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1 Introduction and main results
In past decades, the almost sure central limit theorem (ASCLT) has been studied for in-
dependent and dependent random variables more and more profoundly. Cheng et al. [],
Fahrner and Stadtmüller [] and Berkes and Csáki [] considered the ASCLT for the maxi-
mum of i.i.d. random variables. For more related works on ASCLT, see [–]. An influen-
tial work is Csáki and Gonchigdanzan [], which proved the following almost sure limit
theorem for the maximum of a stationary weakly dependent sequence.

Theorem A Let {Xn : n ≥ } be a standardized stationary Gaussian sequence with rn =
Cov(X, Xn+) satisfying rn ln n(ln ln n)+ε = O() for some constant ε > , as n → ∞. Let
Mk = maxi≤k Xi. If

an = ( ln n)/, bn = ( ln n)/ –



( ln n)–/(ln ln n + ln(π )
)
, (.)

then

lim
n→∞


ln n

n∑

k=


k

I
(
ak(Mk – bk) ≤ x

)
= exp

(
–e–x) a.s., (.)
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where I denotes an indicator function. Furthermore, Chen and Lin [] extended it to the
non-stationary Gaussian sequences. Chen et al. [] extended the results to the multivariate
stationary case.

Lin [] considered the following theorem which is ASCLT version of the theorem
proved by Leadbetter et al. [].

Theorem B Let {Xn : n ≥ } be a sequence of stationary standard Gaussian random vari-
ables with covariances rn = Cov(X, Xn+) satisfying |rn – r

ln n | ln n(ln ln n)+ε = O(). Let
Mn = maxi≤n Xi, then

lim
n→∞


ln n

n∑

k=


k

I
(
ak(Mk – bk) ≤ x

)
=

∫ ∞

–∞
exp

(
–e–x–r+

√
rz)φ(z) dz a.s., (.)

where an, bn are defined by (.) and φ is the standard normal density function.

If r = , then (.) becomes (.). Thus Theorem A is a special case of Theorem B. The
purpose of this paper is to give substantial improvements for both weight sequence and
the range of random variables of Theorem B.

Throughout the paper, let {Zi = (Zi(), Zi(), . . . , Zi(d)) : i ≥ } be a standardized station-
ary Gaussian vector sequence with

EZn =
(
EZn(),EZn(), . . . ,EZn(d)

)
= (, , . . . , ),

Var Zn =
(
Var Zn(), Var Zn(), . . . , Var Zn(d)

)
= (, , . . . , ),

rij(p) = Cov
(
Zi(p), Zj(p)

)
= r|i–j|(p),

rij(p, q) = Cov
(
Zi(p), Zj(q)

)
= r|i–j|(p, q).

We write Mn = (Mn(), Mn(), . . . , Mn(d)) and Mn(p) = max≤i≤n Zi(p) and shall always
take  ≤ p �= q ≤ d; un = (un(), un(), . . . , un(d)) will be a real vector, and un > uk means
un(p) > uk(p) for p = , , . . . , d. For some ε > , suppose

rij(p) ln |j – i| → r ≥ , rij(p, q) ln |j – i| → r ≥ , as |j – i| → ∞. (.)

{Zn : n ≥ } is called dependent: weakly dependent for r =  and strongly dependent for
r > . Let n = |j – i|,

ρn =
r

ln n
, (.)

r is defined by (.). In the paper, a very natural and mild assumption is

∣
∣rn(p) – ρn

∣
∣ ln n(ln Dn)+ε = O(),

∣
∣rn(p, q) – ρn

∣
∣ ln n(ln Dn)+ε = O(), (.)

where

dk =
exp(lnα k)

k
, Dn =

n∑

k=

dk for  ≤ α <



. (.)
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We mainly consider the ASCLT of the maximum of stationary Gaussian vector sequence
satisfying (.), under the mild condition (.), which is crucial to consider other versions
of the ASCLT such as that of the maximum of non-stationary strongly dependent se-
quence and the function of the maximum. In the sequel, a � b stands for a = O(b). We
also define the normalized real vectors an = (an, an, . . . , an) and bn = (bn, bn, . . . , bn), where
an and bn are defined by (.). The main results are as follows.

