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Abstract
Let G be a connected graph with edge set E(G). The atom-bond connectivity index

(ABC index for short) is defined as ABC(G) =
∑

uv∈E(G)
√

dG(u)+dG(v)–2
dG(u)dG(v)

, where dG(u)

denotes the degree of vertex u in G. The research of ABC index of graphs is active
these years, and it has found a lot of applications in a variety of fields. In this paper, we
will focus on the relationship between ABC index and radius of connected graphs. In
particular, we determine the upper and lower bounds of the difference between ABC
index and radius of connected graphs.
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1 Introduction
Let G be a connected graph with vertex set V (G) and edge set E(G). For v ∈ V (G), let dG(v)
denote the degree of vertex v in G.

In chemical graph theory, we usually use a graph to represent a molecule graph. One
of the most useful tools to study and predict various properties of molecule graphs is the
topological indices, which are used directly as simple numerical descriptors in quantitative
structure property relationships (QSPR) and quantitative structure activity relationships
(QSAR) [].

In , Estrada et al. [] proposed a topological index based on the degrees of vertices
of graphs, which is called the atom-bond connectivity index (ABC index for short). The
ABC index of a graph G is defined as []

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v) – 

dG(u)dG(v)
.

Initially, in the light of the close relationship between the ABC index and the heats of
formation of alkanes, the ABC index became an efficient tool to model the thermody-
namic properties of organic chemical compounds []. In , Estrada [] elaborated a
novel quantum-theory-like justification for the ABC index and explained the stability of
branched alkanes.

Since then, the research on the ABC index of graphs becomes rather active. Xing et al.
[] presented an upper bound for the ABC index of connected graphs with fixed number of
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vertices, number of edges and maximum degree. Das [] established the lower and upper
bounds on ABC index of graphs and trees and showed that these bounds are best possible.
Fath-Tabar et al. [] considered the effect on the ABC index of graphs under some graph
operations. More results on ABC index of graphs can be found in [–], especially for
trees [–].

In a connected graph G, for v ∈ V (G), the eccentricity of v in G is defined as the max-
imum distance from v to another vertex of G. The radius of G, denoted by r(G), is the
minimum eccentricity among the vertices in G.

In this paper, we will study the relationship between the ABC index and radius of con-
nected graphs. In particular, we determine the upper and lower bounds of ABC(G) – r(G)
for connected graphs G.

2 Preliminaries
For an edge subset M of the graph G, let G – M denote the graph obtained from G by
deleting the edges in M, and for an edge subset M∗ of the complement of G, let G + M∗

denote the graph obtained from G by adding the edges in M∗. In particular, if M = {uv},
then we write G – uv for G – {uv}, and if M∗ = {uv}, then we write G + uv for G + {uv}.

The following result reveals that the deletion of an edge from a graph would decrease
the ABC index.

Lemma  ([], Theorem ) Let G be a connected graph on n ≥  vertices. For uv ∈ E(G),
we have

ABC(G) > ABC(G – uv).

As an immediate application of Lemma , we know that the complete graph is the unique
graph with maximum ABC index among connected graphs. Furthermore, we can deduce
that the upper bound of ABC(G) – r(G) would be uniquely attained by the complete graph.

Proposition  Let G be a connected graph on n ≥  vertices. Then

ABC(G) ≤ r(G) +
n
√

n – √


– 

with equality if and only if G is the complete graph on n vertices.

In the following, we will consider the lower bound of ABC(G) – r(G) for connected
graphs G and show that this lower bound would be uniquely attained by the path.

3 Lemmas
First we give several additional lemmas which will be used in our proof later.

Lemma  ([], Lemma ) For integers x ≥  and y ≥ , we have

√
x + y – 

xy
–

√
x + y – 
(x – )y

≥
√


x

–
√


x – 

.
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Figure 1 The trees G and G1 in Lemma 3 when u �= v.

Figure 2 The trees G and G1 in Lemma 3 when u = v.

A vertex of degree  is said to be a pendent vertex, while a vertex of degree at least  is
said to be a non-pendent vertex.

Lemma  Let H be a nontrivial tree, where u, v ∈ V (H) (possibly u = v). Let G be the tree
obtained from H by attaching a pendent vertex u to u, and attaching a pendent vertex v

to v; see Figure . In particular, if u = v, then two pendent vertices u, v are both attached
to vertex v = u in H , see Figure . Consider G = G – vv + uv; see Figures  and . If there
are at most two non-pendent neighbors of v in G, then

ABC(G) – ABC(G) > –..

