Zhao et al. Journal of Inequalities and Applications (2015) 2015:193 ® Journal of Inequalities and Applications

DOI 10.1186/513660-015-0724-2

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Monotonicity properties of a function
involving the psi function with applications

Tie-Hong Zhao', Zhen-Hang Yang? and Yu-Ming Chu*"

“Correspondence:
chuyuming2005@126.com
3School of Mathematics and
Computation Sciences, Hunan City
University, Yiyang, 413000, China
Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we present the best possible parameter a € (1/15, 00) such that the
functions ¥'(x + 1) = L,(x,a) and " (x + 1) - L (x,a) are strictly increasing or

decreasing with respect to x € (0,00), where L(x,a) = = log(x? + x + 241) +

90a2+2
45402 2 15a-1 . : . : o
50015 1090 +x + =5-) and ¥ (x) is the classical psi function. As applications, we get

several new sharp bounds for the psi function and its derivatives.
MSC: 33B15
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1 Introduction
For real and positive values of x, Euler’s gamma function I' and its logarithmic derivative
¥, the so-called psi function, are defined by

" —t I (x)
F(x)—/o et dt, Yx) = Ok
respectively. For extensions of these functions to complex variables and for basic proper-
ties see [1]. Recently, the gamma function I" and psi function ¥ have been the subject of
intensive research. In particular, many remarkable inequalities and monotonicity proper-
ties for these functions can be found in the literature [2-18].
Recently, Yang [19] introduced the function

1 5 3a+1
ﬁ(x,a):mlog<x +x+ 3 )

45a> 5 15a -1
log( % +x + (L1)

+ _
90a? + 2 45a

and proved that the double inequality
1

Lx,a)<yx+1)<Lx—-1,b)+ -

x

holds forallx > 0 ifand only ifa < ag = 0.5129...and b > (40 + 3+/205)/105 = 0.7900... if
a € (1/15,00) and b € (4/15, 00), where a4 is the unique solution of the equation £(0,a) =

v (D).
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Partial derivative computations give

L6 a) 1 2% +1 4547 2x+1 2
x,a) = ) .
" 90a? +2x2 +x+a+; 90“2+2x2+x+1?£u1
Loa) = — 1 Krx—a+yg 450> X+ X+ 0t 1 13
- 4522 +1 (2 +x +a+ 3)? 45a2+1(x2+x+15a Iy’ :
Loa) = 1 Qe+ +x— Sa) 450> (x+ 1) +x+ 1) L4)
T 4522+ 1 (R rxva+ 1) Y211 (Prxe BaT); :
It is not difficult to verify that
o VD= Lma) (o 0520 - 0500 s
x=>00 X 85,050a :
by use of the L'Hospital’s rule and the formula
1 1 1 1 1 1
et o2t ea T - 1.
Ve~ 2 T 68 30w Taaw a0 T B (1.6)

given in [20].

The main purpose of this paper is to present the best possible parameter a € (1/15, 00)
such that the functions ¥/(x + 1) — L,(x,4) and ¥"(x + 1) — L,x(x, a) are strictly increas-
ing or decreasing with respect to x € (0,00), and establish several new sharp bounds for
the psi function and its derivatives. All numerical computations are carried out using the
MATHEMATICA software.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-

tion.

Lemma 2.1 (see [19]) Let L(x,a) be defined on (0, 00) x (1/15,00) by (1.1). Then the follow-
ing statements are true:
(i) the functions a v dL(x,a)/0x is strictly decreasing, a — 82 L(x,a)/dx? is strictly
increasing and a — 9> L(x,a)/9x> is strictly decreasing on (1/15,00);
(ii) the function a > Lyx(x,a) — Ly(y, a) is strictly decreasing on (1/15,00) if x > y > 0;
(ili) the inequalities W' (x + 1) — L,[x, (40 + 34/205)/105] > 0,
U (x +1) = Lox[x, (40 + 34/205)/105] < 0, and
U (% +1) = Lygel, (40 + 34/205)/105] > 0 hold for all x > 0.

