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Abstract
For a function φ satisfying some suitable growth conditions, consider the general
dispersive equation defined by

{
i∂tu + φ(

√
–�)u = 0, (x, t) ∈R

n ×R,
u(x, 0) = f (x), f ∈S(Rn ). (∗) In the present paper, we

give some global L2 estimate for the maximal operator S∗
φ , which is defined by

S∗
φ f (x) = sup0<t<1 |St,φ f (x)|, x ∈R

n, where St,φ f is a formal solution of the equation (∗).
Especially, the estimates obtained in this paper can be applied to discuss the
properties of solutions of the fractional Schrödinger equation, the fourth-order
Schrödinger equation and the beam equation.
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1 Introduction and main results
Suppose f ∈ S(Rn), the Schwartz class on R

n, denote

Stf (x) = (π )–n
∫

Rn
eix·ξ+it|ξ | f̂ (ξ ) dξ , (x, t) ∈R

n ×R,

where f̂ (ξ ) =
∫
Rn e–iξ ·xf (x) dx. It is well known that u(x, t) := Stf (x) is the solution of the

Schrödinger equation
{

i∂tu – �u = , (x, t) ∈R
n ×R,

u(x, ) = f (x).
(.)

In , Carleson [] proposed a problem: if f ∈ Hs(Rn) for which s does

lim
t→

u(x, t) = f (x), a.e. x ∈R
n, (.)

where Hs(Rn) (s ∈R) denotes the non-homogeneous Sobolev space, which is defined by

Hs(
R

n) =
{

f ∈ S ′ : ‖f ‖Hs =
(∫

Rn

(
 + |ξ |)s∣∣f̂ (ξ )

∣∣ dξ

)/

< ∞
}

.

Carleson first studied this problem for dimension n =  in []. He proved that the con-
vergence (.) holds for f ∈ Hs(R) with s ≥ 

 . This result is sharp, which was shown
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Table 1 Convergence (1.2) holds for f ∈ Hs(Rn)

Dim. Range of s Authors

n = 1 s ≥ 1
4 Carleson [1] in 1979

n ≥ 2 s > 1
2 Sjölin [3] in 1987 and Vega [4] in 1988, independently

n = 2 for some s < 1
2 Bourgain [5] in 1992

n = 2 s > κ with 20
41 < κ < 41

84 Moyua, Vargas and Vega [6] in 1996

n = 2 s > 15
32 Tao and Vargas [7] in 2000

n = 2 s > 2
5 Tao [8] in 2003

n = 2 s > 3
8 Lee [9] in 2006

n ≥ 3 s > 1
2 –

1
4n Bourgain [10] in 2013

by Dahlberg and Kenig []. See Table  for the results on the convergence (.) when
f ∈ Hs(Rn).

Moreover, the convergence (.) fails if s < 
 (see [] for n =  and [] for n ≥ ). Recently,

Bourgain [] showed that the necessary condition of convergence (.) is s ≥ 
 – 

n when
n > .

It is well known that the pointwise convergence (.) is related closely to the local esti-
mate of the local maximal operator S∗ defined by

S∗f (x) = sup
<t<

∣∣Stf (x)
∣∣, x ∈R

n.

Naturally, the maximal estimates have been well studied associated with the following
oscillatory integral:

St,af (x) =


(π )n

∫

Rn
eix·ξ eit|ξ |a f̂ (ξ ) dξ , t ∈R and a > ,

which is the solution of the fractional Schrödinger equation:

{
i∂tu + (–�)a/u = , (x, t) ∈ R

n ×R,
u(x, ) = f (x).

(.)

Define the local maximal operator associated with the family of operators {St,a}<t< by

S∗
af (x) = sup

<t<

∣∣St,af (x)
∣∣, x ∈R

n.

Obviously, the following estimate (.) can be applied to discuss the pointwise convergence
problem on the solution of Schrödinger equation (.):

∥∥S∗
af

∥∥
L(Rn) ≤ C‖f ‖Hs(Rn), (.)

which is called the global L estimate of the maximal operator S∗
a sometimes. These esti-

mates have also independent interest since they reveal global regularity properties of the
corresponding oscillatory integrals. Table  shows some main results in studying (.).

On the other hand, in , Prestini [] proved that, if f ∈ Hs(Rn) (n ≥ ) is a radial
function, then the local maximal estimate

∥∥S∗f
∥∥

L(B) ≤ cn‖f ‖Hs (.)
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Table 2 Global L2 estimate (1.4) for f ∈ Hs(Rn)

Dim. Ran. of a Ran. of s Authors

n ≥ 1 a > 0 s > a
2 Cowling [11] in 1983 and Carbery [12] in 1985, independently

n = 1 a ≥ 2 s > a
4 Kenig, Ponce and Vega [13] in 1991

n = 1 a > 1 s > a
4 Sjölin [14] in 1994

n = 1 0 < a < 1 s > a
4 Walther [15] in 2002

holds if and only if s ≥ 
 . In , Sjölin [] proved (.) holds for a >  and s > a

 . In ,
Walther [] showed (.) holds for  < a <  and s > a

 .
In the present paper, we will discuss some global L maximal estimates like (.) for a

local maximal operator S∗
φ associated with the operator family {St,φ}t∈R. Let us first give

some definitions as follows: Suppose the function φ : R+ →R satisfies:
(K) there exists l ≥  such that |φ(r)|� rl for all  < r < ;
(K) there exists m ∈R such that |φ(r)|� rm for all r ≥ ;
(K) there exists m ∈R such that |φ′(r)|� rm– for all r ≥ ;
(K) there exists m ∈R such that |φ′′(r)| ∼ rm– for all r ≥ ;
(K) there exists m ∈R such that |φ()(r)|� rm– for all r ≥ .

