (V (ﬁ(u) + uth) + Vth(u,p))
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Si(u) + MTZt

T @) —aTv) (g () -

- {c (-V(g:(w) = u"ve) + V,Hy(u, p))

ptdt(x’ Lt)
o (x, u) }

[Ht(u, s) — TV H,(u, s)] +

+
Ve (x) M)

which implies

1 (ﬁ(x) +xTz, flu)+ulz )

(o, u) \ g (%) —xTv,  gi(u) — uTv,
- (ﬁ(u) +ulz +g(u)—ulv, ) (/ g(u)—ulv, )
~ \ (g —xTvt)(gt(u) —ulv) () + uTz, +g¢(u) —uTy,
X {Cm (V (ﬂ(u) + uth) + Vth(u,p))

ptdt (x) M) }

o (x, 1)

T
' ve(x, u) [Ht(u’s) -S VsHt(u,S)] +

fi(u) + uTz; + go(u) — uTv, fi(u) + uTz
* (@t(@ ~xTv,) (g ) — uTw)) Q(u) Y uTz + g () - uTv)
y {c (=Y (&) — 47 v,) + Y, Ho(a, )

tdt )
) + o (xu)}

o (x, 1)

[Ht(u,s) —sTV,H,(u,s

+ —_—
ve(x, 1)

This further yields

1 fx)+xTz,  filu) +uTz
o (o, 1) (gt(x) —xTv,  gu) - uTw)
- (ﬁ(u) +ulz +g(u)—ulv, )

T\ (gex) —xTv) (g () — uTvy)

(ge(u) — uTvy)? (v (ﬁ(u) +ulz, )

() + uTz, + g (u) - uTv, g(u) - ulv,

1 fi(u) + uz v, Hi( 1
’ (gt( )—uTv, * (gi(u) - MTVt)z) P u,p)))} * Vel 1) (gy (%) —-xTv)

T
X |:(1 + %) (Ht(u,s) —sTVsHt(u,s))]

0:d (%, 1) (1 Sfe(w) +ulz, )
oo ) (@) —2Tv) \  (gi) —uTwy) )

X { Cyu

Multiplying by (gt =il ';‘ ), the above inequality gives

(g:(x) —xTvy) fx)+xTz fiu) +ulz
¢, 1) (g (u) —uTvy) (gt(x) —xTv,  g(u) - uTvt)

ﬁ(u)+u zr+g(u)—u Ty,
_( (gi(u) — uTv)? )

y {CW (g:(u) — uTv;)? (V(ﬁ(u) + uth)

W) +ul'z, +g(u) - ulv, g(u) - ulv,
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1 Sfelw) +ulz,
' (gt(u) —uTv, " (W) —ulv)? > Vﬂf(”’”)) }
1 ﬁ(bi) + MTZt
* Ve, u)(ge(ue) — uTvy) |:<1 " (g(u) —uTv,)
pedy(x, u) <1 Sew) +uz, )

o, (6, ) g ) — uTv) \ (g () — uv,)

>(Ht(u,s) —sTVsHt(M,S))]

Setting

T
&, ) = (M)am W ) = i),

&%) —xTv,
o1 S
() = ((gt(u) ! R (;((:))jbt‘:‘f:F)Ht(u,.), 1) = (%),
Cluan (@) = ( ) +(gL: (T:)t :r itT(Zt))z_ MTW>C"’“ (1) %;f;‘l:;‘;:;);i’ UTVt>,

and

a= V(ft(u) + MTZ:

V,H,(u,p).
gt(u)_uTVt>+ p t(up)

It follows that

1 (ﬁ(x) +xlzy fi(u)+uz )

axu) \ @) —xTv, @) —ulv,

T
> {C(x,u) (V (M) + Vp[:[t(ulp))

&) —ulv,
_ _ 5., X, U
+ = [H:(u,8) — s" VH(u,5)] + M}
Ve(x, u) o (x, 1)
Hence, (%) is higher-order (C,a;, 7, P, dy;)-convex at u € X with respect to Hy, p,
and s. O

Theorem 3.2 Let X C R" be an open convex set. Let y; : X — R be higher-order
(C,ai, Vi, pird;)-convex at one point in X with respect to ¢;, p; > 0, and for all x € X,
di(x, ) =—()TV(x),i=1,2,...,k; then only one of the following two cases holds:

(i) there exists x € X such that ¥;(x) <0,i=1,2,...,k;

(ii) there exists A € RX \ {0} such that Zf;l Aii(x) > 0, forall x € X.