Lemma 2.2 (see [20]) The identity

" Y (-1)"n!
P ) =) =
x
holds for all x>0 and n e N.

Lemma 2.3 (see [21]) Let A € R and f be a real-valued function defined on the interval
I=(x,00) withlimy_, o f(x) =0. Then f(x) <0 if f(x +1) — f(x) >0 forallx € I, and f(x) > 0
iffix+1)—f(x) <0 forallx el
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3 Main results
Theorem 3.1 Let L(x,a) be defined on (0,00) x (1/15,00) by (1.1) and F,(x) = y(x + 1) —
L(x,a). Then the following statements are true:
(i) Fa(x) is strictly increasing with respect to x on (0,00) if and only if
a > a; = (40 + 34/205)/105 = 0.7900.. .;
(i) F,(x) is strictly decreasing with respect to x on (0, 00) if and only if
a<a,=(45-472 + 3V/4n* - 8072 + 405)/[30(7% - 9)] = 0.4705....

Proof (i) If F,(x) is strictly increasing with respect to x on (0,00), then
lim,_, o [x” F/,(x)] > 0. Making use of L'Hospital’s rule and (1.5) we get

. Yx+1) - Lx,a)
m-_———2 "7 -

li ! lim [x7F; (x)]

X—>00 x—6 6 x—o00
40+3+/205 40-3/205
__lem e TG ) (3.1)
85,050a

Therefore, a > a; = (40 + 34/205)/105 follows easily from (3.1) and a € (1/15, 00).
If a > a; = (40 + 34/205)/105, then Lemma 2.1(i) and (iii) lead to

F(x)=vy'(x+1) - Ly(x,a) > ' (x+1) - Ly(x,a1) >0

for all x € (0, 00). Therefore, F,(x) is strictly increasing with respect to x on (0, 00).
(ii) If F,(x) is strictly decreasing with respect to x on (0, 00), then

F(0)=y'(1) - £4(0,a) 0. (3.2)

It follows from (1.2) and ¥’'(1) = w2/6 that

2 _ 2 _ _ 2V, _ 2
W'(1) = L4(0,a) = 45(m 9)6a(3a E(S?IS:T 1))61 72+ 9‘ (3.3)

Therefore, a < ay = (45 — 472 + 347w — 8072 + 405)/[30(72 - 9)] follows from (3.2)
and (3.3) together with a € (1/15, 00).

Next, we prove that F,(x) is strictly decreasing with respect to x on (0, o0) if a < a,. From
Lemma 2.1(i) we clearly see that it is enough to prove that F), (x) < ¢'(x +1) - Li(x,a2) < 0
for all x € (0, 00).

Let x > 0 and a > 1/15. Then it follows from (1.2), (1.6), and Lemma 2.2 that

lim F)(x) = lim [1//(x +1)— ﬁx(x,a)] =0, (3.4)

Fl(x+1) - F.(x)
=Y (x+2) =Y (x+1) = Lo(x +1,a) + L(x,a)
2 +1) +1

(9042 + 2)[(x +1)2 + (x + 1) + %]

45a%[2(x +1) +1]

" (90a? +2)[(x + 1) + (x + 1) + L]
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2x +1 454%(2x + 1) 1
+ + -
(904 +2)(x2 +x + 241)  (90a% +2)(2 +x + BLY)  (x+1)
_qxa)
pxa)’
where
_7(a+3‘/217055_40)(40+ﬁ;§m—a) , (a+%)2(a—% 2
q(x,a) = (x+1)° - ,
45a 9a?

7 1
p(x,a):(x+1)2(x2+3x+a+§)<x2+x+a+§>

3 1 1 3 7 1
X +x+-—— (2" +3x+--—1]>0
3  45a 3  4ba

dq(x,a)  7(454% +1)
da  2,025a2

and

2(a + 3)(a - £)(2,025a + 45) 0
- <

x+1)2
( ) 18,225a3

We divide the proof into two cases.