The operator family {St,φ}t∈R is defined by

St,φ f (x) = (π )–n
∫

Rn
eix·ξ+itφ(|ξ |) f̂ (ξ ) dξ , x ∈R

n, (.)

where f ∈ S(Rn) and the local maximal operator S∗
φ associated with {St,φ}t∈R is defined by

S∗
φ f (x) = sup

<t<

∣∣St,φ f (x)
∣∣, x ∈R

n.

Now we state our main results in this paper as follows.

Theorem . For n =  and φ satisfies (K)-(K) with l ≥ , mi ∈ R ( ≤ i ≤ ), and m =
m ≥ m. If f ∈ Hs(R) with s > m

 for m >  or s > –m
 for m ≤ , then

∥∥S∗
φ f (x)

∥∥
L(R) ≤ C‖f ‖Hs(R). (.)

Theorem . For n ≥  and φ satisfying (K)-(K) with l ≥ , mi ∈ R ( ≤ i ≤ ), and
m = m ≥ m. If f ∈ Hs(Rn) is radial with s > m

 for m >  or s > –m
 for m ≤ , then

∥∥S∗
φ f (x)

∥∥
L(Rn) ≤ C‖f ‖Hs(Rn). (.)

Now let us turn to the other result obtained in the present paper, which involves the
functions class formed by the radial function and the functions in Ak , the set of all solid
spherical harmonics of degree k. It is well known (see [], p.) that there exists a direct
sum decomposition

L(
R

n) =
∞∑

k=

⊕Dk .

The subspace Dk is the space of all finite linear combinations of functions of the form
f (|x|)P(x), where f ranges over the radial functions and P over Ak such that f (| · |)P(·) ∈
L(Rn).
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Fix k ≥  and let P, P, . . . , Pak denote an orthonormal basis in Ak . Every element in Dk

can be written in the following form:

f (x) =
ak∑

j=

fj
(|x|)Pj(x) (.)

and

∫

Rn

∣∣f (x)
∣∣ dx =

ak∑

j=

∫ ∞



∣∣fj(r)
∣∣rn+k– dr.

Denote by H(Rn) the class of all radial functions in S(Rn), and Hk (k ∈ N) the set of
functions defined by (.) with fj ∈ H(Rn) and Pj ∈ Ak for j = , , . . . , ak . Sjölin obtained
the following result (see [], p.).

Theorem A Suppose that n ≥ , a > , and f ∈Hk (k ≥ ). If s > a
 then (.) holds.

We give the global L estimate of the maximal operator S∗
φ for f ∈Hk .

Theorem . For n ≥  and φ satisfies (K)-(K) with l ≥ , mi ∈ R ( ≤ i ≤ ), and
m = m ≥ m. If f ∈ Hk (k ≥ ) with s > m

 for m >  or s > –m
 for m ≤ , then (.)

holds.

Note that

u(x, t) = eitφ(
√

–�)f (x) = (π )–n
∫

Rn
eix·ξ+itφ(|ξ |) f̂ (ξ ) dξ = St,φ f (x)

gives a formal solution of the following general dispersive equation with initial data func-
tion f :

{
i∂tu + φ(

√
–�)u = , (x, t) ∈R

n ×R,
u(x, ) = f (x).

(.)

Hence, the inequalities (.) and (.) imply the convergence almost everywhere of the
solution of (.) in one dimension and higher dimension, respectively.

The proofs of Theorems .-. are given in Sections -, respectively. In the last section,
we will give some examples of (.).

2 Proof of Theorem 1.1
2.1 Proof of Theorem 1.1 based on Lemma 2.2
In this subsection, we give the proof of Theorem . by using Lemma ., which will be
proved in the next subsection.

Choose a nonnegative function ϕ ∈ C∞
 (R) such that suppϕ ⊂ {ξ : 

 < |ξ | < } and

∞∑

k=–∞
ϕ
(
–kξ

)
= , ξ �= .
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Set ϕ(ξ ) =  –
∑∞

k= ϕ(–kξ ) and ψ(ξ ) =
∑∞

k= ϕ(–kξ ). It follows that ϕ ∈ C∞
 (R). Rewrite

St,φ f (x) = (π )–
∫

R

eix·ξ+itφ(|ξ |)ϕ(ξ )f̂ (ξ ) dξ

+ (π )–
∞∑

k=

∫

R

eix·ξ+itφ(|ξ |)ϕ
(
–kξ

)
f̂ (ξ ) dξ

=: St,φ,f (x) +
∞∑

k=

St,φ,kf (x). (.)

Denote

S∗
φ,f (x) = sup

<t<

∣∣St,φ,f (x)
∣∣, x ∈R

and

S∗
φ,kf (x) = sup

<t<

∣∣St,φ,kf (x)
∣∣, x ∈R.

Therefore, by (.), we obtain

S∗
φ f (x) ≤ S∗

φ,f (x) +
∞∑

k=

S∗
φ,kf (x). (.)

By (.) and Minkowski’s inequality, we get

∥∥S∗
φ f

∥∥
L(R) ≤ ∥∥S∗

φ,f
∥∥

L(R) +
∞∑

k=

∥∥S∗
φ,kf

∥∥
L(R). (.)

Now let us recall a result which will be used in our proof of Theorem ..

Lemma . (see []) Assume that the functions ω and ω belong to L(R) and that the
function m satisfies the following assumption: there is a number C independent of (t, ξ ) such
that

∣∣m(t, ξ )
∣∣ ≤ Cω(t),

∣∣∣∣
∂(m(t, ξ ))

∂t

∣∣∣∣ ≤ C
(
ω(t) + ω(t)|ξ |a), a > .