Theorem  Let {Zn : n ≥ } be a standardized stationary Gaussian vector sequence with
covariances satisfying (.) and maxp�=q(supn≥ |rn(p, q)|) < . Suppose  ≤ α < /, then

lim
n→∞


Dn

n∑

k=

dkI
(

ak(Mk – bk) ≤ x
)

=
d∏

p=

∫

R

exp
(
–e–x(p)–r+

√
rz)d�(z) a.s. (.)

for x = (x(), x(), . . . , x(d)) ∈R
d , where �(z) denotes the distribution function of a standard

normal random variable.

By the terminology of summation procedures, we have the following corollary.

Corollary  Equation (.) remains valid if we replace the weight sequence {dk : k ≥ } by
{d∗

k : k ≥ } such that  ≤ d∗
k ≤ dk ,

∑∞
k= d∗

k = ∞.

Remark  Our results give substantial improvements for the weight sequence in Theo-
rem B.

Remark  We extend Theorem B to the stationary Gaussian vector sequences under some
regularity conditions.

Remark  If {Zn : n ≥ } is a standardized stationary Gaussian sequence and α = , then
(.) becomes (.). Thus Theorem B is a special case of Theorem .

Remark  Essentially, the problem whether Theorem  holds also for some / ≤ α < 
remains open.

2 Auxiliary lemmas
In this section, we present and prove some lemmas which are useful in our proof of the
main result.

Lemma  Let {Zn : n ≥ } and {Z′
n : n ≥ } be two d-dimensional independent standardized

stationary Gaussian sequences with

r
ij(p) = Cov

(
Zi(p), Zj(p)

)
, r

ij(p, q) = Cov
(
Zi(p), Zj(q)

)
,

and

r′
ij(p) = Cov

(
Z′

i(p), Z′
j(p)

)
, r′

ij(p, q) = Cov
(
Z′

i(p), Z′
j(q)

)
.



Zeng and Wu Journal of Inequalities and Applications  (2015) 2015:224 Page 4 of 12

Write

βij(p) = max
(∣∣r

ij(p)
∣
∣,

∣
∣r′

ij(p)
∣
∣), βij(p, q) = max

(∣∣r
ij(p, q)

∣
∣,

∣
∣r′

ij(p, q)
∣
∣).

Assume that (.) holds. Let ui = (ui(), ui(), . . . , ui(d)) for i ≥  be real vectors such that
n( – �(un(p))) is bounded where � is the standard normal distribution function. If

max
≤i<j≤n
≤p≤d

βij(p) <  and max
≤i<j≤n

≤p�=q≤d

βij(p, q) < ,

then

∣∣P(Zj ≤ uj,∀j = , , . . . , n) – P
(

Z′
j ≤ uj,∀j = , , . . . , n

)∣∣

≤ K

d∑

p=

∑

≤i<j≤n

∣∣r
ij(p) – r′

ij(p)
∣∣ exp

(
–

u
i (p) + u

j (p)
( + βij(p))

)

+ K
∑

≤p�=q≤d

∑

≤i<j≤n

∣
∣r

ij(p, q) – r′
ij(p, q)

∣
∣ exp

(
–

u
i (p) + u

j (q)
( + βij(p, q))

)
,

where K, K are absolute constants.