Case 1. x € (1/20, 00). Then from (3.6) and (3.8) together with a; < 48/100 we get

) 48 1 48 2,341,501
X,dy) > X, —— > —_— = >
T2 >4\ * 160 ) 79\ 20° 100 ) ~ 1,312,200,000

Equation (3.5) and inequalities (3.7) and (3.9) lead to

F,(x+1)-F, (x)>0.

Therefore, F), (x) < 0 follows from Lemma 2.3 and (3.4) together with (3.10).

Case 2. x € (0,1/20]. Then Lemma 2.1(i) and a5 > 9/20 lead to

9
Lon(,3) > Lo (x %).

It follows from (1.3) and Lemma 2.1(iii) together with (3.11) that

p
Fy(6) = 9" (e 1) = Lys(,02) < Lasl, 1) = Lys(,32) = %’

where

Q(x) = (604> + 60x + 47)* (81x° + 81x + 23)°

x (570x + 505x> + 210x> + 35x* + 252)2(x +1)3%>0
and

P(x) = 9,756,595,800x" + 146,348,937,000x™° + 1,005,597,383,250x°

+3,954,619,691,700x° + 9,800,346,642,855x” + 16,058,808,560,085x°

Page 4 of 10

(3.5)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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+17,731,092,059,926x° + 13,107,900,251,862x* + 6,210,045,031,977x>

+1,655,666,210,995x* + 153,061,816,584x — 15,463,394,658. (3.14)

From (3.14) we clearly see that
P(x) <0 (3.15)

for x € (0,1/20] since P(x) is strictly increasing on (0,1/20] and

p 1\  2,874,530,403,954,909,124,821
20 1,024,000,000,000

Equation (3.12) and inequalities (3.13) and (3.15) lead to the conclusion that F;z (x) is
strictly decreasing on (0,1/20]. Therefore, F, (x) < F,,(0) = 0. O

Theorem 3.2 Let L(x,a) be defined on (0, 00) x (1/15,00) by (1.1), F,(x) = ¥ (x+1) — L(x,a)
and asz = 0.4321... is the unique solution of the equation L,,(0,a) = " (1). Then the fol-
lowing statements are true:
(i) F,(x) is strictly decreasing with respect to x on (0,00) if and only if
a > aj = (40 + 34/205)/105 = 0.7900....;
(ii) F,(x) is strictly increasing with respect to x on (0,00) if and only if a < as.

Proof (i) If F,(x) is strictly decreasing with respect to x on (0,00), then
lim, oo [¥8F// (x)] < 0. Making use of L'Hospital’s rule and (1.5) we get

Y+ -Lxa) 1
m _

o n 8
xlioo X6 T 42 xli>rlgc>[x Fa (x)]
_ 40+3+/205\(,, _ 40-34/205
_ _(“ A 05 ) <o0. (3.16)
85,050a

Therefore, a > a; = (40 + 34/205)/105 follows easily from (3.16) and a € (1/15, 00).
If a > a; = (40 + 34/205)/105, then

FJ(x) =y"(x+1) = Lox(x,a) <" (x+1) — Lyw(¥,a1) <O

follows easily from Lemma 2.1(i) and (iii).
(ii) If F,(x) is strictly increasing with respect to x on (0, 00), then

FJ(0)=¢"(1) = Lx(0,a) > 0. (3.17)

It follows from Lemma 2.1(i) that the function a — F,/(0) is strictly decreasing on
(1/15, 00). Note that

F;’g (0)=0, ase(1/3,1/2), (3.18)

, 171
Fl//S(O) = 6_

o0
1
I —2}122;11—3 =0.2677...>0, (3.19)

19,299

b0 = g0

o0
1
-2 Z — = ~0.1202...<0. (3.20)
n=1
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Therefore, a < a3 follows from (3.17)-(3.20) and the monotonicity of the function a
F/(0).