Proof 1f (i) has a solution, that is, there exists x € X such that ¥;(x) <0,i=1,2,...,k, then
for every A € R’i \ {0}, we have Zile Aii(x) < 0, which implies that (ii) does not hold.

If (i) has no solution, let K = ¢ (X) + int(R’i), ¥ = (Y, ¥a,...,¥) T, then K N (—R’j) =¢.
For any 7,22 € K and B € (0,1), there exist x!,x? € X and s, s? € int(R¥) such that

Bz + (1= B2 = By (x') + (1= B)¥ (x*) + Bs' + (1 - B)s”.
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Since u = B! + (1 — B)x* € X and ¢;(x, ) = —(-)T Vi(x), it follows from the higher-order
(C, a1, vi» pir d;)-convexity of ; with respect to ¢;, p, and s that we have

1 )
o, u) [vi(@) - vi(w)]
pid(, u)
> Ceu[VUit) + Vi, p)] + W S () =5 Ve 9]} + T 5
1 4 ,
Zmpjd(x],u), ]:1;2'

Thus, there exists ¢t > 0 such that
Bi(x') + (1= B)vi(x) = ¥i(Bx" + (1 - B)x*) + ¢
which implies that

Bzl +(1-B)2* = ,Blp(xl) +(1- ,B)w(xz) +Bst+ A -PB)s® + (t,t,...,0)T.

Since R¥ is a closed convex cone, we have Bz; + (1 — B)z, € K, that is, K is an open convex
set. It follows from the convex separated theorem that there exists A € le \ {0} such that,
forall x € X, ZL Ari(x) > 0. O

We now discuss some optimality conditions for the problem (MFP).

Theorem 3.3 If u € X is a weakly efficient solution of (MFP), fi(-) + (-)7z;, and —(g;(-) -

() Tv;) are hlgher—order (C,a;, y,, 0i, d;)-convex functions at u € X with respect to ¢;(u,-) =
2 T . . by

W x (- )TV(f’ o +ZT? Y, and p; > 0,i=1,2,...,k. Then there exists 0 < A €

R¥, X # 0 such that u is an optzmal solution of (FP3).

Proof If u € X is a weakly efficient solution of (MFP), then there does not exist any x € X
such that

) = <f( x) +x7z; ﬁ(u)+usz

&%) —xTv g(u)—uij

><Q j=1,2,...,k

Since fi(-) + (-)sz and —(g;(-) - ~)ij) are higher-order (C,a;, ¥}, pj, dj)-convex at u with
f(x +X z]
Ty

respect to ¢;, p and s,j = 1,2,...,k, it follows from Theorem 3.1 that v;(x) = (

Jiu)+u z/
g/(u )-ulv;
1,2, k where

) is higher-order (C,a; ,y,p,d) -convex at u with respect to ¢;, p, and s,j =
8 j» Vi» O j j=

(x) — xTy.
aj(x,u) = <M)a,»(x, u), Vi, 1) = (o, 1),

g(u) —ulv
_ Sfilu) + uTZ/
i = Pj (1 + g,i(u) _ LtTVj>’
- ~ 1 f(u) +ulz ‘ o) +ulz
) = <g,.< o s Yo =~ V<g,.—(u) - uTV,)

= () V),
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- ~ d;(x, u)
o= (e )

and
- _f(u)+u z + gi(u) —ulvy; (gi(u) —u'v))*a )
Conla) = — . o\ F s ulz + g w) — Ty,
o) +uz -
a= V(W) + Vp¢](u,p).

