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Abstract
This paper is devoted to investigating the boundedness of the oscillation and
variation operators for the commutators generated by Calderón-Zygmund singular
integrals with Lipschitz functions in the weighted Lebesgue spaces and the endpoint
spaces in dimension 1. Certain criterions of boundedness are given. As applications,
the weighted (Lp, Lq)-estimates for the oscillation and variation operators on the
iterated commutators of Hilbert transform and Hermitian Riesz transform, the
(Lp, ∧̇(β–1/p))-bounds as well as the endpoint estimates for the oscillation and variation
operators of the corresponding first order commutators are established.
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1 Introduction
Let T = {Tε}ε be a family of operators such that the limit limε→ Tεf (x) = Tf (x) exists in
some sense. A classical method of measuring the speed of convergence of the family {Tε}
is to consider ‘square function’ of the type (

∑∞
i= |Tεi f – Tεi+ f |)/, where εi ↘ . Or, more

generally, the oscillation operator defined as

O(T f )(x) =

( ∞∑

i=

sup
ti+≤εi+<εi≤ti

∣
∣Tεi+ f (x) – Tεi f (x)

∣
∣
)/

with {ti} being a fixed sequence decreasing to zero, and the ρ-variation operator defined
by

Vρ(T f )(x) = sup
ε↘

( ∞∑

i=

∣
∣Tεi+ f (x) – Tεi f (x)

∣
∣ρ
)/ρ

,

where the sup is taken over all sequence {εi} decreasing to zero. We also consider the
operator

O′(T f )(x) =

( ∞∑

i=

sup
ti+<δi<ti

∣
∣Tti+ f (x) – Tδi f (x)

∣
∣
)/

.
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It is easy to check that

O′(T f )(x) ≤O(T f )(x) ≤ O′(T f )(x). (.)

The oscillation and variation for martingales and some families of operators have been
studied in many resent papers on probability, ergodic theory, and harmonic analysis. We
refer the readers to [–] and the references therein for more background information.
Recently, Liu and Wu [] gave a criterion on the weighted norm estimate of the oscillation
and variation operators for the commutators of Calderón-Zygmund singular integrals with
BMO functions in dimension . We also point out that the Lp-boundedness for the higher
order commutators of singular integrals was obtained by Segovia and Torrea [] in .
The purpose of this paper is to establish some new results concerning the oscillation and
ρ-variation operators for the families of commutators generated by Calderón-Zygmund
singular integrals with Lipschitz functions. Precisely, we will establish a criterion on the
weighted (Lp, Lq)-type estimates of the oscillation and ρ-variation operators for the iter-
ated commutators of Calderón-Zygmund singular integrals with Lipschitz functions for
 < β <  and  < p < /β with /q = /p – β . We will also consider the boundedness of
(Lp, ∧̇(β–/p)) type for the corresponding operators related to the first order commutator
for /β < p < ∞, and the endpoint cases, namely p = /β or p = ∞. As applications, the
corresponding boundedness of the oscillation and variation operators for the commuta-
tors of Hilbert transform and the Hermitian Riesz transforms will be given.

Before stating our main results, we recall some definitions and notations. Let K(x, y) be
the standard kernels with constants δ and A, that is, K(x, y) is defined on R × R \ {(x, x) :
x ∈ R} and satisfies the size condition for some A > 

∣
∣K(x, y)

∣
∣≤ A

|x – y| ; (.)

and the regularity conditions, for some δ > ,

∣
∣K(x, y) – K

(
x′, y
)∣
∣≤ A|x – x′|δ

(|x – y| + |x′ – y|)+δ
, (.)

whenever |x – x′| ≤ max(|x – y|, |x′ – y|) and

∣
∣K(x, y) – K

(
x, y′)∣∣≤ A|y – y′|δ

(|x – y| + |x – y′|)+δ
, (.)

whenever |y – y′| ≤ max(|x – y|, |x – y′|). The class of all standard kernels with constants
δ and A is denoted by SK(δ, A). For a locally integrable function b defined in R, we say b
belongs to the space Lipp

β for  ≤ p ≤ ∞,  < β < , if there is a constant C >  such that

sup
I	x


|I|β
(


|I|
∫

I

∣
∣b(x) – bI

∣
∣p dx

)/p

≤ C. (.)

The smallest bound C satisfying (.) is taken to be the norm of b denoted by ‖b‖Lipp
β

. Here
I is an interval in R and bI = |I|– ∫

I b(x) dx.
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Obviously, for the case p = , Lipp
β is the homogeneous Lipschitz space ∧̇β . García-

Cuerva [] proved that the spaces Lipp
β coincide, and the norms of ‖ · ‖Lipp

β
are equiv-

alent with respect to different values of p provided that  ≤ p ≤ ∞. For m ∈ N, �b =
(b, b, . . . , bm) ∈ ∧̇ �β , which means that bi ∈ ∧̇βi (i = , . . . , m) with �β = (β, . . . ,βm) and
 < β = β + · · · + βm < , we consider the family of operators T := {Tε}ε> given by

Tε(f )(x) :=
∫

|x–y|>ε

K(x, y)f (y) dy, (.)

and T�b := {Tε,�b}ε>, where Tε,�b is the iterated commutators Tε and �b, which is given by

[b, Tε](f )(x) = b(x)Tε(f )(x) – Tε(bf )(x) =
∫

|x–y|>ε

[
b(x) – b(y)

]
K(x, y)f (y) dy (.)

for m = , and

Tε,�b(f )(x) =
[
bm, . . . ,

[
b, [b, Tε]

]]
(f )(x) =

∫

|x–y|>ε

m∏

j=

[
bj(x) – bj(y)

]
K(x, y)f (y) dy (.)

for f ∈⋃≤p<∞ Lp(R). When m = , we also denote �b by b, Tε,�b by Tε,b, and T�b by Tb.
In this paper, we will study the behaviors of oscillation and variation operators for the

families of commutators defined by (.) and (.) in Lebesgue spaces. Our main results
can be formulated as follows.

Theorem . Suppose that K(x, y) satisfies (.)-(.), �b ∈ ∧̇ �β ,  < β = β + · · · + βm < . Let
ρ > , T = {Tε}ε> and T�b = {Tε,�b}ε> be given by (.) and (.), respectively. If O(T ) and
Vρ(T ) are bounded in Lp (R, dx) for some  < p < ∞, then for any  < p < /β with /q =
/p – β , ω ∈ A(p,q) (the Muckenhoupt classes of fractional type, see the definition below),
O(T�b) and Vρ(T�b) are bounded from Lp(R,ω(x)p dx) to Lq(R,ω(x)q dx).

For /β ≤ p ≤ ∞, we can establish the following un-weighted results only for the oscil-
lation and variation operators related to the first order commutator.