If a < a3, then we only need to prove that FZS (%) > 0 for all x € (0, 00) by Lemma 2.1(i).

We divide the proof into two cases.

Case 1. x € (3/50,00). Then from (1.3), (1.6), Lemma 2.1(ii), Lemma 2.2 and a3 < 9/20

we get
xlirgo F, (x) = xli)rgo [V (% +1) = Laxlx,a3)] =0, (3.21)
F, (x+1)-F, (%)
=y (x+2) -y (x+1) - [‘Cxx(x +1,a3) = Lax(x, “3)]
2 9 9 ~ 2r(x)
o |E(r ) - ea(vag) |- 422

where

s(x) = (60x + 60x° + 47)” (8Lx + 81«7 + 23)°

x (180x + 60x> +167)” (243 + 812 + 185)*(x + 1)> > 0 (3.23)
and

r(x) = 125,413,273,555,200x'° + 1,254,132,735,552,000x°
+5,518,250,043,762,960x° + 14,046,814,696,855,680x”
+22,840,386,490,946,664x° + 24,664,633,018,794,864x°
+17,718,225,566,437,953x" + 8,120,232,997,769,412x>
+2,081,281,129,927,908x> + 179,154,971,702,976x

-19,953,618,766,474.
We clearly see that
r(x) >0 (3.24)

for x € (3/50, c0) since r(x) is strictly increasing on (3/50, c0) and

3 1,114,560,14:8,894,087,067,992,508
rl — 1\ =
50 3,814,697,265,625

Therefore, F}, (x) > 0 for x € (3/50, 00) follows from (3.21)-(3.24) and Lemma 2.3.

Case2.x € (0,3/50]. Then from F,; (0) = ¥"(1) - L,x(0,a3) = 0 we know that it is enough
to prove that Ft’l’; (x)>0.

It follows from (1.4) and Lemma 2.1(i) and (iii) together with a3 > 21/50 that

F;/; (x) = 'Q[fm(x + 1) - £xxx(x: aB)

21\  RW)
X, %> = _3S(x) ) (3.25)

> Lyx(®,a1) — ﬁxxx(
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where

S(x) = (x+1)*(1504% + 150x + 113)° (18942 + 189x + 53)°

x (35x* +2104% + 5054 + 570x + 252)° > 0

and

R(x) = 1,439,970,288,529,500,000x"
+33,839,301,780,44:3,250,000x'
+377,685,219,317,959,507,500x"
+2,619,038,198,507,995,293,750x1¢
+12,578,516,662,166,74.8,200,250x'°
+44,394,499,254,715,419,844,125x™
+119,436,801,689,614,664,479,875x">
+250,817,342,412,016,626,059,625x'
+417,457,335,039,758,233,395,000x"
+555,642,395,442,917,892,895,800x°
+593,602,907,219,352,981,396,390x°
+508,233,654,389,427,279,197,745x°
+346,198,219,129,731,218,829,124x”
+184,849,155,080,550,188,733,3104°
+75,353,569,007,634,565,613,769x°
+22,380,430,314,381,942,509,812x*
+4,414,609,088,286,249,144,994x>
+450,421,073,304,504,390,873x>
- 4,721,565,008,851,422,102x

—4,420,688,040,144,642,816.
It follows from

R’(x) >0, R(0) <0,

Page 7 of 10

(3.26)

and
NE 337,711,343,455,989,855,048,292,675,691,209,992,53L618, 111
_ J— <
50 190,734,863,281,250,000,000,000,000
that
3/50 —
Rx) < 2P0 =% p0) + % R(3/50) < 0.

