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Abstract
In this paper, we present the best possible parameter a ∈ (1/15,∞) such that the
functions ψ ′(x + 1) –Lx(x,a) and ψ ′′(x + 1) –Lxx(x,a) are strictly increasing or
decreasing with respect to x ∈ (0,∞), where L(x,a) = 1

90a2+2
log(x2 + x + 3a+1

3 ) +
45a2

90a2+2
log(x2 + x + 15a–1

45a ) and ψ (x) is the classical psi function. As applications, we get
several new sharp bounds for the psi function and its derivatives.
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1 Introduction
For real and positive values of x, Euler’s gamma function � and its logarithmic derivative
ψ , the so-called psi function, are defined by

�(x) =
∫ +∞


tx–e–t dt, ψ(x) =

�′(x)
�(x)

,

respectively. For extensions of these functions to complex variables and for basic proper-
ties see []. Recently, the gamma function � and psi function ψ have been the subject of
intensive research. In particular, many remarkable inequalities and monotonicity proper-
ties for these functions can be found in the literature [–].

Recently, Yang [] introduced the function

L(x, a) =


a + 
log

(
x + x +

a + 


)

+
a

a + 
log

(
x + x +

a – 
a

)
(.)

and proved that the double inequality

L(x, a) < ψ(x + ) < L(x – , b) +

x

holds for all x >  if and only if a ≤ a = . . . . and b ≥ ( + 
√

)/ = . . . . if
a ∈ (/,∞) and b ∈ (/,∞), where a is the unique solution of the equation L(, a) =
ψ().
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Partial derivative computations give

Lx(x, a) =


a + 
x + 

x + x + a + 


+
a

a + 
x + 

x + x + a–
a

, (.)

Lxx(x, a) = –


a + 
x + x – a + 



(x + x + a + 
 )

–
a

a + 
x + x + 

a + 


(x + x + a–
a )

, (.)

Lxxx(x, a) =


a + 
(x + )(x + x – a)

(x + x + a + 
 )

+
a

a + 
(x + )(x + x + 

a )
(x + x + a–

a )
. (.)

It is not difficult to verify that

lim
x→∞

ψ(x + ) – L(x, a)
x– = –

(a – +
√


 )(a – –

√


 )
,a

(.)

by use of the L’Hôspital’s rule and the formula

ψ ′(x) ∼ 
x

+


x +


x –


x +


x –


x + · · · (x → ∞) (.)

given in [].
The main purpose of this paper is to present the best possible parameter a ∈ (/,∞)

such that the functions ψ ′(x + ) – Lx(x, a) and ψ ′′(x + ) – Lxx(x, a) are strictly increas-
ing or decreasing with respect to x ∈ (,∞), and establish several new sharp bounds for
the psi function and its derivatives. All numerical computations are carried out using the
MATHEMATICA software.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

Lemma . (see []) Let L(x, a) be defined on (,∞) × (/,∞) by (.). Then the follow-
ing statements are true:

(i) the functions a 
→ ∂L(x, a)/∂x is strictly decreasing, a 
→ ∂L(x, a)/∂x is strictly
increasing and a 
→ ∂L(x, a)/∂x is strictly decreasing on (/,∞);

(ii) the function a 
→Lxx(x, a) – Lxx(y, a) is strictly decreasing on (/,∞) if x > y > ;
(iii) the inequalities ψ ′(x + ) – Lx[x, ( + 

√
)/] > ,

ψ ′′(x + ) – Lxx[x, ( + 
√

)/] < , and
ψ ′′′(x + ) – Lxxx[x, ( + 

√
)/] >  hold for all x > .

Lemma . (see []) The identity

ψn(x + ) – ψn(x) =
(–)nn!

xn+

holds for all x >  and n ∈N.