Then there is a number C independent of f such that

(∫

Rn
sup
<t<

∣∣∣∣

∫

Rn
eix·ξ m(t, ξ )f̂ (ξ ) dξ

∣∣∣∣



dx
)/

≤ C‖f ‖L(Rn), supp f̂ ⊆ {
ξ , |ξ | < 

}
.

We first prove that if s > m
 for m >  or s > –m

 for m ≤ , then

∥∥S∗
φ,f

∥∥
L(R) ≤ C‖f ‖Hs(R). (.)

For g ∈ S(R) and supp ĝ ⊆ {ξ , |ξ | < }, s > m
 for m >  or s > –m

 for m ≤  and  < t < ,
let

R,tg(x) = (π )–
∫

R

eix·ξ eitφ(|ξ |)( + |ξ |)–s/ĝ(ξ ) dξ =:
∫

R

eix·ξ m(t, ξ )ĝ(ξ ) dξ ,
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where m(t, ξ ) = (π )–eitφ(|ξ |)( + |ξ |)–s/. Define the maximal operator R∗
 by

R∗
g(x) = sup

<t<

∣∣R,tg(x)
∣∣, x ∈R.

On the one hand, it is obvious that |m(t, ξ )| ≤ χ(,)(t) for ξ ∈R and  < t < . On the other
hand, by

∂(m(t, ξ ))
∂t

=
i

π
eitφ(|ξ |)φ

(|ξ |)( + |ξ |)–s/,

it follows that
∣∣∣∣
∂(m(t, ξ ))

∂t

∣∣∣∣ ≤ χ(,)(t)
∣∣φ

(|ξ |)∣∣ for ξ ∈R and  < t < . (.)

By the condition (K), |φ(|ξ |)| ≤ C max{|φ()|, } ≤ C for  ≤ |ξ | < . By (K), we have, for
|ξ | ≥ ,

∣∣φ
(|ξ |)∣∣ ≤

{
C|ξ |m , m > ,
C|ξ |m ≤ C, m ≤ .

Hence, combining with (.) we get, for ξ ∈R,

∣∣∣∣
∂(m(t, ξ ))

∂t

∣∣∣∣ ≤
{

C(χ(,)(t) + χ(,)(t)|ξ |m ), m > ,
C(χ(,)(t) + χ(,)(t)|ξ |), m ≤ ,

where C is independent of (t, ξ ). It follows that m(t, ξ ) satisfies the assumptions of Lem-
ma .. Therefore, when s > m

 for m >  or s > –m
 for m ≤ , we obtain

∥∥R∗
g

∥∥
L(R) ≤ C‖g‖L(R). (.)

We have

St,φ,f (x) = R,t
(
F–(ϕ(·)( + | · |) s

 f̂ (·)))(x), (.)

where F– denotes the Fourier inverse transform. Note that

suppϕ(·)( + | · |) s
 f̂ (·) ⊆ {

ξ ; |ξ | < 
}

.

Thus, by (.) and (.), we have

∥∥S∗
φ,f

∥∥
L(R) =

∥∥R∗

(
F–(ϕ(·)( + | · |) s

 f̂ (·)))∥∥L(R)

≤ C
∥∥F–(ϕ(·)( + | · |) s

 f̂ (·))∥∥L(R) ≤ C‖f ‖Hs(R),

which is just (.). Now we define the operator RN by

RN f (x) = N–s
∫

R

eix·ξ+it(x)φ(|ξ |)ϕ
(

ξ

N

)
f̂ (ξ ) dξ , N ≥ , (.)

where t(x) is a measurable function in R with  < t(x) < .
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Lemma . Suppose that φ satisfies the conditions in Theorem .. If s > m
 for m >  or

s > –m
 for m ≤ , then there exist δ >  and C > , such that, for all N ≥ ,

‖RN f ‖L(R) ≤ CN–δ‖f ‖L(R). (.)

The proof of Lemma . will be given in the next subsection. Now we finish the proof of
Theorem . by using Lemma .. By linearizing the maximal operator, we have, for some
real-valued function t(x),

S∗
φ,kf (x) ≤ 

π

∣∣∣∣

∫

R

eix·ξ+it(x)φ(|ξ |)ϕ
(

ξ

k

)
f̂ (ξ ) dξ

∣∣∣∣

=


π

∣∣Rk
(
F–(χ{k–<|ξ |<k+}ksf̂

))
(x)

∣∣. (.)

By (.) and (.), for k ≥ , we have

∥∥S∗
φ,kf

∥∥
L(R) ≤ ∥∥Rk

(
F–(χ{k–<|ξ |<k+}ksf̂

))∥∥
L(R)

≤ C–kδ
∥∥F–(χ{k–<|ξ |<k+}ksf̂

)∥∥
L(R).

From this we get

∥∥S∗
φ,kf

∥∥
L(R) ≤ C–kδ‖f ‖Hs(R). (.)

Summing up the estimates of (.), (.), and (.), we have

∥∥S∗
φ f

∥∥
L(R) ≤ ∥∥S∗

φ,f
∥∥

L(R) +
∞∑

k=

∥∥S∗
φ,kf

∥∥
L(R)

≤ C‖f ‖Hs(R) + C
∞∑

k=

–kδ‖f ‖Hs(R)

≤ C‖f ‖Hs(R).

Therefore, to finish the proof of Theorem ., it remains to show Lemma ..