Theorem . Suppose that K(x, y) satisfies (.)-(.), b ∈ ∧̇β ,  < β ≤ δ < , where δ is
the same as in (.). Let ρ > , T = {Tε}ε> and Tb = {Tε,b}ε> be given by (.) and (.),
respectively. If O(T ) and Vρ(T ) are bounded in Lp (R, dx) for some  < p < ∞, then for
any /β < p < ∞, there exists a constant C >  such that for all bounded functions f with
compact support,

∥
∥O(Tb)(f )

∥
∥∧̇(β–/p)

≤ C‖b‖∧̇β
‖f ‖Lp

and

∥
∥Vρ(Tb)(f )

∥
∥∧̇(β–/p)

≤ C‖b‖∧̇β
‖f ‖Lp .

Theorem . Suppose that K(x, y) satisfies (.)-(.), b ∈ ∧̇β ,  < β ≤ δ < , where δ is
the same as in (.). Let ρ > , T = {Tε}ε> and Tb = {Tε,b}ε> be given by (.) and (.),
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respectively. If O(T ) and Vρ(T ) are bounded in Lp (R, dx) for some  < p < ∞, then for
p = /β , there exists a constant C >  such that for all bounded functions f with compact
support,

∥
∥O(Tb)(f )

∥
∥

BMO ≤ C‖b‖∧̇β
‖f ‖L/β

and

∥
∥Vρ(Tb)(f )

∥
∥

BMO ≤ C‖b‖∧̇β
‖f ‖L/β .

Remark . We remark that our arguments in proving Theorems . and . do not work
for the cases of high order commutators T�b (m > ). It is not clear whether the corre-
sponding results for O(T�b) and Vρ(T�b) for m >  also hold, which is very interesting. We
also remark that in our theorems, we deal only with ρ >  for the variation operators, since
in the case ρ ≤  the variation is often not bounded (see [, ]).

The rest of this paper is organized as follows. In Section , we will recall some basic
facts concerning weights, maximal functions, sharp maximal functions and characteriza-
tion of the space ∧̇β . The weighted (Lp, Lq)-type estimates of the oscillation and variation
operators for the iterated commutators will be given in Section . In Section , we will
show the (Lp, ∧̇(β–/p))-bounds of the oscillation and variation operators for the first order
commutator Tb in the cases /β < p < ∞ and the endpoint. Finally, as applications, the cor-
responding results of the oscillation and variation operators related to the commutators
of Hilbert transform and Hermitian Riesz transforms as well as the λ-jump operators and
the number of up-crossing for these operators will be obtained in Section . We remark
that our works and ideas are greatly motivated by [, ].

Throughout the rest of the paper, C >  always denotes a constant that is independent
of main parameters involved but whose value may differ from line to line. For any index
p ∈ [,∞], we denote by p′ its conjugate index, namely /p + /p′ = .

2 Preliminaries
2.1 Weights
By a weight we mean a non-negative measurable function. We recall that a weight ω be-
longs to the class Ap,  < p < ∞, if

sup
I

(

|I|
∫

I
ω(y) dy

)(

|I|
∫

I
ω(y)–p′

dy
)p–

< ∞,

where I denotes the term in R, p′ = p/(p – ). This number is called the Ap constant of ω

and is denoted by [ω]Ap . A weight ω belongs to the class A if there is a constant C such
that


|I|
∫

I
ω(y) dy ≤ C inf

y∈I
ω(y)

and the infimum of this constant C is called the A constant of ω and is denoted by [ω]A .
Since the Ap classes are increasing with respect to p, the A∞ class of weights is defined
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in a natural way by A∞ =
⋃

p≥ Ap and the A∞ constant of ω ∈ A∞ is the smallest of the
infimum of the Ap constant such that ω ∈ Ap.

A weight ω(x) is said to belong to the class A(p,q),  < p ≤ q < ∞, if

sup
I

(

|I|
∫

I
ω(y)q dy

)/q( 
|I|
∫

I
ω(y)–p′

dy
)/p′

< ∞.

It is well known that

w ∈ A(p,q) ⇐⇒ wq ∈ Aq(–α) ⇐⇒ w–p′ ∈ Ap′(–α) ⇐⇒ wq ∈ As, (.)

w ∈ A(p,q) �⇒ wq ∈ Aq and wp ∈ Ap

⇐⇒ wq ∈ Aq and w–p′ ∈ Ap′ ,
(.)

where  < α < ,  ≤ p < /α, /q = /p – α and s =  + q/p′. The following result, which can
be found in Theorem . of [], will be used below.

Lemma . ([]) Let  < p ≤ q < ∞. If ω ∈ A(p,q), then there exists r ∈ (, p) such that
wr ∈ A(p/r,q/r).

2.2 Maximal functions and sharp maximal functions
We recall the definitions of the Hardy-Littlewood maximal function

M(f )(x) := sup
I	x


|I|
∫

I

∣
∣f (y)

∣
∣dy

and the sharp maximal function

M	(f )(x) := sup
I	x


|I|
∫

I

∣
∣f (y) – fI

∣
∣dy ≈ sup

I	x
inf

c


|I|
∫

I

∣
∣f (y) – c

∣
∣dy, (.)

where fI = |I|– ∫
I f (y) dy. A well-known result obtained by Muckenhoupt [] is that M is

bounded on Lp(ω) if and only if ω ∈ Ap for  < p < ∞.
Also, we denote the fractional maximal operator Mβ defined by

Mβ (f )(x) := sup
I	x


|I|–β

∫

I

∣
∣f (y)

∣
∣dy,

and its variant Mβ ,r defined by

Mβ ,r(f )(x) := sup
I	x

(


|I|–βr

∫

I

∣
∣f (y)

∣
∣r dy

)/r

, r > .

The following properties will play key roles in the proofs of our main theorems.

Lemma . ([]) Let  < p < ∞, ω ∈ A∞. Then

∥
∥M(f )

∥
∥

Lp(ω) ≤ ∥∥M	(f )
∥
∥

Lp(ω) (.)

for all f such that the left-hand side is finite.



Zhang and Wu Journal of Inequalities and Applications  (2015) 2015:214 Page 6 of 21

Lemma . ([]) Suppose that  < β < ,  < p < /β , /q = /p – β . If ω ∈ A(p,q), then

∥
∥Mβ (f )

∥
∥

Lq(ωq) ≤ ‖f ‖Lp(ωp).

Lemma . Suppose that  < β < ,  < r < p < /β , /q = /p – β . If ω ∈ A(p,q), then

∥
∥Mβ ,r(f )

∥
∥

Lq(ωq) ≤ ‖f ‖Lp(ωp). (.)

Note that Mβ ,r(f )(x) = (Mβr(|f |r)(x))/r . Lemma . immediately follows from Lem-
mas . and .. We omit the details.