Lemma . (see []) Let λ ∈ R and f be a real-valued function defined on the interval
I = (λ,∞) with limx→∞ f (x) = . Then f (x) <  if f (x + ) – f (x) >  for all x ∈ I , and f (x) > 
if f (x + ) – f (x) <  for all x ∈ I .
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3 Main results
Theorem . Let L(x, a) be defined on (,∞) × (/,∞) by (.) and Fa(x) = ψ(x + ) –
L(x, a). Then the following statements are true:

(i) Fa(x) is strictly increasing with respect to x on (,∞) if and only if
a ≥ a = ( + 

√
)/ = . . . . ;

(ii) Fa(x) is strictly decreasing with respect to x on (,∞) if and only if
a ≤ a = ( – π + 

√
π – π + )/[(π – )] = . . . . .

Proof (i) If Fa(x) is strictly increasing with respect to x on (,∞), then
limx→∞[xF ′

a(x)] ≥ . Making use of L’Hôspital’s rule and (.) we get

lim
x→∞

ψ(x + ) – L(x, a)
x– = –




lim
x→∞

[
xF ′

a(x)
]

= –
(a – +

√


 )(a – –
√


 )

,a
≤ . (.)

Therefore, a ≥ a = ( + 
√

)/ follows easily from (.) and a ∈ (/,∞).
If a ≥ a = ( + 

√
)/, then Lemma .(i) and (iii) lead to

F ′
a(x) = ψ ′(x + ) – Lx(x, a) ≥ ψ ′(x + ) – Lx(x, a) > 

for all x ∈ (,∞). Therefore, Fa(x) is strictly increasing with respect to x on (,∞).
(ii) If Fa(x) is strictly decreasing with respect to x on (,∞), then

F ′
a() = ψ ′() – Lx(, a) ≤ . (.)

It follows from (.) and ψ ′() = π/ that

ψ ′() – Lx(, a) =
(π – )a – ( – π)a – π + 

(a + )(a – )
. (.)

Therefore, a ≤ a = ( – π + 
√

π – π + )/[(π – )] follows from (.)
and (.) together with a ∈ (/,∞).

Next, we prove that Fa(x) is strictly decreasing with respect to x on (,∞) if a ≤ a. From
Lemma .(i) we clearly see that it is enough to prove that F ′

a (x) < ψ ′(x + ) –Lx(x, a) < 
for all x ∈ (,∞).

Let x >  and a > /. Then it follows from (.), (.), and Lemma . that

lim
x→∞ F ′

a(x) = lim
x→∞

[
ψ ′(x + ) – Lx(x, a)

]
= , (.)

F ′
a(x + ) – F ′

a(x)

= ψ ′(x + ) – ψ ′(x + ) – Lx(x + , a) + Lx(x, a)

= –
(x + ) + 

(a + )[(x + ) + (x + ) + a+
 ]

–
a[(x + ) + ]

(a + )[(x + ) + (x + ) + a–
a ]
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+
x + 

(a + )(x + x + a+
 )

+
a(x + )

(a + )(x + x + a–
a )

–


(x + )

=
q(x, a)
p(x, a)

, (.)

where

q(x, a) =
(a + 

√
–
 )( +

√


 – a)
a

(x + ) –
(a + 

 )(a – 
 )

a , (.)

p(x, a) = (x + )
(

x + x + a +



)(
x + x + a +




)

×
(

x + x +



–


a

)(
x + x +




–


a

)
>  (.)

and

∂q(x, a)
∂a

= –
(a + )

,a (x + ) –
(a + 

 )(a – 
 )(,a + )

,a < . (.)

We divide the proof into two cases.
Case . x ∈ (/,∞). Then from (.) and (.) together with a < / we get

q(x, a) > q
(

x,



)
> q

(



,




)
=

,,
,,,

> . (.)

Equation (.) and inequalities (.) and (.) lead to

F ′
a (x + ) – F ′

a (x) > . (.)

Therefore, F ′
a (x) <  follows from Lemma . and (.) together with (.).

Case . x ∈ (, /]. Then Lemma .(i) and a > / lead to

Lxx(x, a) > Lxx

(
x,




)
. (.)