Using Theorem 3.2, there exists 0 < A € R¥, 1 # 0 such that Z}]le )_thﬁ,(x) > 0, that is,
k
- [ filx) +x z, f(u)+u fiu) +u’z
Aj Aj
Z ( —xTy; Z uTv]

which implies that u is an optimal solution of (FP;). O

Theorem 3.4 (Necessary condition) [18] Assume that x is an efficient solution of (MFP)
and the Slater constraint qualification is satisfied on X. Then there exist A € R, ji € R™,
zieR", vieR" andw; e R",i=1,2,...,k,j=1,2,...,m, such that

va(f(’f”zfvl) Z )+ %) =0,

Z ﬁ,(h}(a'c) + J_CTV_V}') =0,

j=1
¥z =8&|C), i=12,...,k

#v,=S®D), i=12,...,k

Wy =SFIE), j=12,...,m,

zeC, veD, WeE, i=12..kj=12..,m
>0,  j;>0, i=L12,...,kj=12,...,m

Theorem 3.5 (Sufficient condition) Let u be a feasible solution of (MFP). Assume that
there exist A;>0,i=1,2,...,kand u; > 0,j=1,2,...,m, such that

ZAV(f(u)+u Zl) i +MTW1)=0

i=1 gl(u
Z ,uj(h}-(u) + uij) =0,
j=1

ulz;=Sw|C), i=1,2,...,k
ulvi=Sw|Dy), i=12,...,k

uw, S(u|E), j=12,...,m,
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Zl‘ECl‘, Vl‘EDl‘, WjGEj, i:1,2,...,k,j:1,2,...,m

Letforanyi=1,2,....k,j=12,...,m,

) (fi() + () Tz;) and —(gi(-) = (-)Tv;) be higher-order (C,a, yi, pi» d;)-convex at u, with
respect to H;, p, and. s,

(i) () +( )Tw}) be higher-order (C, &, 8;, nj, ¢;)-convex at u, with respect to Kj, q, and r,

) Yok hir e 4 Y lmn,g”;g 0,

(iv) yilw, u) = & (%, u), §(x,u) = o(x, u), and 8;(x, u) = o’ (x, u),

() 220 (Vi) + 271 (VK 0,0)) = 0, Y0, 2l (149) = 7 Vi) = 0

and Z]n:l wi(Ki(u,r) = r'V,Kj(u,r)) > 0,

lll

where
6{,’(96, I/l) = (%)ai(‘% u)¢ fi(x’ M) = yi(xr M), i5i = Pi <1 + %)’
- 1 f(u) +ulz - | dilxu)
Hi(u,-) = (g;( vt @) — v, 2>H,-(u,-), di(x,u) = (g—,'(x) —xTw)'

Then u is an efficient solution of (MFP).

Proof Suppose u is not an efficient solution of (MFP), then there exists x € X° such that

Jilx) + S(x|C) - Sfi(u) + S(u|C;)
gi(x) — S(xID;) ~ gi(u) — S(u|Dy)’

foralli=1,2,...,k,

and

Sr(x) + S(x|C;) . Jr(u) + S(u|C,)
gr(x) - S(x|Dr) gr(u) - S(M|Dr) '

forsomer=1,2,...,k,

which implies

fi(x) +xTz; <f,»(x)+S(x|C,-) fi(u) + S(u|C;) f(u)+uTz,»
gi(x) —xTv; = gi(x) - S@ID;) ~ gi(u) - S(ulDy)  gi(u) —uTv;’

foralli=1,2,...,k, 1)
and
@) +xTz,  f(x)+SIC)  flu) +SIC)  fi(u) + ulz,
S < = )
&) —xTv, = g.(x) - Sx|D,) ~ g(u) —Su|D,) g (u)—uTv,
for somer=1,2,...,k. (2)
Since o'z,'(/\xiu) >0,i=1,2,...,k, the inequalities (1) and (2) give

Xk: ] Ai <fi(x)+xTzi _ filw) +uTz,») <o, 3)

— ai(nw) \gG() -xTvi  g(w) —uTv;
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From Theorem 3.1, for each i, 1 <i <k, (f‘i) is higher-order (C, &, Vir Pi» di)-convex

)-()T
at u € X° with respect to Hj, p, and s, therefore

1 (ﬁ(x)+xTzi f,~(u)+uTzi>

i, w) \gi®) —xTvi  gilu) —uTv,
C ﬁ(u) + MTZ[ _
> Cx,u <V (m) + VpH;(I/l,p)>
¢ e [ ) — 5TV )] + 2O @)

Vi, u) ai(x,u)