2.3 Characterization of the space ∧̇β

By the definition of ∧̇β , it is easy to check that for f ∈ ∧̇β ,  < β ≤ ,



‖f ‖∧̇β

≤ sup
I	x

inf
CI


|I|+β

∫

I

∣
∣f (x) – CI

∣
∣dx ≤ ‖f ‖∧̇β

. (.)

3 The weighted (Lp, Lq)-type estimates
This section is devoted to the proof of Theorem .. Let us begin with recalling two pre-
vious known results, which will be used below.

Lemma . ([]) Suppose that K(x, y) satisfies (.)-(.), ρ > . Let T = {Tε}ε> be given by
(.). If O(T ) and Vρ(T ) are bounded in Lp (R) for some  < p < ∞, then for any  < p < ∞,
ω ∈ Ap,

∥
∥O′(T f )

∥
∥

Lp(ω) ≤ ∥∥O(T f )
∥
∥

Lp(ω) ≤ C‖f ‖Lp(ω) (.)

and

∥
∥Vρ(T f )

∥
∥

Lp(ω) ≤ C‖f ‖Lp(ω). (.)

The proof of Theorem . is based on the following sharp maximal function estimate.
Before stating the result, we recall some notations. For  ≤ j ≤ m, we denote by Cm

j the
family of all finite subsets σ = {σ (), . . . ,σ (j)} of {, , . . . , m} with j different elements. For
any σ ∈ Cm

j , the complementary sequence σ ′ is given by σ ′ = {,  · · · , m} \ σ . For �β =
(β, . . . ,βm) with β = β + · · · + βm, �b = (b, . . . , bm) with bi ∈ ∧̇βi (i = , . . . , m), we denote
�βσ = (βσ (), . . . ,βσ (j)) with βσ = βσ () + · · · + βσ (j), βσ ′ = β – βσ , and �bσ = (bσ (), . . . , bσ (j)) with

‖�b‖∧̇β
=

m∏

i=

‖bi‖∧̇βi
and ‖�bσ‖∧̇βσ

=
j∏

i=

‖bσ (i)‖∧̇βσ (i)

for any σ = {σ (), . . . ,σ (j)},  ≤ j ≤ m.
Now we state our main lemma as follows.

Lemma . Suppose that K(x, y) satisfies (.)-(.), �β = (β, . . . ,βm) with β = β + · · · + βm

and  < β < , �b = (b, . . . , bm) with bi ∈ ∧̇βi (i = , . . . , m). Then for ρ > , T and T�b being as



Zhang and Wu Journal of Inequalities and Applications  (2015) 2015:214 Page 7 of 21

in Theorem ., we have

M	
(
O′(T�bf )

)
(x) ≤ C‖�b‖∧̇β

{
Mβ ,r

(
O′(T (f )

))
(x) + Mβ ,r(f )(x)

}

+ C
m–∑

j=

∑

σ∈Cm
j

‖�bσ ‖∧̇βσ
Mβσ ,r

(
O′(T�bσ ′ f )

)
(x) (.)

and

M	
(
Vρ(T�bf )

)
(x) ≤ C‖�b‖∧̇β

{
Mβ ,r

(
Vρ

(
T (f )

))
(x) + Mβ ,r(f )(x)

}

+ C
m–∑

j=

∑

σ∈Cm
j

‖�bσ‖∧̇βσ
Mβσ ,r

(
Vρ(T�bσ ′ f )

)
(x) (.)

hold for any r > .

Before proving Lemma ., we need to fix some notations. Following [], we denote by
E the mixed norm Banach space of two variable function h defined on R × N such that

‖h‖E ≡
(∑

i

(
sup

s

∣
∣h(s, i)

∣
∣
)
)/

< ∞. (.)

Given a family of operators T := {Tt}t> defined on Lp(R), for a fixed decreasing sequence
{ti} with ti ↘ , let Ji = (ti+, ti] and define the operator U(T ) : f → U(T )f , where U(T )f (x)
is the E-valued function given by

U(T )f (x) :=
{

Tti+f (x) – Tsf (x)
}

s∈Ji ,i∈N. (.)

Here the expression {Tti+f (x) – Tsf (x)}s∈Ji ,i∈N is a convenient abbreviation for the element
of E given by

(s, i) → (
Tti+ f (x) – Tsf (x)

)
χJi (s).

Then

O′(T f )(x) =
∥
∥
{

Tti+ f (x) – Tsf (x)
}

s∈Ji ,i∈N

∥
∥

E =
∥
∥U(T )f (x)

∥
∥

E . (.)

On the other hand, let � = {β : β = {εi}, εi ∈ R, εi ↘ }. We consider the set N × � and
denote by Fρ the mixed norm space of two variable functions g(i,β) such that

‖g‖Fρ ≡ sup
β

(∑

i

∣
∣g(i,β)

∣
∣ρ
)/ρ

< ∞. (.)

We also consider the Fρ-valued operator V (T ) : f → V (T )f on Lp(R) given by

V (T )f (x) :=
{

Tεi+ f (x) – Tεi f (x)
}

β={εi}∈�
, (.)

where {Tεi+ f (x) – Tεi f (x)}β={εi}∈� is an abbreviation for the element of Fρ given by

(i,β) =
(
i, {εk}

)→ Tεi+ f (x) – Tεi f (x).
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This implies that

Vρ(T f )(x) =
∥
∥V (T )f (x)

∥
∥

Fρ
. (.)

Finally, if B is a Banach space and ϕ is a B-valued function, we define

ϕ	(x) := sup
x∈I


|I|
∫

I

∥
∥
∥
∥ϕ(y) –


|I|
∫

I
ϕ(z) dz

∥
∥
∥
∥

B
dy. (.)

This together with (.), (.) and (.) leads to

M	
(
O′(T f )

)
(x) ≤ 

(
U(T )f

)	(x) (.)

and

M	
(
Vρ(T f )

)
(x) ≤ 

(
V (T )f

)	(x). (.)

Proof of Lemma . For simplicity and without loss of generality, we consider only the
case m = . By (.)-(.), it suffices to show the following results:

U(Tb,b f )	(x) ≤ C‖b‖∧̇β
‖b‖∧̇β

{
Mβ ,r

(
O′(T (f )

))
(x) + Mβ ,r(f )(x)

}

+ C‖b‖∧̇β
Mβ,r

(
O′(Tb (f )

)
(x)
)

+ C‖b‖∧̇β
Mβ,r

(
O′(Tb (f )

)
(x)
)

(.)

and

V (Tb,b f )	(x) ≤ C‖b‖∧̇β
‖b‖∧̇β

{
Mβ ,r

(
Vρ

(
T (f )

))
(x) + Mβ ,r(f )(x)

}

+ C‖b‖∧̇β
Mβ,r

(
Vρ

(
Tb (f )

)
(x)
)

+ C‖b‖∧̇β
Mβ,r

(
Vρ

(
Tb (f )

)
(x)
)
. (.)