3/50 3/50

(3.27)
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Therefore, F;’; (x) > 0 follows from (3.25)-(3.27). O

Let a; = (40 + 3+/205)/105, ay = (45 — 47% + 3+/4m* — 8072 + 405)/[30(% - 9)], and
as = 0.4321... be the unique solution of the equation £,,(0,a) = ¥”(1). Then (1.2) and

(1.3) lead to
1 x+x2+23/21
L,(x, = — s 3.28
(o) (x " 2) x4+ 25 + 1722/7 + 10%/7 + 12/35 (3.28)
2 72
1 XX+
L.(x,ay) = (x + —) 3 5 , (3.29)
2) x4 + 243 + Zz;{fgo)xz + 52(7;2:195)96 + 5(ﬂ%79)
Exx(x; ﬂl)
5 (1,470x° + 4,410x° + 7,875x" + 8,400x° + 5,863x° + 2,398x + 346) (3.30)
6 (35x% + 7043 + 852 + 50x + 12)2 ’ ’
1 9 450x° +1,350x° + 1,965x* + 1,680x> + 897x% + 282x + 38
Lol =) =—= (3.31)
3 2 (3x2 + 3x + 2)2(15x2 + 15x + 4)2

From Lemma 2.1(i), Theorems 3.1 and 3.2, (3.28)-(3.31), and a3 > 1/3 we have the fol-
lowing.

Corollary 3.3
(i) The double inequalities

Li(x,a1) < ¥'(x+1) < Ly(x, a2)
and
Lix(x,a3) <" (% +1) < Ly, a1)

hold for all x > 0 with the best possible constants a, a,, and as.
(i) The double inequalities

( 1) x+a?+ B
X+ = >
2) xb 4 2x3 4 15 1, 12

35

<Y (x+1)

2 bi4
1 X+ x+ gl
<\**t3 772-60 27215 1
2 x4 203 + 02 4 205y

5(r2-9) 5(r2-9) 5(r2-9)
9 450x° +1,350x° + 1,965x* + 1,680x> + 897x2 + 282x + 38
2 (3x% + 3x + 2)2(15x2 + 15x + 4)2

<Y (x+1)

5 (1,470x° + 4,410x° + 7,875x* + 8,400x> + 5,863x% + 2,398x + 346)
(35x% + 7043 + 85x2 + 50x + 12)2

hold for all x > 0.
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_ Va7 -8072+405 .
Leta € %, 4 4”2@0(‘7}1’3{9?0”2*405] and y = 0.577215... be the Euler-Mascheroni con-

stant. Then from Lemma 2.1(ii) and the fact that F,(0) = —y — £(0, a) and lim,_, o, F,(x) = 0
we get Corollary 3.4 immediately.

Corollary 3.4 The double inequality

Lx,a) <yx+1)< Lx,a)—y — L(0,a)

holds for all x >0 and a € (%, 45‘4”2*?;0‘ (A;;‘L_;f);oﬂwos
L(0,a).
In particular, taking a = 1/3,4/15,+/5/15,1/15 and using (1.1) one has

1 9 2 5 9 4
—log|x"+x+ = )+ —<log(x"+x+ —
12 3 12 15
P ) 11 9 2 5] 5 4 11 3 5] 15
— tx+—|+—= +x+— | +-—=log-+-—log——vy,
<Y+l <plogla”+a+ o J+ ologla™+x+ o og — + og y
16 1 5 ) 3
—log{x+ = )|+ —log|x" +x+ —
21 2 42 5

san< 6] 1N, 5, (o 3\ 16, _ 5 5
<Px+1)<—=loglx+=)+—log[x*+x+=)+—=1log2+—log= -y,
o1 CB\FT o ) Ty 08 5) 91 08T gy 83T

L ) 1\ 1 b+ ) L ) 1\ 1 Log 45
—log[(x*+x+=) ——|<¢¥@+D)<=log[(x"+x+= ] ——|[+=log— -
4 0% 3) "5 4 0% 3) Tas| T2 %y 7Y

and

| with the best possible constant —y —

1 5 2
V(x+1)> 5 log(x* +x) + 5 log<x2 FX+ E)
forx>0.
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