() — uTv;
ai(x, u) = (M)ai(aa w)y,  vilwu) =i, u),

T .
Hi(”"):( G )Hi<u,~), ai(x,u)=<M),

g —uTv;  (g(u) - uTv;)? gilx) —xTv;

and

Conla) = (f(u) +ulz+g(u)—u VL>Cx,u</ (gi(u) —uTv;)’a )’

(gi(u) — uTv;)? Hu) + uTz; + gi(u) —uTv;
. T, _
a=v(DOE) 40, )

Also, by the higher-order (C, &, 8;, nj, ¢;)-convexity of (/;(-) + (~)ij) at u with respect to K,

g,and r,j=1,2,...,m, we have

—_

Y [h,(x)+x w;—hij(u) —u w,]
] pl

> Cx,u(V(hj(u) + uTw,) + VoKi(u, q))

njc;i(x, u)
G0 ®

8(% )[K(u,r)—r V,Kj(u,r)] +

(f; () +u z,+g,(u) u vl) m
LetT—Zl])\,W ]’=1Mj>0'

Adding the inequalities obtained by multiplying (4) by % and (5) by , we get

k Y fix) +xTz; ﬁ(u)+uTz,~
Y e )

i=1 Ta;(x, u) \ gilx) — xTv; gl(u) —uTv,
2w (1) + 2" w; — () — u"w]
Té](x7 ) J ]

i () + uTz + gi(w) — u” P (gi(w) — uTv)?
2 Z - xu MTVl)

—~ 7 (gi(u) — uTv;)? i(u) + ulz; + giu) -
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fiw) + uTz; 1 fiw) + uTz;
8 (V (gi(u) - uTvi> * (gi(u) —uTv, " (giu) - uTvi)Z)VpHi(u’p)>

i 1 () +u'z
Z? X, U ( (u) — uTVl éu +MTj 2>(Hi(u’s)_5TvsHi(urs))
i=1

l

k

A pidi(x, u) 1 f(u) +ulz
' ; T ailxu) (gi(u) “uTv " (@) - uTv? )
Z h () +u w,) +V K(u,q))
Z — K(u, r)— rTV,K/(u, r) Z i ¢ )

(x,

- g E(x,u)

Further, using the convexity of C, we have

>

i=1 l

fix)+xTz;  fi(w) +ulz
(gz () —xTv; gi(u)—uTvi>

m

+Z ad [h(x)+x w; — hi(u) - uw]]
j=1

ré,(x, u)

1{& filw)+u'z;
zcx,u<;<ZAi <g(u) uTv,) ZAVH u,p

i=1

Z V (hi(w) + u”w)) + Zu;Vqu(u, q)))
P j1

k
D

k
A _ Xi P (x, u)
i H E e
2 _i o (u,s) - (u, s 2 5[
m , m 11 C](x,
E (T K(u, r)—r V,Kj(u, r) E — 5 D

j=1 j=

It follows from hypotheses (iii)-(v) that

k
}\,
By

i=1 l

(f(x)+x z; f(u)+u z,)

gi (%) xTv; gz() uTv;

o (%, u)

1(y () + Tz
(S (f2ar)  Sousoin- i)

i=1

+Z ad [h(x)+x w; — hi(u) - uw}]
j=1

Using the fact C,,(0) = 0 and Z Tomj(h(u) + u w,) =0, we get

k

&) —xTv;  g(u)—ulv; To(x,u)

A i Tz f; Tz “
Zt&'(x u)(f(x)+x zi fiw) +u z)+2 1 () + 7)) =
-1 i\X,

0.
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Finally, using feasibility of the primal problem (MFP), we have

koo <ﬁ(x) +xTz fi(u) + uTz,»> >0,

< i, 1) \@i(%) —2Tvi  gi(w) —uTv;
which contradicts (3). Therefore, u is an efficient solution of (MFP). (]

4 Duality model
Consider the following higher-order Mond-Weir type dual (MFD) of (MFP):

(MFD) maximize G(u)= {fl(”) +u'zy ) +u'z fiw) + uTz }

q(w)—uTv @) —uTvy"" " () — uTvy
subject to

ZW(g,w;ZTzvi) Z”“’ 100+ u'w) ©

+ZAVH u,p) + ZM}VKuq)

j=1
Z“l )+ u w, + Ki(u, 1) - rTV,Kj(u, r)] >0, 7)
k
> M Hi(w,s) - s"ViHi(u,5)] > 0, ®)
i=1

Z[EC,‘, Vl'GDi, WjEEj, i:1,2,...,k,j:1,2,...,m

A >0, wi=0, i=12,..,kj=12,...,m
We now discuss the duality results for the primal-dual pair (MFP) and (MFD).