We will prove only inequality (.) since (.) can be obtained by a similar argument.
Fix f and x with an interval I = (x – l, x + l). Define f(y) = f (y)χI and f(y) = f (y) – f(y).
Let

CI =
{∫

ti+<|x–y|<s

(
b(y) – (b)I

)(
b(y) – (b)I

)
K(x, y)f(y) dy

}

s∈Ji ,i∈N
,

where bI = |I|– ∫
I b(x) dx, (I)c denotes the complementary set of the interval I = (x –

l, x + l). By (.), it suffices to prove the following inequality:


|I|
∫

I

∥
∥U(Tb,b )(f )(x) – CI

∥
∥

E dx

≤ C‖b‖∧̇β
‖b‖∧̇β

{
Mβ ,r

(
O′(T (f )

))
(x) + Mβ ,r(f )(x)

}

+ C‖b‖∧̇β
Mβ,r

(
O′(Tb (f )

)
(x)
)

+ C‖b‖∧̇β
Mβ,r

(
O′(Tb (f )

)
(x)
)
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for every x ∈ R. Since


|I|
∫

I

∥
∥U(Tb,b )(f )(x) – CI

∥
∥

E dx

≤ 
|I|
∫

I

∥
∥U
((

b(·) – (b)I
)(

b(·) – (b)I
)
T f
)
(x)
∥
∥

E dx

+

|I|
∫

I

∥
∥U
((

b(·) – (b)I
)
Tb f (x)

)∥
∥

E

+

|I|
∫

I

∥
∥U
((

b(·) – (b)I
)
Tb f (x)

)∥
∥

E

+

|I|
∫

I

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x) – CI

∥
∥

E dx

=: I + I + I + I.

Now we estimate the above four terms, respectively. Firstly,

I =

|I|
∫

I

∣
∣b(x) – (b)I

∣
∣
∣
∣b(x) – (b)I

∣
∣
∥
∥U(T f )(x)

∥
∥

E dx

≤
(


|I|
∫

I

∣
∣b(x) – (b)I

∣
∣r′ dx

)/r′( 
|I|
∫

I

∣
∣b(x) – (b)I

∣
∣r′ dx

)/r′

×
(


|I|
∫

I

∥
∥U(T f )(x)

∥
∥r

E dx
)/r

≤ C‖b‖∧̇β
‖b‖∧̇β

Mβ ,r
(
O′(T f )

)
(x).

As for I, we have

I =

|I|
∫

I

∣
∣b(x) – (b)I

∣
∣
∥
∥U(Tb f )(x)

∥
∥

E dx

≤
(


|I|
∫

I

∣
∣b(x) – (b)I

∣
∣r

′
dx
)/r′( 

|I|
∫

I

∥
∥U(Tb f )(x)

∥
∥r

E dx
)/r

≤
(


|I|
∫

I

∣
∣b(x) – (b)I

∣
∣r

′
dx
)/r′( 

|I|
∫

I

∣
∣O′(Tb f )(x)

∣
∣r dx

)/r

≤ C‖b‖∧̇β
Mβ,r

(
O′(Tb f )

)
(x).

By symmetry, we have

I ≤ C‖b‖∧̇β
Mβ,r

(
O′(Tb f )

)
(x).

Finally, we deal with I as follows:


|I|
∫

I

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x) – CI

∥
∥

E dx

≤ 
|I|
∫

I

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x)
∥
∥

E dx

+

|I|
∫

I

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x) – CI

∥
∥

E dx

=: E + F .
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Invoking Lemma ., we know thatO′(T ) is bounded on Lt(R) for any  < t < ∞. Therefore,
for any r > , let t =

√
r, we get

E ≤
(


|I|
∫

I

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x)
∥
∥t

E dx
)/t

≤ C
(


|I|
∫

R

(∣
∣b – (b)I

∣
∣
∣
∣b – (b)I

∣
∣
∣
∣f(x)

∣
∣
)t dx

)/t

= C
(


|I|
∫

I

∣
∣f (x)

∣
∣r dx

)/r( 
|I|
∫

I

(∣
∣b – (b)I

∣
∣
∣
∣b – (b)I

∣
∣
)tt′ dx

)/tt′

≤ Mβ ,r(f )(x)|I|–β

(

|I|
∫

I

(∣
∣b – (b)I

∣
∣ +
∣
∣(b)I – (b)I

∣
∣
)tt′ dx

)/tt′

×
(


|I|
∫

I

(∣
∣b – (b)I + (b)I – (b)I

∣
∣
)tt′ dx

)/tt′

≤ C‖b‖∧̇β
‖b‖∧̇β

Mβ ,r(f )(x).

Now we estimate term F . For x ∈ I , we have

∥
∥U(T )

((
b – (b)I

)(
b – (b)I

)
f
)
(x) – CI

∥
∥

E

=
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}

(
b(y) – (b)I

)(
b(y) – (b)I

)
K(x, y)f(y) dy

–
∫

ti+<|x–y|<s

(
b(y) – (b)I

)(
b(y) – (b)I

)
K(x, y)f(y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥

E

≤
∥
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}

∏

j=

(
bj(y) – (bj)I

)(
K(x, y) – K(x, y)

)
f(y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥
∥

E

+

∥
∥
∥
∥
∥

{∫

R

(
χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)

)

×
∏

j=

(
bj(y) – (bj)I

)
K(x, y)f(y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥
∥

E

=: F + F.

Note that ‖{χti+<|x–y|<s}s∈Ji ,i∈N‖E ≤  and |x – x| ≤ l ≤ |x – y|/ for x ∈ I , y ∈ (I)c. By
Minkowski’s inequality and (.), we have

F ≤
∫

R

∥
∥{χ{ti+<|x–y|<s}}s∈Ji ,i∈R

∥
∥

E

∏

j=

∣
∣bj(y) – (bj)I

∣
∣
∣
∣K(x, y) – K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

≤ C
∫

(I)c

∏

j=

∣
∣bj(y) – (bj)I

∣
∣ |x – x|δ
|x – y|+δ

∣
∣f (y)

∣
∣dy

≤ C
∞∑

k=

∫

k l<|x–y|<k+l

∏
j= |bj(y) – (bj)I ||f (y)|lδ

|kl|+δ
dy
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≤ C
∞∑

k=


(k+)δ

(


|k+I|
∫

k+I

∏

j=

∣
∣bj(y) – (bj)I

∣
∣r

′
dy

)/r′(


|k+I|
∫

k+I

∣
∣f (y)

∣
∣r dy

)/r

≤ C
∞∑

k=


(k+)δ

(


|k+I|
∫

k+I

∣
∣b(y) – (b)k+I + (b)k+I – (b)I

∣
∣r′ dy

)/r′

×
(


|k+I|

∫

|k+I|

∣
∣b(y) – (b)k+I + (b)k+I – (b)I

∣
∣r′ dy

)/r′

× Mβ ,rf (x)
∣
∣k+I

∣
∣–β

≤ C
∞∑

k=


(k+)δ

(‖b‖∧̇β

∣
∣k+I

∣
∣β + ‖b‖∧̇β

(k + )
∣
∣k+I

∣
∣β)

× (‖b‖∧̇β

∣
∣k+I

∣
∣β + ‖b‖∧̇β

(k + )
∣
∣k+I

∣
∣β)Mβ ,rf (x)

∣
∣k+I

∣
∣–β

≤ C‖b‖∧̇β
‖b‖∧̇β

Mβ ,rf (x).