It follows from (.) and Lemma .(iii) together with (.) that

F ′′
a (x) = ψ ′′(x + ) – Lxx(x, a) < Lxx(x, a) – Lxx(x, a) =

P(x)
Q(x)

, (.)

where

Q(x) =
(
x + x + 

)(x + x + 
)

× (
x + x + x + x + 

)(x + ) >  (.)

and

P(x) = ,,,x + ,,,x + ,,,,x

+ ,,,,x + ,,,,x + ,,,,x
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+ ,,,,x + ,,,,x + ,,,,x

+ ,,,,x + ,,,x – ,,,. (.)

From (.) we clearly see that

P(x) <  (.)

for x ∈ (, /] since P(x) is strictly increasing on (, /] and

P
(




)
= –

,,,,,,,
,,,,

< .

Equation (.) and inequalities (.) and (.) lead to the conclusion that F ′
a (x) is

strictly decreasing on (, /]. Therefore, F ′
a (x) < F ′

a () = . �

Theorem . Let L(x, a) be defined on (,∞)× (/,∞) by (.), Fa(x) = ψ(x + ) –L(x, a)
and a = . . . . is the unique solution of the equation Lxx(, a) = ψ ′′(). Then the fol-
lowing statements are true:

(i) F ′
a(x) is strictly decreasing with respect to x on (,∞) if and only if

a ≥ a = ( + 
√

)/ = . . . . ;
(ii) F ′

a(x) is strictly increasing with respect to x on (,∞) if and only if a ≤ a.

Proof (i) If F ′
a(x) is strictly decreasing with respect to x on (,∞), then

limx→∞[xF ′′
a (x)] ≤ . Making use of L’Hôspital’s rule and (.) we get

lim
x→∞

ψ(x + ) – L(x, a)
x– =




lim
x→∞

[
xF ′′

a (x)
]

= –
(a – +

√


 )(a – –
√


 )

,a
≤ . (.)

Therefore, a ≥ a = ( + 
√

)/ follows easily from (.) and a ∈ (/,∞).
If a ≥ a = ( + 

√
)/, then

F ′′
a (x) = ψ ′′(x + ) – Lxx(x, a) ≤ ψ ′′(x + ) – Lxx(x, a) < 

follows easily from Lemma .(i) and (iii).
(ii) If F ′

a(x) is strictly increasing with respect to x on (,∞), then

F ′′
a () = ψ ′′() – Lxx(, a) ≥ . (.)

It follows from Lemma .(i) that the function a 
→ F ′′
a () is strictly decreasing on

(/,∞). Note that

F ′′
a () = , a ∈ (/, /), (.)

F ′′
/() =




– 
∞∑

n=


n = . . . . > , (.)

F ′′
/() =

,
,

– 
∞∑

n=


n = –. . . . < . (.)
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Therefore, a ≤ a follows from (.)-(.) and the monotonicity of the function a 
→
F ′′

a ().
If a ≤ a, then we only need to prove that F ′′

a (x) >  for all x ∈ (,∞) by Lemma .(i).
We divide the proof into two cases.
Case . x ∈ (/,∞). Then from (.), (.), Lemma .(ii), Lemma . and a < /

we get

lim
x→∞ F ′′

a (x) = lim
x→∞

[
ψ ′′(x + ) – Lxx(x, a)

]
= , (.)

F ′′
a (x + ) – F ′′

a (x)

= ψ ′′(x + ) – ψ ′′(x + ) –
[
Lxx(x + , a) – Lxx(x, a)

]

<


(x + ) –
[
Lxx

(
x + ,




)
– Lxx

(
x,




)]
= –

r(x)
s(x)

, (.)

where

s(x) =
(
x + x + 

)(x + x + 
)

× (
x + x + 

)(x + x + 
)(x + ) >  (.)

and

r(x) = ,,,,x + ,,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,x + ,,,,x

– ,,,,.

We clearly see that

r(x) >  (.)

for x ∈ (/,∞) since r(x) is strictly increasing on (/,∞) and

r
(




)
=

,,,,,,,,
,,,,

> .