Proof See Lemma . of [], we get the desired result. �

Lemma  Let {Zn : n ≥ } be a standardized stationary Gaussian vector sequence such that
condition (.) holds, and further suppose that n( – �(un(p))) is bounded for p = , , . . . , d
and maxp�=q(supn≥ |rn(p, q)|) < . Then, for some ε > ,

sup
≤k≤n

k
d∑

p=

n∑

j=

∣∣rj(p) – ρn
∣∣ exp

(
–

u
n(p)

( + ωj)

)
� (ln Dn)–(+ε), (.)

and

sup
≤k≤n

k
∑

≤p�=q≤d

n∑

j=

∣∣rj(p, q) – ρn
∣∣ exp

(
–

u
k(p) + u

n(q)
( + ω′

j)

)
� (ln Dn)–(+ε), (.)

where ωj = max{|rj(p)|,ρn}, ω′
j = max{|rij(p, q)|,ρn}.

Proof Using (.) and Lemma . in [], we get the desired result. �

Lemma  Let {Z̃n : n ≥ } be a standard stationary Gaussian vector sequence with con-
stant covariance ρn(p) = r/ ln n for p = , , . . . , d and {Zn : n ≥ } satisfy the conditions of
Theorem . Denote M̃n = maxi≤n Z̃i and Mn = maxi≤n Zi. Assume that n( – �(un(p))) is
bounded for p = , , . . . , d and (.) is satisfied. Then

∣∣E
(
I(Mn ≤ un) – I(M̃n ≤ un)

)∣∣ � (ln Dn)–(+ε) for some ε > . (.)

Proof Using Lemmas  and , the proof can be gained simply. �
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Lemma  Let {Zn : n ≥ } be a standardized stationary Gaussian vector sequence with
covariances satisfying (.). Suppose that the assumptions of Lemma  hold. Then

lim
n→∞P

(
an(Mn – bn) ≤ x

)
=

d∏

p=

∫

R

exp
(
–e–x(p)–r+

√
rz)d�(z) a.s., (.)

where x = (x(), x(), . . . , x(d)) ∈R
d .

Proof Let {Z′
(p), Z′

(p), . . . , Z′
n(p)} have the same distribution as {Z(p), Z(p), . . . , Zn(p)}

for p = , , . . . , d, but {Z′
(p), Z′

(p), . . . , Z′
n(p)} is independent of {Z′

(q), Z′
(q), . . . , Z′

n(q)}, as
p �= q. Further, Mn(p) = max≤i≤n Zi(p) and M′

n(p) = max≤i≤n Z′
i(p). By Lemma , we have

∣
∣∣
∣∣
P
(

an(Mn – bn) ≤ x
)

–
d∏

p=

P
(
an

(
Mn(p) – bn

) ≤ x(p)
)
∣
∣∣
∣∣

=
∣∣P

(
an

(
Mn(p) – bn

) ≤ x(p), p = , , . . . , d
)

– P
(
an

(
M′

n(p) – bn
) ≤ x(p), p = , , . . . , d

)∣∣

≤ K

d∑

p=

∑

≤i<j≤n

∣
∣r

ij(p) – r′
ij(p)

∣
∣ exp

(
–

u
i (p) + u

j (p)
( + ρij(p))

)

+ K
∑

≤p�=q≤d

∑

≤i<j≤n

∣∣r
ij(p, q) – r′

ij(p, q)
∣∣ exp

(
–

u
i (p) + u

j (q)
( + ρij(p, q))

)

=: A + A, (.)

where un(p) = x(p)/an – bn.
Since {Z′

(p), Z′
(p), . . . , Z′

n(p)} has the same distribution as {Z(p), Z(p), . . . , Zn(p)},
which implies r

ij(p) = r′
ij(p). Therefore, A = .

Notice that {Z′
(p), Z′

(p), . . . , Z′
n(p)} is independent of {Z′

(q), Z′
(q), . . . , Z′

n(q)}, as p �= q,
thus r′

ij(p, q) = . Using Lemma . in [], we have

A �
∑

≤p�=q≤d

∑

≤i<j≤n

∣
∣r

ij(p, q)
∣
∣ exp

(
–

u
i (p) + u

j (q)
( + ρij(p, q))

)
� (ln Dn)–(+ε) → .