For F, notice that the integral

∫

R

∣
∣χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)

∣
∣

∏

j=

∣
∣bj – (bj)I

∣
∣
∣
∣K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

will only be non-zero if either χ{ti+<|x–y|<s}(y) =  and χ{ti+<|x–y|<s}(y) =  or vice versa. That
means the integral will only be non-zero in the following cases: (i) ti+ < |x – y| < s and
|x – y| ≤ ti+; (ii) ti+ < |x – y| < s and |x – y| ≥ s; (iii) ti+ < |x – y| < s and |x – y| ≤ ti+;
(iv) ti+ < |x – y| < s and |x – y| ≥ s. In the first case we observe that ti+ < |x – y| ≤ |x – x|+
|x – y| < l + ti+ as |x – x| < l. Analogously, in the third case we have ti+ < |x – y| < l + ti+.
In the second case we have s < |x – y| ≤ |x – x| + |x – y| < l + s, and in the fourth case
s < |x – y| < l + s. Using (.), we have

∫

R

∣
∣χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)

∣
∣

∏

j=

∣
∣bj(y) – (bj)I

∣
∣
∣
∣K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

≤ C
∫

R
χ{ti+<|x–y|<s}(y)χ{ti+<|x–y|<l+ti+}(y)

∏

j=

∣
∣bj(y) – (bj)I

∣
∣ |f(y)|
|x – y| dy

+ C
∫

R
χ{ti+<|x–y|<s}(y)χ{ti+<|x–y|<l+s}(y)

∏

j=

∣
∣bj(y) – (bj)I

∣
∣ |f(y)|
|x – y| dy

+ C
∫

R
χ{ti+<|x–y|<s}(y)χ{ti+<|x–y|<l+ti+}(y)

∏

j=

∣
∣bj(y) – (bj)I

∣
∣ |f(y)|
|x – y| dy

+ C
∫

R
χ{ti+<|x–y|<s}(y)χ{s<|x–y|<l+s}(y)

∏

j=

∣
∣bj(y) – (bj)I

∣
∣ |f(y)|
|x – y| dy

≤ C
(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t

l/t′

+ C
(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t

l/t′ ,
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where in the last inequality we have used Hölder’s inequality with r being the range  < r <
∞ and recalling that t =

√
r. Returning to our estimation of F, we have

F =

∥
∥
∥
∥
∥

{∫

R

(
χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)

)

×
∏

j=

(
bj(y) – (bj)I

)
K(x, y)f(y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥
∥

E

≤ Cl/t′
{∥
∥
∥
∥

{(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t}

s∈Ji ,i∈N

∥
∥
∥
∥

E

+
∥
∥
∥
∥

{(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t}

s∈Ji ,i∈N

∥
∥
∥
∥

E

}

=: F
 + F

 .

Choosing  < r <  with t =
√

r, we have

∥
∥
∥
∥

{(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t}

s∈Ji ,i∈N

∥
∥
∥
∥

E

=
[∑

i∈N

sup
s∈Ji

(∫

R
χ{ti+<|x–y|<s}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t]/

≤
(∑

i∈N

∫

R
χ{ti+<|x–y|<ti}(y)

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t

≤
(∫

R

∏
j= |bj(y) – (bj)I |t

|x – y|t
∣
∣f(y)

∣
∣t dy

)/t

≤
( ∞∑

k=


(kl)t

∫

|x–y|<k+l

∏

j=

∣
∣bj(y) – (bj)I

∣
∣t
∣
∣f (y)

∣
∣t dy

)/t

≤ C
∞∑

k=

l–/t′ 
(k+)/t′

(


|k+I|
∫

k+I

∏

j=

∣
∣bj(y) – (bj)I

∣
∣tt

′
dy

)/tt′

×
(


|k+I|

∫

k+I

∣
∣f (y)

∣
∣t


dy
)/t

≤ Cl–/t′ ‖b‖∧̇β
‖b‖∧̇β

Mβ ,rf (x).

Therefore we get

F
 ≤ C‖b‖∧̇β

‖b‖∧̇β
Mβ ,rf (x).

Similarly,

F
 ≤ C‖b‖∧̇β

‖b‖∧̇β
Mβ ,rf (x).
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Consequently,

F ≤ C‖b‖∧̇β
‖b‖∧̇β

Mβ ,rf (x).

This completes the proof of Lemma .. �

Proof of Theorem . We will only prove the result for the operator O(T�b) since a similar
proof can be given for the operator Vρ(T�b). To apply (.), we first take it for granted that
‖M(O′(T�b)f )‖Lq(ωq) is finite. We will check these to the end of the proof.

We proceed by induction on m. Note that ωq ∈ Aq and ωp ∈ Ap. For m = , by (.),
Lemmas ., ., . and ., we have

∥
∥O(Tbf )

∥
∥

Lq(ωq) ≤ C
∥
∥O′(Tbf )

∥
∥

Lq(ωq)

≤ C
∥
∥M
(
O′(Tbf )

)∥
∥

Lq(ωq) ≤ C
∥
∥M	

(
O′(Tbf )

)∥
∥

Lq(ωq)

≤ C‖b‖∧̇β

(∥
∥Mβ ,r

(
O′(T f )

)∥
∥

Lq(ωq) +
∥
∥Mβ ,r(f )

∥
∥

Lq(wq)

)

≤ C‖b‖∧̇β

(∥
∥O′(T f )

∥
∥

Lp(ωp) + ‖f ‖Lp(ωp)
)≤ C‖b‖∧̇β

‖f ‖Lp(ωp).