2.2 The proof of Lemma 2.2
Write

RN f (x) =
∫

R

eix·ξ pN (x, ξ )f̂ (ξ ) dξ , N ≥ ,

where f ∈ S(R) and pN (x, ξ ) = eit(x)φ(|ξ |)ϕ( ξ

N )N–s. Take the function ρ ∈ C∞
 (R) such that

ρ(x) =  if |x| < , and ρ(x) =  if |x| ≥ , and set ψ =  – ρ . Denote

pN ,M(x, ξ ) = ρ

(
x
M

)
pN (x, ξ ), M > 

and

pN ,M,ε(x, ξ ) = ψ

(
ξ

ε

)
pN ,M(x, ξ ),  < ε < .
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For N ≥ , M > , and  < ε < , the corresponding operators RN ,M and RN ,M,ε are defined
by

RN ,Mf (x) =
∫

R

eix·ξ pN ,M(x, ξ )f̂ (ξ ) dξ

and

RN ,M,εf (x) =
∫

R

eix·ξ pN ,M,ε(x, ξ )f̂ (ξ ) dξ .

Obviously, both of the operators RN ,M and RN ,M,ε are bounded on L(R). On the other
hand, it is easy to see that the adjoint operator R′

N ,M,ε of RN ,M,ε is given by

R′
N ,M,εg(x) =

∫∫
ei(x–y)·ξ pN ,M,ε(y, ξ )g(y) dy dξ

and it follows that

lim
ε→

R′
N ,M,εg(x) = R′

N ,Mg(x), g ∈ S(R), (.)

where R′
N ,M denotes the adjoint operator of RN ,M . Since

∫ ∣∣R′
N ,M,εg(x)

∣∣ dx = lim
L→∞

∫

|x|<L

∣∣R′
N ,M,εg(x)

∣∣ dx (.)

and
∫

|x|<L

∣∣R′
N ,M,εg(x)

∣∣ dx =
∫

|x|<L
R′

N ,M,εg(x)R′
N ,M,εg(x) dx

=
∫

|x|<L

(∫∫
ei(x–y)·ξ pN ,M,ε(y, ξ )g(y) dy dξ

)

×
(∫∫

ei(x–z)·ηpN ,M,ε(z,η)g(z) dz dη

)
dx. (.)

By (.), (.), and a similar calculation as [], p., we have
∫ ∣∣R′

N ,M,εg(x)
∣∣ dx

= π

∫∫ (∫
ei(z–y)ξ pN ,M,ε(y, ξ )pN ,M,ε(z, ξ ) dξ

)
g(y)g(z) dy dz

= π

∫∫ (∫
ei(z–y)ξ ρ

(
y

M

)
ρ

(
z

M

)
ψ

(
ξ

ε

)
pN (y, ξ )pN (z, ξ ) dξ

)

× g(y)g(z) dy dz. (.)

Therefore, invoking (.) and by Fatou’s lemma, we obtain
∫ ∣∣R′

N ,Mg(x)
∣∣ dx

≤ lim inf
ε→

∫ ∣∣R′
N ,M,εg(x)

∣∣ dx
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= π lim
ε→

∫∫ (∫
ei(z–y)ξρ

(
y

M

)
ρ

(
z

M

)
ψ

(
ξ

ε

)
pN (y, ξ )pN (z, ξ ) dξ

)

× g(y)g(z) dy dz

≤ C
∫∫ ∣∣∣∣

∫
ei[(z–y)ξ+(t(z)–t(y))φ(|ξ |)]ϕ

(
ξ

N

)
dξN–s

∣∣∣∣
∣∣g(y)

∣∣∣∣g(z)
∣∣dy dz. (.)

It is easy to check that the constant C is independent of N and M. Now define

IN (x,ω) = N–s
∫

ei[xξ+ωφ(|ξ |)]ϕ
(

ξ

N

)
dξ for x ∈R, – < ω < , N ≥ 

and

JN (x) = sup
|ω|<

∣∣IN (x,ω)
∣∣, x ∈R.

We have the following conclusion.

Lemma . Let JN be defined as above, φ satisfies the conditions in Theorem .. If s > m


for m >  or s > –m
 for m ≤ , then there exist δ, C > , such that, for all N ≥ ,

‖JN‖L(R) ≤ CN–δ . (.)

Below we first finish the proof of Lemma . by applying Lemma ., whose proof will be
given in the next subsection. By (.) and (.), invoking Hölder’s inequality and Young’s
inequality, we have

∫ ∣∣R′
N ,Mg(x)

∣∣ dx ≤ C
∫∫ ∣∣IN

(
z – y, t(z) – t(y)

)∣∣∣∣g(y)
∣∣∣∣g(z)

∣∣dy dz

≤ C
∫∫

JN (z – y)
∣∣g(y)

∣∣∣∣g(z)
∣∣dy dz

= C
∫ (

JN ∗ |g|)(z)
∣∣g(z)

∣∣dz

≤ C
∥∥JN ∗ |g|∥∥‖g‖

≤ C‖JN‖‖g‖
 ≤ CN–δ‖g‖

.

From this we get

∥∥R′
N ,Mg

∥∥
 ≤ CN–δ‖g‖.

Thus, ‖RN ,Mg‖ ≤ CN–δ‖g‖ by duality, where C is independent of N and M. Letting M →
∞, we obtain

‖RN g‖ ≤ CN–δ‖g‖.

It follows that (.) holds, and we complete the proof of Lemma . based on Lemma ..
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2.3 The proof of Lemma 2.3
Now we verify the estimate (.). We need the following results.

Lemma . (Van der Corput’s lemma; see [], p.) Let ψ ∈ C∞
 (R) and φ ∈ C∞(R)

satisfy |φ′′(ξ )| > λ >  on the support of ψ . Then

∣∣∣∣

∫
eiφ(ξ )ψ(ξ ) dξ

∣∣∣∣ ≤ λ– 

{‖ψ‖∞ +

∥∥ψ ′∥∥


}
.