By (.), we get

lim
n→∞P

(
an(Mn – bn) ≤ x

)
= lim

n→∞

d∏

i=

P
(
an

(
Mn(p) – bn

) ≤ x(p)
)
. (.)

From Theorem .. of [], we obtain

lim
n→∞

d∏

p=

P
(
an

(
Mn(p) – bn

) ≤ x(p)
)

=
d∏

p=

∫

R

exp
(
–e–x(p)–r+

√
rz)d�(z) a.s. (.)

Combining this with (.) and (.), the proof is completed. �
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Lemma  Let ζ, ζ, . . . , ζn, . . . , be a sequence of bounded random variables. If

Var

( n∑

k=

dkζk

)

= O
(

D
n

(ln Dn)+ε

)
for some ε > , (.)

then

lim
n→∞


Dn

n∑

k=

dk(ζk – Eζk) =  a.s. (.)

Proof The proof can be found in Lemma . obtained by Wu and Chen []. �

3 Proof of the main result

Proof of Theorem  Let un(p) = x(p)/an + bn satisfy n( – �(un(p))) → τp for x(p) ∈ R,
 ≤ τp < ∞ and p = , , . . . , d. By Lemma  and the Toeplitz lemma, note that (.) is
equivalent to

lim
n→∞


Dn

n∑

k=

dk
(
I(Mk ≤ uk) – P(Mk ≤ uk)

)
=  a.s. (.)

From Lemma , in order to prove (.), it suffices to prove that

Var

( n∑

k=

dkI(Mk ≤ uk)

)

= O
(

D
n

(ln Dn)+ε

)
for some ε > . (.)

Let λ,λ,λ, . . . be a d-dimensional independent standardized stationary Gaussian se-
quence with λ,λ,λ, . . . and {Zk : k ≥ } are independent. Obviously ( – ρk)/λ +
ρ/

k λ, ( – ρk)/λ + ρ/
k λ, . . . have constant covariance ρk = r

ln k . Define

Mk(ρk) = max
≤i≤k

(
( – ρk)/λi + ρ/

k λ
)

= ( – ρk)/ max(λ,λ, . . . ,λk) + ρ/
k λ

=: ( – ρk)/Mk() + ρ/
k λ.

Obviously, {Mk(ρk) : k ≥ } and {Mk : k ≥ } are independent.
Using the well-known cr-inequality, the left-hand side of (.) can be written as

Var

( n∑

k=

dkI(Mk ≤ uk) –
n∑

k=

dkI
(

Mk(ρk) ≤ uk
)

+
n∑

k=

dkI
(

Mk(ρk) ≤ uk
)
)

� Var

( n∑

k=

dkI
(

Mk(ρk) ≤ uk
)
)

+ Var

( n∑

k=

dkI(Mk ≤ uk) –
n∑

k=

dkI
(

Mk(ρk) ≤ uk
)
)

=: L + L. (.)
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We will show Li � D
n

(ln Dn)+ε , i = , . Let z = (z(), z(), . . . , z(d)) be a real vector. Clearly,

L = E

( n∑

k=

dk
(
I
(

Mk(ρk) ≤ uk
)

– P
(

Mk(ρk) ≤ uk
))

)

= E

( n∑

k=

dk
(
I
(

Mk() ≤ ( – ρk)–/(uk – ρ/
k λ

))

– P
(

Mk() ≤ ( – ρk)–/(uk – ρ/
k λ

)))
)

=
∫

Rd
E

( n∑

k=

dk
(
I
(

Mk() ≤ ( – ρk)–/(uk – ρ/
k z

))

– P
(

Mk() ≤ ( – ρk)–/(uk – ρ/
k z

)))
)

d�(z)

=
∫

Rd
E

( n∑

k=

dkηk

)

d�(z), (.)

where ηk = I(Mk() ≤ ( – ρk)–/(uk – ρ/
k z)) – P(Mk() ≤ ( – ρk)–/(uk – ρ/

k z)).
Write

E

( n∑

k=

dkηk

)

≤
n∑

k=

d
kE|ηk| + 

∑

≤k<l≤n

dkdl
∣
∣E(ηkηl)

∣
∣ =: H + H. (.)