Therefore, F ′′
a (x) >  for x ∈ (/,∞) follows from (.)-(.) and Lemma ..

Case . x ∈ (, /]. Then from F ′′
a () = ψ ′′() –Lxx(, a) =  we know that it is enough

to prove that F ′′′
a (x) > .

It follows from (.) and Lemma .(i) and (iii) together with a > / that

F ′′′
a (x) = ψ ′′′(x + ) – Lxxx(x, a)

> Lxxx(x, a) – Lxxx

(
x,




)
= –

R(x)
S(x)

, (.)
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where

S(x) = (x + )(x + x + 
)(x + x + 

)

× (
x + x + x + x + 

) >  (.)

and

R(x) = ,,,,,,x

+ ,,,,,,x

+ ,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,x

– ,,,,,,x

– ,,,,,,.

It follows from

R′′(x) > , R() < ,

and

R
(




)
= –

,,,,,,,,,,,,,,
,,,,,,,,

< 

that

R(x) <
/ – x

/
R() +

x
/

R(/) < . (.)
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Therefore, F ′′′
a (x) >  follows from (.)-(.). �

Let a = ( + 
√

)/, a = ( – π + 
√

π – π + )/[(π – )], and
a = . . . . be the unique solution of the equation Lxx(, a) = ψ ′′(). Then (.) and
(.) lead to

Lx(x, a) =
(

x +



)
x + x + /

x + x + x/ + x/ + /
, (.)

Lx(x, a) =
(

x +



) x + x + π

(π–)

x + x + π–
(π–) x + π–

(π–) x + 
(π–)

, (.)

Lxx(x, a)

= –



(,x + ,x + ,x + ,x + ,x + ,x + )
(x + x + x + x + ) , (.)

Lxx

(
x,




)
= –




x + ,x + ,x + ,x + x + x + 
(x + x + )(x + x + ) . (.)

From Lemma .(i), Theorems . and ., (.)-(.), and a > / we have the fol-
lowing.

Corollary .
(i) The double inequalities

Lx(x, a) < ψ ′(x + ) < Lx(x, a)

and

Lxx(x, a) < ψ ′′(x + ) < Lxx(x, a)

hold for all x >  with the best possible constants a, a, and a.
(ii) The double inequalities

(
x +




) x + x + 


x + x + x
 + x

 + 


< ψ ′(x + )

<
(

x +



) x + x + π

(π–)

x + x + π–
(π–) x + π–

(π–) x + 
(π–)

–



x + ,x + ,x + ,x + x + x + 
(x + x + )(x + x + )

< ψ ′′(x + )

< –



(,x + ,x + ,x + ,x + ,x + ,x + )
(x + x + x + x + )

hold for all x > .
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Let a ∈ ( 
 , –π+

√
π–π+

(π–) ] and γ = . . . . be the Euler-Mascheroni con-
stant. Then from Lemma .(ii) and the fact that Fa() = –γ –L(, a) and limx→∞ Fa(x) = 
we get Corollary . immediately.

Corollary . The double inequality

L(x, a) < ψ(x + ) < L(x, a) – γ – L(, a)

holds for all x >  and a ∈ ( 
 , –π+

√
π–π+

(π–) ] with the best possible constant –γ –
L(, a).

In particular, taking a = /, /,
√

/, / and using (.) one has




log

(
x + x +




)
+




log

(
x + x +




)

< ψ(x + ) <



log

(
x + x +




)
+




log

(
x + x +




)
+




log



+



log



– γ ,




log

(
x +




)
+




log

(
x + x +




)

< ψ(x + ) <



log

(
x +




)
+




log

(
x + x +




)
+




log  +



log




– γ ,




log

[(
x + x +




)

–




]
< ψ(x + ) <




log

[(
x + x +




)

–




]
+




log



– γ

and

ψ(x + ) >



log

(
x + x

)
+




log

(
x + x +




)

for x > .
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