Lemma . ([]) Let I denote an open integral in R. For g ∈ C∞
 (I) and the real-valued

function F ∈ C∞(I) with F ′ �= , if k ∈N, then

∫

I
eiF(x)g(x) dx =

∫

I
eiF(x)hk(x) dx,

where hk is a linear combination of functions of the form

g(s)(F ′)–k–r
r∏

q=

F (jq)

with  ≤ s ≤ k,  ≤ r ≤ k, and  ≤ jq ≤ k + .

We now return to the proof of Lemma .. Recall that

IN (x,ω) = N–s
∫

ei[x·ξ+ωφ(|ξ |)]ϕ
(

ξ

N

)
dξ , x ∈ R, – < ω < , N ≥ .

Performing a change of variable, we have

IN (x,ω) = N –s
∫

ei(Nxξ+ωφ(N |ξ |))G(ξ ) dξ ,

where x ∈R, – < ω < , N ≥ , and G(ξ ) = ϕ(ξ ). It is obvious that, for all x ∈R, – < ω < ,
and N ≥ ,

∣∣IN (x,ω)
∣∣ ≤ CN –s. (.)

Below we give more estimates of |IN (x,ω)|.
Step : The other estimates of IN (x,ω).
By the condition (K), there exist m ∈ R and C >  such that |φ′(r)| ≤ Crm– for r ≥ .

Denote

C = max

 ≤|ξ |≤

{|ξ |m–} and C = max{CC, }.

Now we give the following estimates of IN (x,ω) for x ∈ R, – < ω < , and N ≥ :

∣∣IN (x,ω)
∣∣ ≤

{
C(N |x|)–N –s, |ω| < N |x|

CNm ,
C(N |x|)– 

 N –s, |ω| ≥ N |x|
CNm .

(.)
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Let F(ξ ) = Nxξ + ωφ(N |ξ |). We have

F ′(ξ ) = Nx + N sgn(ξ )ωφ′(N |ξ |),

F ′′(ξ ) = Nωφ′′(N |ξ |)

and

F ()(ξ ) = N sgn(ξ )ωφ()(N |ξ |).

Noting N |ξ | >  by N ≥  and 
 < |ξ | < , by (K) we get

∣∣N sgn(ξ )ωφ′(N |ξ |)∣∣ ≤ CN |ω|(N |ξ |)m– ≤ CCNm |ω| ≤ CNm |ω|.

When |ω| < N |x|
CNm (equivalently, CNm |ω| < 

 N |x|), we have

∣∣N sgn(ξ )ωφ′(N |ξ |)∣∣ <



N |x|.

Therefore,

∣∣F ′(ξ )
∣∣ ≥ N |x| –

∣∣N sgn(ξ )ωφ′(N |ξ |)∣∣ >



N |x|. (.)

Since φ satisfies (K) and (K) with m ≤ m = m, we have

∣∣F (j)(ξ )
∣∣ ≤ CNm |ω| for j = , . (.)

By the fact Nm |ω|
N |x| ≤ 

C
and Lemma . for k =  and (.), (.), we get

∣∣∣∣

∫
eiF(ξ )G(ξ ) dξ

∣∣∣∣

≤ C
∫


 <|ξ |<


|F ′(ξ )|

(
 +

|F ′′(ξ )|
|F ′(ξ )| + +

( |F ′′(ξ )|
|F ′(ξ )|

)

+
|F ()(ξ )|
|F ′(ξ )|

)
dξ

≤ C
(
N |x|)–

∑

r=

(
Nm |ω|

N |x|
)r

≤ C
(
N |x|)–,

from which follows the first estimate in (.). On the other hand, since φ satisfies (K)
with m = m, we get, for 

 < |ξ | < ,

∣∣F ′′(ξ )
∣∣ ≥ CN|ω|(N |ξ |)m– > CNm |ω| > .

Note that ‖G‖∞ ≤ C and ‖G′‖ ≤ C on the support of ϕ. By Lemma . and noting that
|ω| ≥ N |x|

CNm (equivalently, CNm |ω| ≥ 
 N |x|), we have

∣∣IN (x,ω)
∣∣ ≤ C

(
Nm |ω|)– 


(‖G‖∞ +

∥∥G′∥∥


)
N –s ≤ C

(
N |x|)– 

 N –s.

This is just the second estimate in (.).
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Step : Proof of Lemma . for s > m
 (m > ).

We now prove (.) for the case s > m
 (m > ). Since m > , N ≥ , and C > , we

write
∫ ∣∣JN (x)

∣∣dx =
∫

<|x|≤ 
N

∣∣JN (x)
∣∣dx +

∫


N <|x|≤CNm–

∣∣JN (x)
∣∣dx

+
∫

|x|>CNm–

∣∣JN (x)
∣∣dx

=: E + E + E.

The estimate of E is simple. Since |IN (x,ω)| ≤ CN –s by (.), by the definition of JN , we
see that

E ≤ C
∫

<|x|≤ 
N

N –s dx ≤ CN–s. (.)

As for E, we first prove that if 
N < |x| ≤ CNm–, then

JN (x) ≤ C
(
N |x|)– 

 N –s. (.)

By the definition of JN , to prove (.) it suffices to show that, if 
N < |x| ≤ CNm– and

|ω| < , then

∣∣IN (x,ω)
∣∣ ≤ C

(
N |x|)– 

 N –s. (.)

In fact, if |ω| < N |x|
CNm , by the first estimate in (.) and N |x| > , then

∣∣IN (x,ω)
∣∣ ≤ C

(
N |x|)–N –s ≤ C

(
N |x|)– 

 N –s.

If |ω| ≥ N |x|
CNm , by the second estimate in (.), we obtain

∣∣IN (x,ω)
∣∣ ≤ C

(
N |x|)– 

 N –s.