Noting that |ηk| ≤ , exp(lnα x) = exp(
∫ x


α(ln u)α–

u du), we have that exp(lnα x) (α < /) is
a slowly varying function at infinity. Hence,

H ≤
n∑

k=

d
k =

n∑

k=

exp( lnα k)
k ≤

∞∑

k=

exp( lnα k)
k < ∞. (.)

Using the inequality xn–i – xn ≤ i
n for  < x < , i ≤ n, we get

∣
∣E(ηkηl)

∣
∣ ≤ ∣

∣Cov(I
(

Mk() ≤ ( – ρk)–/(uk – ρ/
k z

))
,

I
(

Ml() ≤ ( – ρl)–/(ul – ρ/
l z

))
– I

(
Mk,l() ≤ ( – ρl)–/(ul – ρ/

l z
))∣∣

� E
∣∣I

(
Ml() ≤ ( – ρl)–/(ul – ρ/

l z
))

– I
(

Mk,l() ≤ ( – ρl)–/(ul – ρ/
l z

))∣∣

= P
(

Mk,l() ≤ ( – ρl)–/(ul – ρ/
l z

))
– P

(
Ml() ≤ ( – ρl)–/(ul – ρ/

l z
))

= �l–k(( – ρl)–/(ul – ρ/
l z

))
– �l(( – ρl)–/(ul – ρ/

l z
))

≤ k
l

.
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So, we have

H ≤
∑

≤k<l≤n

dkdl
k
l

=
∑

≤k<l≤n
l
k ≥ln Dn

dkdl
k
l

+
∑

≤k<l≤n
l
k <ln Dn

dkdl
k
l

=: T + T. (.)

For T, we have

T ≤
∑

≤k<l≤n

dkdl

ln Dn
≤ D

n

ln Dn
. (.)

According to Wu and Chen [], for sufficiently large n, for α > , we have

Dn ∼ 
α

(
ln–α n exp

(
lnα n

))
, ln Dn ∼ lnα n, exp

(
lnα n

) ∼ αDn

(ln Dn) –α
α

. (.)

Since α < / implies ( – α)/α > , letting  < ε < ( – α)/α – , for sufficiently large n, we
get

T ≤
n∑

k=

dk

k ln Dn∑

l=k

exp(lnα l)
l

≤ exp
(
lnα n

) n∑

k=

dk

k ln Dn∑

l=k


l

≤ exp
(
lnα n

)
Dn ln ln Dn

≤ D
n ln ln Dn

(ln Dn) –α
α

≤ D
n

(ln Dn)+ε
. (.)

Combining with (.)-(.), we can get

H ≤ D
n

(ln Dn)+ε
. (.)

By (.), (.) and (.), we have

L � D
n

(ln Dn)+ε
. (.)

Clearly,

L = Var

( n∑

k=

dk
(
I
(

Mk(ρk) ≤ uk
)

– I(Mk ≤ uk)
)
)

≤
n∑

k=

d
k Var

(
I(Mk ≤ uk) – I

(
Mk(ρk) ≤ uk

))

+ 
∣
∣∣
∣

∑

≤i<j≤n

didj Cov
(
I(Mi ≤ ui) – I

(
Mi(ρi) ≤ ui

)
, I(Mj ≤ uj) – I

(
Mj(ρj) ≤ uj

))
∣
∣∣
∣

=: J + J. (.)
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Similarly to (.), we find that J ≤ ∑∞
k= d

k < ∞. Note that

J ≤
∣∣
∣∣

∑

≤i<j≤n

didj Cov
(
I(Mi ≤ ui) – I

(
Mi(ρi) ≤ ui

)
, I(Mj ≤ uj) – I

(
Mj(ρj) ≤ uj

)

–
(
I(Mi,j ≤ uj) – I

(
Mi,j(ρj) ≤ uj

)))
∣
∣∣∣

+
∣
∣∣
∣

∑

≤i<j≤n

didj Cov
(
I(Mi ≤ ui) – I

(
Mi(ρi) ≤ ui

)
,
(
I(Mi,j ≤ uj) – I

(
Mi,j(ρj) ≤ uj

)))
∣
∣∣
∣

=: J + J. (.)