Theorem 4.1 (Weak duality theorem) Let x € X° and (u,z,v, , A, w, p, q, 1,5) be feasible
for (MED). Suppose that:
(i) (i) + (-)Tz) and —(g;(-) = (-)Tv;) are higher-order (C,a;, yi, pi, d;)-convex at u, with
respect to H;, p, and s,i=1,2,...,k,
(i) (m() + (-)ij) is higher-order (C, &;, &}, nj, cj)-convex at u, with respect to Kj, q, and
r,j=1,2,.
(iii) Z, 1)¥zﬁtd(xu) ;Zl Mjnj% >0,
(iv) yilx, u) = £ (%, u) and &(x,u) = §j(x,u) =o(x,u),i=1,2,...,k,j=1,2,...,m

where
di(x,u) = (%)
Then the following cannot hold:
S0 +S@C) _ fiw) +u'z foralli=1,2,....k, 9)

gi(x) — SID;) ~ gi(u) —uTv;’
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and

£®) +SEIC)  flu)+ulz,
&) —S@ID,) ~ g () —ulv,

, forsomer=1,2,...,k. (10)

Proof Suppose that (9) and (10) hold, then using
i=1,2,...,k, we have

>0,x7z; < S(x|Cy), xTv; < S(x|D;),

’(xu

Zk: Ai (f(x)+x Z _f(u)+uTzl> o, )

— ai xlvi - giu) —ulv,

ﬁ +()
- )-()7T
u with respect to H;, p, and s,i = 1,2,... k, therefore

From hypothesis (i) and Theorem 3.1, ( ) is higher-order (C, &;, 7, i, d;)-convex at

L (fesTs st et

i, u) \gi(x) —xTv;  gi(u)—ulv;

- fiw) +ulz _
> G (" (Gagam )+ %)

[Hi(u,s) —STVSI:Ii(u,s)] + M, (12)

+
a;(x, u)

yilx, u)
and by the higher-order (C, §;, §;, n;, ¢;)-convex of (/;(-) + (- )Tw,) at u with respect to K, g,

andr,j=1,2,...,m, we have

1
w [hj(x) + xij —hj(u) - uij]

> Cyu (V(hj(u) + MTWj) + V,K;(u, q))

nic;i(x, u)
+ Ki(u,r) —r'V,.K(u,r)| + 2122, 13
5,-(x,u)[ i) rKj(war)] £i(x, u) 13)
Lett = Zl vy —(f = Z(u’;'*f;(:))z" vi) ;’jl u; > 0.

Multiply (12) by and (13) by 7’ and add them, to get

oo [(filw) + 4T filw) +uz
> e o )

— o @) —xTv;  giw)—uTv;

m

+Zr§]( )[h(x)+x w; — hi(u) - uw]]

g B ) )~ (ot Wy )
i v (gi(u) —uTv;)? () +uTz + gi(u) —uTvy;
filw) +u'z 1 fiw) + uTz;
: (V <gi(”) - ”TVi> i <gi(u) “uTv; (gi(u) - uTvi)z)VpHi(u’p)>
k

b 1 1 f(M) +ulz
P (gi(u) —uTv; " (@) —ulv)? )(Hi(uyS) —STVsHi(u,s))j|

= T vilxu) i)
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k
Ai pidi(x, u) 1 f () +u’z
+ZZ=1:? o;(x, 1) <g,'( MTV, (gi(u) —uTv;)? )

l

Z h () +u w,) + V,Ki(u, q))
m ; m C] X, U
Z m K(u, r)—r V,K/(u, r) Z — u)

j=1 j=1

Further, using convexity on C, (6)-(8), and hypotheses (iii)-(iv), we have

k ) - T, . T, m
Z _)” (f,(x)+le_f,(u)+uz,)+2 ad [7(%) + x"w;] > 0.