Now we consider the case m ≥ . Suppose that for m –  the theorem is true, and let us
prove it for m. The same argument as used above and the induction hypothesis yield that

∥
∥O(T�bf )

∥
∥

Lq(ωq) ≤ C
∥
∥O′(T�bf )

∥
∥

Lq(ωq)

≤ C
∥
∥M
(
O′(T�bf )

)∥
∥

Lq(ωq) ≤ C
∥
∥M	

(
O′(T�bf )

)∥
∥

Lq(ωq)

≤ C‖�b‖∧̇β

{∥
∥Mβ ,r

(
O′(T f )

)∥
∥

Lq(ωq) +
∥
∥Mβ ,r(f )

∥
∥

Lq(ωq)

}

+ C
m–∑

i=

∑

σ∈Cm
j

‖�bσ ‖∧̇βσ

∥
∥Mβσ ,r

(
O′(T�bσ ′ f )

)∥
∥

Lq(ωq)

≤ C‖�b‖∧̇β

{∥
∥O′(T f )

∥
∥

Lp(ωp) + ‖f ‖Lp(ωp)
}

+ C
m–∑

i=

∑

σ∈Cm
j

‖�bσ ‖∧̇βσ

∥
∥O′(T�bσ ′ f )

∥
∥

Lpσ (ωpσ )

≤ C‖�b‖∧̇β
‖f ‖Lp(ωp) + C

m–∑

i=

∑

σ∈Cm
j

‖�bσ ‖∧̇βσ
‖�bσ ′ ‖∧̇β

σ ′ ‖f ‖Lp(ωp)

≤ C‖�b‖∧̇β
‖f ‖Lp(ωp),

where βσ ′ = β – βσ , /q = /pσ – βσ = /p – βσ – βσ ′ = /p – β .
It remains to check that ‖M(O(T�bf ))‖Lq(ωq) < ∞ for any m ≥ . By the weighted

Lq-boundedness of M, it is reduced to checking that ‖O′(T�bf )‖Lq(ωq) < ∞. For simplic-
ity, we will check only that ‖O′(Tbf )‖Lq(ωq) < ∞ since the others are similar. Suppose that
b and ω are all bounded functions. Notice that

O′(Tbf )(x) =
∥
∥U(Tb)f (x)

∥
∥

E ≤ ∣∣b(x)
∣
∣
∥
∥U(T )f (x)

∥
∥

E +
∥
∥U(T )bf (x)

∥
∥

E ,
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we have

∥
∥O′(Tbf )

∥
∥

Lq(ωq) ≤ ‖b‖∞‖ω‖∞
∥
∥U(T )f

∥
∥

Lq + ‖ω‖∞
∥
∥U(T )bf

∥
∥

Lq

≤ C
(‖b‖∞‖ω‖∞‖f ‖Lq + ‖ω‖∞‖bf ‖Lq

)

≤ C‖b‖∞‖ω‖∞‖f ‖Lq < ∞

for all f ∈ C∞
 (R), where in the second inequality we have used the result of (.) in

Lemma ..
For the general case, we will truncate �b and ω as follows. For N ∈ N, we define ωN (x) =

inf{ω(x), N}, and for �b = (b, b, . . . , bm), �bN = (bN
 , bN

 , . . . , bN
m),

bN
j (x) =

⎧
⎪⎨

⎪⎩

N , bj(x) > N ;
bj(x), |bj(x)| ≤ N ;
–N , bj(x) < –N .

It is easy to check that

∥
∥�bN∥∥∧̇β

≤ C‖�b‖∧̇β
and

[(
ωN)q]

Aq
≤ C

[
ωq]

Aq
. (.)

Then the results of Theorem . hold for the operators family T�bN = {Tε,�bN }ε> and the
weights ωN . On the other hand, notice that

lim
N→∞ Tε,�bN f (x) = Tε,�bN f (x), ∀ε > .

It is not difficult to check that

O′(T�bf )(x) ≤ lim
N→∞O′(T�bN f )(x).

This together with (.) and Fatou’s lemma implies that the theorem holds for the general
case. Theorem . is proved. �

4 The (Lp, ∧̇(β–1/p))-type estimates
In this section, we will prove Theorems .-., which need the un-weighted results of
Theorem ..

Proof of Theorem . For any interval I ⊂ R satisfying |I| = l, define f(y) = f (y)χI and
f(y) = f (y) – f(y). Let

CI =

|I|
∫

I

{∫

{ti+<|z–y|<s}

(
b(z) – b(y)

)
K(z, y)f(y) dy

}

s∈Ji ,i∈N
dz,

where (I)c denotes the complementary set of the interval I . By (.), it suffices to prove
that


|I|
∫

I

∥
∥U(Tb)(f )(x) – CI

∥
∥

E dx ≤ C‖b‖∧̇β
‖f ‖Lp |I|β–/p.
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We write


|I|
∫

I

∥
∥U(Tb)(f )(x) – CI

∥
∥

E dx

≤ 
|I|
∫

I

∥
∥U(Tb)(f)(x) + U(Tb)(f)(x) – CI

∥
∥

E dx

≤ 
|I|
∫

I

∥
∥U(Tb)(f)(x)

∥
∥

E dx +

|I|
∫

I

∥
∥U(Tb)(f)(x) – CI

∥
∥

E dx

=: A + A.

Choose  < p < /β < p and q with /q = /p – β . Then, by Theorem .,

A =

|I|
∫

I
O′(Tbf)(x) dx ≤ 

|I|
(∫

I

∣
∣O′(Tbf)(x)

∣
∣q dx

)/q

|I|–/q

≤ C‖b‖∧̇β


|I|
(∫

R

∣
∣f(x)

∣
∣p dx

)/p

|I|–/q

= C‖b‖∧̇β


|I|
(∫

I

∣
∣f (x)

∣
∣p dx

)/p

|I|–/q

≤ C‖b‖∧̇β


|I|
(∫

R

∣
∣f (x)

∣
∣p dx

)/p

|I|–/q |I|/p–/p

≤ ‖b‖∧̇β
‖f ‖Lp |I|β–/p

and

A =

|I|
∫

I

∥
∥
∥
∥U(Tbf)(x) –


|I|
∫

I
U(Tb)(f)(z) dz

∥
∥
∥
∥

E
dx

≤ 
|I|

∫

I×I

∥
∥U(Tb)(f)(x) – U(Tb)(f)(z)

∥
∥

E dz dx.