For J, we can get

J ≤
∑

≤i<j≤n

didj
{∣∣Cov

(
I(Mi ≤ ui) – I

(
Mi(ρi) ≤ ui

)
, I(Mj ≤ uj) – I(Mi,j ≤ uj)

)∣∣

+
∣
∣Cov

(
I(Mi ≤ ui) – I

(
Mi(ρi) ≤ ui

)
, I

(
Mj(ρj) ≤ uj

)
– I

(
Mi,j(ρj) ≤ uj

))∣∣}

≤ 
∑

≤i<j≤n

didj
{
E

∣
∣I(Mj ≤ uj) – I(Mi,j ≤ uj)

∣
∣

+ E
∣
∣I

(
Mj(ρj) ≤ uj

)
– I

(
Mi,j(ρj) ≤ uj

)∣∣}

= 
∑

≤i<j≤n

didj
{(
P(Mi,j ≤ uj) – P(Mj ≤ uj)

)

+
(
P
(

Mi,j(ρj) ≤ uj
)

– P
(

Mj(ρj) ≤ uj
))}

≤ 
∑

≤i<j≤n

didj
{∣∣P(Mi,j ≤ uj) – P

(
Mi,j(ρj) ≤ uj

)∣∣

+
∣∣P(Mj ≤ uj) – P

(
Mj(ρj) ≤ uj

)∣∣ + 
∣∣P

(
Mi,j(ρj) ≤ uj

)
– P

(
Mj(ρj) ≤ uj

)∣∣}. (.)

By Lemma  and (.), for α > , we have


∑

≤i<j≤n

didj
{∣∣P(Mi,j ≤ uj) – P

(
Mi,j(ρj) ≤ uj

)∣∣

+
∣
∣P(Mj ≤ uj) – P

(
Mj(ρj) ≤ uj

)∣∣}

�
∑

≤i<j≤n

didj(ln Dj)–(+ε) =
n∑

j=

exp(lnα j)
j(ln Dj)+ε

j∑

i=

di

=
n∑

j=

exp(lnα j)
j(ln Dj)+ε

Dj �
n∑

j=

exp( lnα j)(ln j)–α

j(ln j)(+ε)α

∼
∫ n

e

exp( lnα x)(ln x)–α

(ln x)α+αε
d ln x

=
∫ ln n


exp

(
yα

)
y–α–αε dy

∼
∫ ln n


exp

(
yα

)
y–α–αε +

 – α – αε

α
exp

(
yα

)
y–α–αε dy

=


α
exp

(
yα

)
y–α–αε

∣
∣∣
ln n
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� exp
(
 lnα n

)
(ln n)–α–αε � D

n

(ln Dn) α+αε
α

� D
n

(ln Dn)+ε
. (.)

Let z = (z(), z(), . . . , z(d)) be a real vector. By (.)-(.), we obtain

∑

≤i<j≤n

didj
∣
∣P

(
Mi,j(ρj) ≤ uj

)
– P

(
Mj(ρj) ≤ uj

)∣∣

=
∑

≤i<j≤n

didj

(∫

Rd

(
P
(

Mi,j() ≤ ( – ρj)–/(uj – ρ/
j z

))

– P
(

Mj() ≤ ( – ρj)–/(uj – ρ/
j z

)))
d�(z)

)

=
∑

≤i<j≤n

didj

(∫

Rd

(
�j–i(( – ρj)–/(uj – ρ/

j z
))

– �j(( – ρj)–/(uj – ρ/
j z

)))
d�(z)

)

≤
∑

≤i<j≤n

didj

(∫

Rd

i
j

d�(z)
)

=
∑

≤i<j≤n

didj

(
i
j

)

≤ D
n

(ln Dn)+ε
. (.)