Thus (.) holds and so (.). Hence, by (.), we get

E ≤ C
∫

|x|≤CNm–

(
N |x|)– 

 N –s dx ≤ CN
m
 –s. (.)

Finally, we consider E. We first show that if |x| > CNm–, then

∣∣JN (x)
∣∣ ≤ C

(
N |x|)–N –s. (.)

In fact, if |x| > CNm– and |ω| < , then |x| > CNm–|ω|. Equivalently, |ω| < N |x|
CNm .

Thus, by the first inequality in (.), we obtain

∣∣IN (x,ω)
∣∣ ≤ C

(
N |x|)–N –s,
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and (.) follows from this. By (.), we obtain

E ≤ C
∫

|x|>CNm–

(
N |x|)–N –s dx ≤ CN–m–s. (.)

Since m > , by (.), (.), and (.), we have

∣∣JN (x)
∣∣ ≤ CN

m
 –s =: CN–δ ,

where δ = s – m
 >  since s > m

 and m > .
Step : Proof of Lemma . for s > –m

 (m ≤ ).
First we consider the case where CNm– > 

N . Write

∫ ∣∣JN (x)
∣∣dx =

∫

<|x|≤ 
N

∣∣JN (x)
∣∣dx +

∫


N <|x|≤CNm–

∣∣JN (x)
∣∣dx

+
∫

|x|>CNm–

∣∣JN (x)
∣∣dx

=: E + E + E.

Since m ≤ , by (.), (.), and (.), we have

∣∣JN (x)
∣∣ ≤ CN–m–s =: CN–δ ,

where δ = s + m >  since s > –m
 and m ≤ . On the other hand, if CNm– ≤ 

N , we
have

∫ ∣∣JN (x)
∣∣dx ≤

∫

<|x|≤ 
N

∣∣JN (x)
∣∣dx +

∫

|x|>CNm–

∣∣JN (x)
∣∣dx

=: E + E.

Since m ≤ , by (.) and (.), we have

∣∣JN (x)
∣∣ ≤ CN–m–s =: CN–δ ,

where δ = s + m >  by s > –m
 and m ≤ . Thus, we complete the proof of Lemma ..

3 The proof of Theorem 1.2
Assume n ≥ . Let f be radial and belong to S(Rn); we need to show that

∥∥S∗
φ f

∥∥
L(Rn) ≤ C‖f ‖Hs(Rn) (.)

holds for s > m
 if m >  or s > –m

 if m < .
Let t(x) is a measurable radial function with  < t(x) < . Denote

Tf (x) = (π )–n
∫

Rn
eix·ξ+it(x)φ(|ξ |) f̂ (ξ ) dξ .
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Recall the Bessel function Jm(r) is defined by

Jm(r) =
( r

 )m

�(m + 
 )π 



∫ 

–
eirt( – t)m– 

 dt, m > –



.

Since f is radial,

f̂ (ξ ) = (π )
n
 |ξ |– n



∫ ∞


f (s)J n

 –
(
s|ξ |)s

n
 ds.

Therefore,

Tf (u) = (π )
n
 –nu– n



∫ ∞


J n

 –(ru)eit(u)φ(r) f̂ (r)r
n
 dr, u > . (.)

Here Tf (u) = Tf (x) if u = |x| and f̂ (r) = f̂ (ξ ) if r = |ξ |. By linearizing the maximal operator
and using polar coordinates, to prove (.) it suffices to prove that

(∫ ∞



∣∣Tf (u)
∣∣un– du

)/

≤
(∫ ∞



∣∣f̂ (r)
∣∣( + r)srn– dr

)/

. (.)

Denote

g(r) = f̂ (r)
(
 + r) s

 r
n–

 , r > . (.)

By (.) and (.), it follows that

Tf (u)u
n–

 = (π )– n
 u




∫ ∞


J n

 –(ru)eit(u)φ(r) f̂ (r)r
n
 dr

= (π )– n
 u




∫ ∞


J n

 –(ru)eit(u)φ(r)g(r)
(
 + r)– s

 r

 dr.

Let

Pg(u) = u



∫ ∞


J n

 –(ru)eit(u)φ(r)g(r)
(
 + r)– s

 r

 dr.

Thus, we have

Tf (u)u
n–

 = (π )– n
 Pg(u). (.)

By (.), to prove (.) it suffices to prove that

(∫ ∞



∣∣Pg(u)
∣∣ du

)/

≤ C
(∫ ∞



∣∣g(r)
∣∣ dr

)/

(.)

holds for s > m
 (m > ) or s > –m

 (m ≤ ). Let us recall a well-known estimate of Jm.

Lemma . ([], p.) Jm(r) =
√


πr cos(r – πm

 – π
 ) + O(r– 

 ) as r → ∞. In particular,

Jm(r) = O(r– 
 ) as r → ∞.
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By Lemma ., we may get

t

 J n

 –(t) = beit + be–it + O
(

min

(
,


t

))
, t > , (.)

where b and b are the constants depending on n. In fact, by Lemma ., as t → ∞, we
have

J n
 –(t) =

√

π t

cos

(
t –

π (n – )


)
+ O

(
t– 


)
.

It follows that, as t → ∞, we have

t

 J n

 –(t) =
√


π

cos

(
π (n – )



)
cos t +

√

π

sin

(
π (n – )



)
sin t + O

(
t–)

= (b + b) cos t + i(b – b) sin t + O
(
t–)

= beit + be–it + O
(
t–),

where

b =



√

π

(
cos

(
π (n – )



)
+ i sin

(
π (n – )



))

and

b =



√

π

(
cos

(
π (n – )



)
– i sin

(
π (n – )



))
.