We write

∥
∥U(Tb)(f)(x) – U(Tb)(f)(z)

∥
∥

E

=
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}

(
b(x) – b(y)

)
K(x, y)f(y) dy

–
∫

{ti+<|z–y|<s}

(
b(z) – b(y)

)
K(z, y)f(y) dy

}∥
∥
∥
∥

≤
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}

(
K(x, y) – K(z, y)

)(
b(x) – b(y)

)
f(y) dy

}

s∈Ji ,i∈R

∥
∥
∥
∥

E

+
∥
∥
∥
∥

{∫

R
(χ{ti+<|x–y|<s} – χ{ti+<|z–y|<s})K(z, y)

× (b(x) – b(z)
)
f(y) dy

}

s∈Ji ,i∈R

∥
∥
∥
∥

E

=: A + A.
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Note that ‖χ{ti+<|x–y|<s}‖E ≤  and |x – z| ≤ l ≤ |z – y|/ for x ∈ I , y ∈ (I)c, z ∈ I . We have

A ≤
∫

R

∣
∣K(x, y) – K(z, y)

∣
∣
∣
∣b(x) – b(y)

∣
∣
∣
∣f(y)

∣
∣
∥
∥{χ{ti+<|x–y|<s}}s∈Ji ,i∈N

∥
∥dy

≤
∫

(I)c

∣
∣K(x, y) – K(z, y)

∣
∣
∣
∣b(x) – b(y)

∣
∣
∣
∣f (y)

∣
∣dy

≤ C
∫

(I)c

|x – z|δ
|z – y|+δ

∣
∣f (y)

∣
∣
∣
∣b(x) – b(y)

∣
∣dy

≤ C
∞∑

k=

∫

k+I\k I

∣
∣f (y)

∣
∣‖b‖∧̇β

|x – y|β |x – z|δ
|z – y|+δ

dy

≤ C‖b‖∧̇β

∞∑

k=

(l)δ(k+l)β

(kl)+δ

∫

k+I

∣
∣f (y)

∣
∣dy

≤ C‖b‖∧̇β

∞∑

k=

(l)δ(k+l)β

(kl)+δ

(∫

R

∣
∣f (y)

∣
∣p dy

)/p∣
∣k+I

∣
∣–/p

≤ C‖b‖∧̇β
‖f ‖Lp |I|β–/p.

For the second term A, as the proof of term F in Lemma ., we get

A =
∥
∥
∥
∥

{∫

R
(χ{ti+<|x–y|<s} – χ{ti+<|z–y|<s})K(z, y)

× (b(x) – b(z)
)
f(y) dy

}

s∈Ji ,i∈R

∥
∥
∥
∥

E

≤ C(l)/p′
∥
∥
∥
∥

{∫

R
χ{ti+<|x–y|<s}(y)

∣
∣b(x) – b(z)

∣
∣p |f(y)|p

|z – y|p dy
}

s∈Ji ,i∈R

∥
∥
∥
∥

E

+ (l)/p′
∥
∥
∥
∥

{∫

R
χ{ti+<|z–y|<s}(y)

∣
∣b(x) – b(z)

∣
∣p |f(y)|p

|z – y|p dy
}

s∈Ji ,i∈R

∥
∥
∥
∥

E

=: A
 + A

.

Note that
∥
∥
∥
∥

{∫

R
χ{ti+<|z–y|<s}(y)

∣
∣b(x) – b(z)

∣
∣p |f(y)|p

|z – y|p dy
}

s∈Ji ,i∈R

∥
∥
∥
∥

E

=
[∑

i∈N

sup
s∈Ji

(∫

R
χ{ti+<|z–y|<s}(y)

∣
∣b(x) – b(z)

∣
∣p |f(y)|p

|z – y|p dy
)/p]/

≤
(∑

i∈N

∫

R
χ{ti+<|z–y|<ti}(y)

∣
∣b(x) – b(z)

∣
∣p |f(y)|p

|z – y|p dy
)/p

≤
( ∞∑

k=

∫

k+I\k I

∣
∣b(x) – b(z)

∣
∣p
∣
∣f (y)

∣
∣p 

|z – y|p dy

)/p

≤ ‖b‖∧̇β

∞∑

k=

(l)β

kl

(∫

|z–y|<k+l

∣
∣f (y)

∣
∣p dy

)/p

≤ ‖b‖∧̇β
‖f ‖Lp (l)β–.
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We get

A
 ≤ C‖b‖∧̇β

‖f ‖Lp |I|β–/p.

Similarly,

A
 ≤ C‖b‖∧̇β

‖f ‖Lp |I|β–/p.

Consequently,

A ≤ C‖b‖∧̇β
‖f ‖Lp |I|β–/p,

which completes the proof of Theorem .. �

Proof of Theorem . Theorem . can be regarded as the case of the endpoint p = /β in
Theorem .. By similar arguments as those in proving Theorem ., we can get Theo-
rem .. Here, we omit the details. �

5 Applications
In this section, we will give certain applications of our main theorems.

5.1 On the oscillation and variation related to the commutators of Hilbert
transform and Hermitian Riesz transform

Let T = {Tε} be composed by truncations of the Hilbert transform H = {Hε}ε given by

Hεf (x) =
∫

|x–y|>ε

f (y)
x – y

dy.

In , Campbell et al. [] proved the strong (p, p)-boundedness in the range  < p < ∞
and the weak type (, )-boundedness of the oscillation operator O(H) and the ρ-variation
operator Vρ(H) for ρ > . Subsequently, in [], the aforementioned authors extended the
above results to the higher dimensional cases. In , Gillespie and Torrea [] showed
that both O(H) and Vρ(H) with ρ >  are bounded on Lp(R,ω(x) dx) for ω(x) ∈ Ap,
 < p < ∞. Recently, Crecimbeni et al. [] proved that both O(H) and Vρ(H) with ρ > 
map L(R,ω(x) dx) into L,∞(R,ω(x) dx) for ω ∈ A; moreover, they also showed that both
O(R±) and Vρ(R±) with ρ >  map Lp(R,ω(x) dx) for ω(x) ∈ Ap in the range  < p < ∞,
and map L(R,ω(x) dx) into L,∞(R,ω(x) dx) for ω ∈ A, where R± are the Hermitian Riesz
transforms, that is, the Riesz transform associated with the harmonic oscillator

L =
(
A∗A + AA∗)/, A =

d
dx

+ x and A∗ = –
d

dx
+ x.

Precisely, R± are bounded from Lp(R, dx) into itself for  < p < ∞, and from L(R, dx) into
L,∞(R, dx) (see [, ]). Moreover, R± are principal value operators, that is,

R±(f )(x) = lim
ε→

R±
ε (f )(x) = lim

ε→

∫

|x–y|>ε

R±(x, y)f (y) dy, a.e. x, f ∈ L(R, dx),
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where R±(x, y) are the appropriated kernels whose expressions can be found in []. In
particular, by Proposition . in [], the kernels R±(x, y) of the Riesz transform R±

are the standard Calderón-Zygmund kernels satisfying (.)-(.). We consider oscilla-
tion and variation operators for commutators of the Hilbert transform and Hermitian
Riesz transform. Let �b = (b, . . . , bm) be a locally integrable function on R, H�b = {Hε,�b}ε
and R±

�b = {R±
ε,�b}ε , where

Hε,�b(f )(x) = [�b, Hε](f )(x) =
∫

|x–y|>ε

m∏

j=

(
bj(x) – bj(y)

) f (y)
x – y

dy

and

R±
ε,�b(f )(x) =

[�b,R±
ε

]
(f )(x) =

∫

|x–y|>ε

m∏

j=

(
bj(x) – bj(y)

)
R±(x, y)f (y) dy.