— raixu) \g) —xTvi  g(w)-u'vi) ‘= toxu)

Since x is a feasible solution of (MFP), it follows that

k

Z i <f(x) +xlz filu) + uTz,»> —o
- a;(x, u) 8i (%) —xTv; gi(u) —ulv; )] —
This contradicts (11). Hence we have the result. O

Theorem 4.2 (Strong duality theorem) Assume u is an efficient solution of (MFP) and let
the Slater constraint qualification be satisfied on X. Also, if

H(@0)=0, K@@0)=0, V,H(®0)=0, V,K(0)=0,

V,H(1,0) = 0, V,K(i1,0) =0

then there exist 0 < A € RX, i € R™, z; € R", v;, and w,eR", i=12,...,kj=12,...,m,
such that (it,z,v, i, A, w,p = 0,4 = 0,5 = 0,7 = 0) is a feasible solution of (MFD) and
the objective function values of (MFP) and (MFED) are equal. Furthermore, if the condi-
tions of Theorem 4.1 hold for all feasible solutions of (MFP) and each feasible solution
W, Z,V, W, N, w,p =0,q4 =0,r =0,s =0) of (MFD), then (it,z, v, i, », W,p = 0,4 = 0,
7=0,5=0) is an efficient solution of (MFD).

Proof Assume u is an efficient solution of (MFP) and the Slater constraint qualification is
satisfied on X. Then, from Theorem 3.4, there exist A; > 0, it € R, z; € R", v; € R", and
wjeR"i=1,2,...,kj=1,2,...,m, such that

Z}\v(f(”)”‘ Z‘) Z V (@) + ")) = 0, (14)
Z ﬁ]V(hl(L_l) + IjtTV_Vj) =0, (]-5)
j=1

ulz; =S@|C), i=1,2,...,k (16)
i’y =S@Dy), i=1,2,...,k 17)

w'w;=S@lE), j=12,...,m, (18)
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ZieCi, \_/l‘EDl‘, ﬁ/jGEj, i:1,2,...,k,j:1,2,...,m, (19)

>0, =0, i=12,...,kj=12,...,m. (20)

Thus, (i,2,V, it, A, w,p = 0,4 = 0,7 = 0,5 = 0) is feasible for (MFD) and from (16)-(18), the
objective function values of (MFP) and (MFD) are equal.

We now show that (i1,z,V, ii, A, w,p =0,q = 0,7 =0,s = 0) is an efficient solution of
(MED). If not, then there exists («/,2,v,u’, A", w',p’,q’,7',s') of (MFD) such that

film) +ulz f(u/) +u'TZ
gt(ﬁ) - Z{TVI gt( ) ,TV/ ’

i=12,...,k

and
u)+ulz u)+ulz,
ﬁ(_) _T_r f) - for somer=1,2,...,k.
gr(u) —u v gr(u )—u V,
This contradicts the weak duality theorem. Hence we have the result. 0

Theorem 4.3 (Strict converse duality theorem) Let x be a feasible solution for (MFP) and
(¢, 2,v, 0, A, W, p,q,1,5) be feasible for (MED). Suppose that:
(i) (i) + (-)Tz) and —(g;(-) = (-)Tv;) are higher-order strictly (C,a, i, pi, d;)-convex at
u, with respect to H;, p, omd s,i=1,2,...,k
(ii) (B() + (-)"w)) is higher-order (C,§;, 5, n},c,) convex at u, with respect to Kj, q, and
rj=12,...,m,
(i) yi(x u) = ¢ (%, u) and &j(x,u) = 8;(x, u) =o(x,u),i=1,2,...,k j=12,...,m
(iv) Lk, i + Y, Mj”/% =0,
W) lea,xu(ﬁ +xl z,_ w)+u zl)_

gix)-xTv; (u)-uTv;
where
- (g —x"v, ' _ fiu) +u zl>
il ) = (gi(u) - uTv,-)al(x’ ), pi= pl( g,(u) uTv,
- di(x, u)
dixu) = ——— |-
() (gi(x) —xTvi>

Then x = u.