It follows that, when t > , we have

∣∣t

 J n

 –(t) –
(
beit + be–it)∣∣ ≤ Ct–. (.)

On the other hand, by the definition of the Bessel function

Jm(t) =
( t

 )m

�(m + 
 )π 



∫ 

–
eits( – s)m– 

 ds, m > –



,

we have |Jm(t)| ≤ Ctm for m > – 
 and t > . Thus, |Jm(t)| ≤ Ct– 

 when m > – 
 and  < t < .

Since n ≥ , so |J n
 –(t)| ≤ Ct– 

 for  < t < . Therefore, when  < t < , we have

∣∣t

 J n

 –(t) –
(
beit + be–it)∣∣ ≤ ∣∣t


 J n

 –(t)
∣∣ +

∣∣beit∣∣ +
∣∣be–it∣∣

≤ Ct

 t– 

 + |b| + |b| ≤ C. (.)

It follows from (.) and (.) that (.) holds. Invoking (.), we have

Pg(u) = b

∫ ∞


eirueit(u)φ(r)g(r)

(
 + r)– s

 dr

+ b

∫ ∞


e–irueit(u)φ(r)g(r)

(
 + r)– s

 dr + E(u) + F(u)

=: bD(u) + bD(u) + E(u) + F(u), (.)
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where

∣∣E(u)
∣∣ ≤ C

∫ 
u



∣∣g(r)
∣∣dr

and

∣∣F(u)
∣∣ ≤ C


u

∫ ∞


u


r
∣∣g(r)

∣∣dr.

From [], pp.-, we have

(∫ ∞



∣∣E(u)
∣∣ du

)/

≤ C‖g‖L(,∞) (.)

and

(∫ ∞



∣∣F(u)
∣∣ du

)/

≤ C‖g‖L(,∞). (.)

Thus, to prove (.), it remains to estimate D and D. Denote ĥ(r) = g(r)( + r)– s
 χ(,∞),

and we get

D(u) =
∫ ∞


eirueit(u)φ(r)g(r)

(
 + r)– s

 dr =
∫

R

eirueit(u)φ(r)ĥ(r) dr

and

D(u) =
∫ ∞


e–irueit(u)φ(r)g(r)

(
 + r)– s

 dr =
∫

R

e–irueit(u)φ(r)ĥ(r) dr.

Therefore, we have

∣∣Di(u)
∣∣ ≤ S∗

φh(u) for i = , . (.)

Since φ satisfies the conditions in Theorem ., by the results of Theorem ., when s > m


(m > ) or s > –m
 (m ≤ ), we have

∥∥S∗
φh

∥∥
L(R) ≤ C‖h‖Hs(R). (.)

Since u >  and by (.) and (.), for i = , , we have

‖Di‖L(,∞) ≤ ‖Di‖L(R) ≤ C
∥∥S∗

φh
∥∥

L(R) ≤ C‖h‖Hs(R)

= C
(∫ ∞



∣∣g(r)
∣∣( + r)–s( + r)s dr

)/

= C‖g‖L(,∞). (.)

Thus, (.) follows from (.), (.), (.), and (.). We hence complete the proof of
Theorem ..
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4 The proof of Theorem 1.3
In this case k = , Theorem . follows from Theorem .. Hence we only give the proof
of Theorem . for k ≥ . We first recall a well-known result.

Lemma . ([], p.) Suppose n ≥  and f ∈ L(Rn) ∩ L(Rn) has the form f (x) =
f(|x|)P(x), where P(x) is a solid spherical harmonic of degree k, then f̂ has the form
f̂ (x) = F(|x|)P(x), where

F(r) = (π )
n
 i–kr– n

 –k+
∫ ∞


f(s)J n

 +k–(rs)s
n
 +k ds,

where Jm denotes the Bessel function.

Let us return to the proof of Theorem .. First we show that, for f ∈Hk (k ≥ ),

‖f ‖Hs(Rn) =

( ak∑

j=

∫ ∞



∣∣Fj(r)
∣∣( + r)srn+k– dr

)/

. (.)

In fact, f (x) =
∑ak

j= fj(|x|)Pj(x) where fj are radial functions in S(Rn) and {Pj}ak
 is an or-

thonormal basis in Ak . By Lemma . we get

f̂ (x) =
ak∑

j=

Fj
(|x|)Pj(x), (.)

where

Fj(r) = (π )
n
 i–kr– n

 –k
∫ ∞


fj(s)J n

 +k–(rs)s
n
 +k ds, r > .

By (.) and noting that {P, P, . . . , Pak } is an orthonormal basis in Ak , we have

∫

Rn

(
 + |ξ |)s∣∣f̂ (ξ )

∣∣ dξ

=
∫ ∞



(∫

Sn–

∣∣f̂
(
rξ ′)∣∣ dσ

(
ξ ′)

)(
 + r)srn– dr

=
∫ ∞



(∫

Sn–

( ak∑

j=

Fj(r)Pj
(
rξ ′)

)( ak∑

i=

Fi(r)Pi
(
rξ ′)

)

dσ
(
ξ ′)

)
(
 + r)srn– dr

=
∫ ∞



( ak∑

j=

∣∣Fj(r)
∣∣

)

rk( + r)srn– dr

=
ak∑

j=

∫ ∞



∣∣Fj(r)
∣∣( + r)srn+k– dr,

which is just (.). On the other hand, by (.), we have

St,φ f (x) = (π )–n
∫

Rn
eix·ξ eitφ(|ξ |) f̂ (ξ ) dξ =

ak∑

j=

(π )–n
∫

Rn
eix·ξ (eitφ(|ξ |)Fj

(|ξ |)Pj(ξ )
)

dξ .
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Applying Lemma ., we get
∫

Rn
eix·ξ (eitφ(|ξ |)Fj

(|ξ |)Pj(ξ )
)

dξ

=
(
eitφ(|·|)Fj

(| · |)Pj(–·))∧(x)

= (π )
n
 i–ks– n

 –k
(∫ ∞


J n

 +k–(rs)eitφ(r)Fj(r)r
n
 +k dr

)
Pj(–x),

where s = |x| > . Therefore, we have

St,φ f (x) =
ak∑

j=

(π )–n
∫

Rn
eix·ξ (eitφ(|ξ |)Fj

(|ξ |)Pj(ξ )
)

dξ

=
ak∑

j=

(π )– n
 i–k|x|– n

 –k

×
(∫ ∞


J n

 +k–
(
r|x|)eitφ(r)Fj(r)r

n
 +k dr

)
Pj(–x). (.)