By (.)-(.), we have

J � D
n

(ln Dn)+ε
. (.)

For J, noting that {Mi : i ≥ } and {Mi(ρi) : i ≥ } are independent, by Lemma  and
(.), we get

J =
∣
∣∣
∣

∑

≤i<j≤n

didj
{
Cov

(
I(Mi ≤ ui), I(Mi,j ≤ uj)

)

+ Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))}
∣
∣∣
∣

=
∣∣
∣∣

∑

≤i<j≤n

didj
(
P(Mi ≤ ui, Mi,j ≤ uj) – P

(
Mi(ρi) ≤ ui, Mi,j(ρj) ≤ uj

)

– P(Mi ≤ ui)P(Mi,j ≤ uj) – P
(

Mi(ρi) ≤ ui
)
P
(

Mi,j(ρj) ≤ uj
))

∣∣
∣∣

=
∑

≤i<j≤n

didj
{∣∣P(Mi ≤ ui, Mi,j ≤ uj) – P

(
Mi(ρi) ≤ ui, Mi,j(ρj) ≤ uj

)∣∣

+
∣
∣P(Mi ≤ ui) – P

(
Mi(ρi) ≤ ui

)∣∣ +
∣
∣P(Mi,j ≤ uj) – P

(
Mi,j(ρj) ≤ uj

)∣∣}

+ 
∣∣
∣∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))
∣∣
∣∣



Zeng and Wu Journal of Inequalities and Applications  (2015) 2015:224 Page 11 of 12

�
∑

≤i<j≤n

didj(ln Dj)–(+ε) +
∣∣
∣∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))
∣∣
∣∣

� D
n

(ln Dn)+ε
+

∣∣
∣∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))
∣∣
∣∣. (.)

By (.), we have

∣
∣∣
∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))
∣
∣∣
∣

=
∣
∣∣
∣

∑

≤i<j≤n

didj
{
Cov

(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

)
– I

(
Mj(ρj) ≤ uj

))

+ Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mj(ρj) ≤ uj

))}
∣∣
∣∣

≤
∑

≤i<j≤n

didjE
∣
∣I

(
Mj(ρj) ≤ uj

)
– I

(
Mi,j(ρj) ≤ uj

)∣∣

+
∣
∣∣
∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mj(ρj) ≤ uj

))
∣
∣∣
∣

≤
∑

≤i<j≤n

didj
(
P
(

Mi,j(ρj) ≤ uj
)

– P
(

Mj(ρj) ≤ uj
))

+ Var

( n∑

i=

diI
(

Mi(ρi) ≤ ui
)
)

+
n∑

i=

d
i Var

(
I
(

Mi(ρi) ≤ ui
))

� D
n

(ln Dn)+ε
+ Var

( n∑

i=

diI
(

Mi(ρi) ≤ ui
)
)

. (.)

By (.)-(.), we have

Var

( n∑

i=

diI
(

Mi(ρi) ≤ ui
)
)

� D
n

(ln Dn)+ε
. (.)

Together with (.) and (.), we obtain

∣
∣∣
∣

∑

≤i<j≤n

didj Cov
(
I
(

Mi(ρi) ≤ ui
)
, I

(
Mi,j(ρj) ≤ uj

))
∣
∣∣
∣ � D

n
(ln Dn)+ε

. (.)

Hence, by (.) and (.), we have

J � D
n

(ln Dn)+ε
. (.)

By (.), (.), (.) and (.), for α > , we get

L � D
n

(ln Dn)+ε
. (.)

Thus (.)-(.) together establish (.). The proof is completed. �
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