Proof Suppose that x # u and exhibit a contradiction. Let («,z, v, u, A, w, p, q,1,s) be feasi-
ble for (MFD), then

Conl0) = xu(zkv(f(u)ﬂt;;) Z“/ )+ ulw)
i=1 ¢

+ZAVH(Mp)+Z,u,V K;(u, )): ) (21)

i=1 j=1
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-+ () Tz =~ _ - . _
%) is higher-order strictly (C, &;, y;, p;» d;)-convex at u with respect to H;, p,

and s, we have

1 (fi(x)+xTz,» f,-(u)+uTzi>

@i, u) \gi(x) —xTv; @) —ulv,

) T,
GV (L )+ win))

ﬁié_ii(x, u)
&i(x) M) '

Since (

" [Hi(u,5) - 5" VoHi(u,5)] +

)7i (x: u)

(i) +ul zi+giw)-uTvy) m
Lett—le)\'W+ jll’(’i>0‘

Multiplying by in the above inequality, we get

&[ 1 (ﬁ(x)+xTz,- _f,»(u)+uTzi)

o, u) \ @) —xTv;  gi(u) —ulv;

g c( (i:((‘:)#) . vai(u,p>)

pidi(x, 1) i|

a;(x, u)

[Fi(u,$) — s VHi(u,5)] + (22)

J7i (x: Ll)

By the higher-order (C, ), 8, m;, ¢;)-convex of (i;(-) + (-)Tw;) at u with respect to Kj, g, and
r,j=1,2,...,m, we obtain

09+ 3730 =] = o (V5 0) +73) 9,0, 0)
1 T ’7101(96, u)
+ M[K/(u, r)—r' V,K;(u, r)] e

It follows that

j 1

% [%}(x, u) (i) + & wy = h() — " wy]

1 )
b s

Taking summation over i in (22) and over j in (23), we get

Yoo (f@+aTn fiw) +ulz
; Ta(x, 1) <gl(x) xTvi gi(u)—uTw)

m

L
&j(x, u)

s fiw) + uTz; _
2> ‘C(V(W) i)
+ Z

i=1

(1) + 2" w; = () — u"w]

- TV
. )/,(x, u) H (u,s) — VH,(u,s)]
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i Pidy(x, 1) Jj
Cyu V,K;
+l21:t &0 +]2:T (h(w) + u"w)) + V,K(u, q))
TP | " njci(x, u
] NG\ 1) U
K; V K
+j=21r5(x,u)[ i(u,r)—r1 ur ; (6,10
Further, using convexity on C and (21), we obtain
i Ai fix) +xTz;  fiw) +uTz
— rai(xu) \gi(x) —xTvi - giu) —ulv;
- Hj T T
+ 7h(x)+xw hi(u) —u w;
Z fi—‘](x, u) [ ] ] J]
k Iy m 1
i [Hi(u,5) - s"VHi(u,5)] + >~ [Ki(u, r) = 1TV, K(u, 7)]
=T Vz(x, = 8;(x, u)

k - 5 m
)\L' idi y i NiCi\X, U
+2_0 (x”)_l_zﬂﬂjj( )

T &% u) T Ewu)

i=1 j=1

This, together with (7)-(8) and hypotheses (iii)-(iv), shows

Koo (@ +xTn fw Tz & .
; _ ( - )+Ztax, () +x"w;] > 0.

< tai(xu) \gix) —xTvi - giu) —ulvi) &

Since « is a feasible solution of (MFP), it follows that

Xk: (%) +xTz; ﬁ(u)+uTz,»>>
- o, u) gz(x) xTy; gi(u) —uly;
This contradicts the hypothesis (v). Hence the proof is completed. O

5 Conclusions

In this article, we consider a class of fractional programming problem having k-objectives
in which each numerator and denominator of the objective function is nondifferentiable in
terms of the support function of a compact convex set. The important property that the
ratio of higher-order (C,«, y, p,d)-convex function is also a higher-order (C,a, )7,,6,6_1)—
convex function is obtained. We also derive sufficient optimality conditions for an efficient
solution for this problem. Furthermore, a higher-order Mond-Weir type dual is formulated
and appropriate duality relations are obtained under higher-order (C, o, v, p, d)-convexity

assumptions.
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