Then applying Theorems .-. to H and R±, we get the following results.

Theorem . Let T = {Tε} be either the truncations of the Hilbert transform H = {Hε}ε
or the truncations of Hermitian Riesz transforms R± = {R±

ε }ε , and T�b = {Tε,�b}ε the corre-
sponding iterated commutators with �b = (b, . . . , bm). If bi ∈ ∧̇βi (i = , . . . , m) with  < β =
β + · · · + βm < , ρ > , then for  < p < /β with /q = /p – β and ω ∈ A(p,q),

∥
∥O(T�bf )

∥
∥

Lq(wq) ≤ C‖�b‖∧̇β
‖f ‖fLp(ωp)

and

∥
∥Vρ(T�bf )

∥
∥

Lq(ωq) ≤ C‖�b‖∧̇β
‖f ‖Lp(ωp).

Theorem . Let T = {Tε} be either the truncations of the Hilbert transform H = {Hε}ε
or the truncations of Hermitian Riesz transforms R± = {R±

ε }ε , and Tb = {Tε,b}ε the corre-
sponding commutators with b ∈ ∧̇β and  < β < . Then, for ρ > , /β < p < ∞,

∥
∥O(Tbf )

∥
∥∧̇(β–/p)

≤ C‖b‖∧̇β
‖f ‖Lp ,

∥
∥Vρ(Tbf )

∥
∥∧̇(β–/p)

≤ C‖b‖∧̇β
‖f ‖Lp

and

∥
∥O(Tbf )

∥
∥

BMO ≤ C‖b‖∧̇β
‖f ‖L/β ,

∥
∥Vρ(Tbf )

∥
∥

BMO ≤ C‖b‖∧̇β
‖f ‖L/β .

Remark . Obviously, Tε = Hε and Tε,�b = Hε,�b for K(x, y) = /(x – y) satisfying (.)-(.)
with δ =  and A = . And by Proposition . in [], we know that Tε = R±

ε and Tε,�b = R±
ε,�b

for K(x, y) = R±(x, y) satisfying (.)-(.) with δ =  and some A > . Also, by Theorems .
and . in [] (resp., by Theorem A in []), O(H) and Vρ(H) (resp., O(R±) and Vρ(R±))
with ρ >  are bounded on Lp(R) for  < p < ∞. Then Theorems . and . directly follow
from Theorems .-..
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5.2 On the λ-jump operators and the number of up-crossing
To the end, as applications of our main results, we consider the λ-jump operators and the
number of up-crossing associated with the operators sequence {Tε}, which give certain
quantitative information on the convergence of the family {Tε}.

Definition . The λ-jump operator associated with a sequence T = {Tε}ε applied to a
function f at a point x is denoted by �(T , f ,λ)(x) and defined by

�(T , f ,λ)(x) := sup
{

n ∈ N : there exist s < t ≤ s < t < · · · ≤ sn < tn

such that
∣
∣Tsi f (x) – Tti f (x)

∣
∣ > λ for i = , , . . . , n

}
. (.)

Proposition . ([]) If λ-jump operators is finite a.e. for each choice of λ > , then we
must have a.e. convergence of our family of operators.

Proposition . ([]) The λ-jump operators are controlled by the ρ-variation operator.
Precisely, we have

λ
(
�(T , f ,λ)(x)

)/ρ ≤ Vρ(T f )(x).

Applying Theorems .-. together with Proposition ., we can get the following re-
sults.

Theorem . Suppose that K(x, y) satisfies (.)-(.), �b = (b, . . . , bm) with bi ∈ ∧̇βi (i =
, . . . , m) and  < β = β + · · · + βm ≤ δ < , where δ is the same as in (.), ρ > . Let T =
{Tε}ε> and T�b = {Tε,�b}ε> be given by (.) and (.), respectively. If Vρ(T ) is bounded in
Lr(R, dx) for some  < r < ∞, then for  < p < /β with /q = /p – β and ω ∈ A(p,q), we have

∥
∥�(T�b, f ,λ)/ρ∥∥

Lq(ωq) ≤ C(p, q,ρ)
λ

‖�b‖∧̇β
‖f ‖Lp(ωp).

Theorem . Suppose that K(x, y) satisfies (.)-(.), b ∈ ∧̇β ,  < β ≤ δ < , where δ is
the same as in (.), ρ > . Let T = {Tε}ε> and Tb = {Tε,b}ε> be given by (.) and (.),
respectively. If Vρ(T ) is bounded in Lr(R, dx) for some  < r < ∞, then we have

∥
∥�(Tb, f ,λ)/ρ∥∥∧̇(β–/p)

≤ C(p,ρ)
λ

‖b‖∧̇β
‖f ‖Lp for /β < p < ∞

and

∥
∥�(Tb, f ,λ)/ρ∥∥

BMO ≤ C(ρ)
λ

‖b‖∧̇β
‖f ‖L/β .

Also, for fixed  < α < γ , we consider the number of up-crossing associated with a se-
quence T = {Tε}ε applied to a function f at a point x, which is defined by

N(T , f ,α,γ , x) = sup
{

n ∈ N : there exist s < t < s, t < · · · < sn < tn

such that Tsi f (x) < α, Tti f (x) > γ for i = , , . . . , n
}

. (.)
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It is easy to check that

N(T , f ,α,γ , x) ≤ �(T , f ,γ – α)(x). (.)

This together with Theorems . and . directly leads to the following results.

Theorem . Under the same assumptions as in Theorem . or Theorem ., we have

∥
∥N(T�b, f ,α,γ , ·)/ρ∥∥

Lq(ωq) ≤ C(p, q,ρ)
γ – α

‖�b‖∧̇β
‖f ‖Lp(ωq)

or

∥
∥N(Tb, f ,α,γ , ·)/ρ∥∥∧̇(β–/p)

≤ C(p,ρ)
γ – α

‖b‖∧̇β
‖f ‖Lp for /β < p < ∞

and

∥
∥N(Tb, f ,α,γ , ·)/ρ∥∥

BMO ≤ C(ρ)
γ – α

‖b‖∧̇β
‖f ‖L/β .

Finally, by Remark . and Theorems .-., we have the following.

Theorem . Let T = {Tε} be either the truncations of the Hilbert transform H = {Hε}ε or
the truncations of Hermitian Riesz transforms R± = {R±

ε }ε , and T�b = {Tε,�b}ε , or Tb = {Tε,b},
the corresponding commutators with �b ∈ ∧̇ �β , or b ∈ ∧̇β ,  < β < . Then the corresponding
conclusions of Theorems .-. hold.
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