Denote by Fn the Fourier transform in R
n. Then Fj = i–kFn+kfj. Note that for a radial

function h ∈ S(Rn+k), its Fourier transform is

Fn+kh(x) = (π )
n
 |x|– n

 –k
∫ ∞


h(r)J n

 +k–
(
r|x|)r

n
 +k dr.

Now we define the operator Sn+k
t,φ on the set of all radial function in S(Rn+k) by

Sn+k
t,φ h(x) := (π )–n–k

∫

Rn+k
eix·ξ eitφ(|ξ |)Fn+kh

(|ξ |)dξ .

Obviously, Sn+k
t,φ h is still a radial function. Then

Sn+k
t,φ fj

(|x|) = ik(π )–n–k
∫

Rn+k
eix·ξ (eitφ(|ξ |)Fj(ξ )

)
dξ

= ik(π )– n
 –k|x|– n

 –k

×
∫ ∞


J n

 +k–
(
r|x|)eitφ(r)Fj(r)r

n
 +k dr. (.)

By (.) and (.), we have

St,φ f (x) = i–k(π )k
∑

j

Sn+k
t,φ fj

(|x|) · Pj(–x), x ∈R
n, (.)

where we may see Sn+k
t,φ fj(|x|) as a function on R

n, since Sn+k
t,φ fj is a radial function. Denote

Sn+k,∗
φ fj

(|y|) = sup
<t<

∣∣Sn+k
t,φ fj

(|y|)∣∣, y ∈R
n+k or y ∈ R

n. (.)

Then by (.) and (.), we obtain

S∗
φ f (x) ≤ Cn,k

∑

j

(
Sn+k,∗

φ fj
(|x|))|x|k . (.)



Ding and Niu Journal of Inequalities and Applications  (2015) 2015:199 Page 19 of 20

Using the notation v = |x| and r = |ξ |, by (.), we have

∥∥S∗
φ f

∥∥
L(Rn) ≤ C

ak∑

j=

∫

Rn

∣∣Sn+k,∗
φ fj(v)

∣∣vk dx. (.)

Using the representation of polar coordinates and noting (.), we obtain

∫

Rn

∣∣Sn+k,∗
φ fj(v)

∣∣vk dx

= ωn–

∫ ∞



∣∣Sn+k,∗
φ fj(v)

∣∣vn+k– dv

=
ωn–

ωn+k–

∫

Rn+k

∣∣Sn+k,∗
φ fj(v)

∣∣ dx, (.)

where ωn– and ωn+k– denote the area of the unit sphere in R
n and R

n+k , respectively.
Applying Theorem ., when s > m

 (m > ) or s > –m
 (m ≤ ), we have

∫

Rn+k

∣∣Sn+k,∗
φ fj(v)

∣∣ dx ≤ C‖fj‖
Hs(Rn+k ). (.)

Note that Fn+kfj = ikFj, and we get

‖fj‖
Hs(Rn+k ) =

∫

Rn+k

∣∣Fj
(|ξ |)∣∣( + |ξ |)s dξ

= ωn+k–

∫ ∞



∣∣Fj(r)
∣∣( + r)srn+k– dr. (.)

Therefore, by (.), (.), (.), (.), and (.), we obtain

∥∥S∗
φ f

∥∥
L(Rn) ≤ C

ak∑

j=

∫ ∞



∣∣Fj(r)
∣∣( + r)srn+k– dr = C‖f ‖

Hs(Rn). (.)

Thus, we complete the proof of Theorem ..

5 Some applications
We now give some examples to show that (.) includes some well-known equations.

Example  Let φ(r) = r, then (.) is the classical Schrödinger equation (.).

Example  Let φ(r) = ra (a > , a �= ), then (.) is the fractional Schrödinger equation
(.). In this case, φ(r) satisfies (K)-(K) with l = m = m = m = m = a.

Example  Let φ(r) = r + r, then (.) is the fourth-order Schrödinger equation:

{
i∂tu + �u – �u = , (x, t) ∈ R

n ×R,
u(x, ) = f (x).

(.)

In this case, φ(r) satisfies (K) with l =  ≥ , (K)-(K) with m = m = m = m =  > .
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Example  Recall the definition of the beam equation:

⎧
⎪⎨

⎪⎩

∂ttu + �u + u = , (x, t) ∈R
n ×R,

u(x, ) = f (x),
∂tu(x, ) = .

(.)

Note that the solution of (.) can be formally written as the real part of

u(x, t) = eit
√

I+� f (x) = (π )–n
∫

Rn
eix·ξ+it

√
+|ξ | f̂ (ξ ) dξ .

Thus, taking φ(r) =
√

 + r, we see that φ(r) satisfies (K) with l =  ≥ , (K)-(K), with
m = m = m = m =  > , and the solution of (.) is the real part of

St,φ f (x) = (π )–n
∫

Rn
eix·ξ+itφ(|ξ |) f̂ (ξ ) dξ .
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