Proof Denote by a the number of non-pendent neighbors of v in G. According to the
hypothesis, a = , , .

Clearly, dG(v) ≥ . For vx ∈ E(H), if dG(x) = , then

√
dG(v) + dG(x) – 

dG(v)dG(x)
–

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

=

√

 –


dG(v)
–

√

 –


dG(v) – 

> ,

while if dG(x) ≥ , then by Lemma , we have

√
dG(v) + dG(x) – 

dG(v)dG(x)
–

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

≥
√


dG(v)

–

√


dG(v) – 
.
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So it follows that

∑

vx∈E(H)

(√
dG(v) + dG(x) – 

dG(v)dG(x)
–

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

)

≥ a
(√


dG(v)

–

√


dG(v) – 

)

. ()

In the following we will split the proof into two cases.
Case . u �= v.
In this case, a = ,  (if a = , then G is a star, which is impossible). Moreover, note that

dG(v) ≥ a +  ≥ . Now by (), we have

ABC(G) – ABC(G)

=

√
dG(u) – 

dG(u)
+

√
dG(v) – 

dG(v)
+

∑

vx∈E(H)

√
dG(v) + dG(x) – 

dG(v)dG(x)

–
(√

 +
∑

vx∈E(H)

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

)

=
(√

dG(u) – 
dG(u)

+

√
dG(v) – 

dG(v)
–

√

)

+
∑

vx∈E(H)

(√
dG(v) + dG(x) – 

dG(v)dG(x)
–

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

)

≥
(√

dG(u) – 
dG(u)

+

√
dG(v) – 

dG(v)
–

√

)

+ a
(√


dG(v)

–

√


dG(v) – 

)

.

On one hand, notice that
√

dG(u)–
dG(u) =

√
 – 

dG(u) is increasing on dG(u) ≥ . On the other

hand,
√

dG(v)–
dG(v) =

√
 – 

dG(v) and
√


dG(v) –

√


dG(v)– are both increasing on dG(v) ≥ a + . So
we have

ABC(G) – ABC(G)

≥
(√

dG(u) – 
dG(u)

+

√
dG(v) – 

dG(v)
–

√

)

+ a
(√


dG(v)

–

√


dG(v) – 

)

≥
(√

 – 


+
√

(a + ) – 
a + 

–
√


)

+ a
(√


a + 

–

√


(a + ) – 

)

=

⎧
⎨

⎩

√
 –  if a = ,

√

 + √

 – √
 if a = 

> –.,

i.e., ABC(G) – ABC(G) > –..
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Case . u = v.
In this case, a = , , . Moreover, note that dG(v) ≥ a +  ≥ .
Similar to the arguments in Case , we have

ABC(G) – ABC(G)

=
(



√
dG(v) – 

dG(v)
+

∑

vx∈E(H)

√
dG(v) + dG(x) – 

dG(v)dG(x)

)

–
(√

 +
∑

vx∈E(H)

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

)

=
(



√
dG(v) – 

dG(v)
–

√

)

+
∑

vx∈E(H)

(√
dG(v) + dG(x) – 

dG(v)dG(x)
–

√
dG(v) + dG(x) – 
(dG(v) – )dG(x)

)

≥
(



√
dG(v) – 

dG(v)
–

√

)

+ a
(√


dG(v)

–

√


dG(v) – 

)

≥
(


√

(a + ) – 
a + 

–
√


)

+ a
(√


a + 

–

√


(a + ) – 

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 if a = ,


√


 + √

 – √
 if a = ,

√
 –

√
 +  if a = 

> –.,

i.e., ABC(G) – ABC(G) > –..
Combining Cases  and , the result follows. �

The following lemma on the radius of a tree is clear.

Lemma  Let G be a tree. If the diameter of G is d, then r(G) = � d+
 	.

In the following two lemmas, we will show that the path would attain the minimum value
ABC(G) – r(G) among trees.

Lemma  Let G be a tree with a diametrical path P. If ABC(G) – r(G) is minimum among
trees, then there is at most one vertex outside P in G.

Proof Suppose to the contrary that there are at least two vertices outside P in G.
Assume that P = vv · · · vd . Denote by Ti the component of G–E(P) containing vi, where

 ≤ i ≤ d. Let xi be a vertex in Ti such that

dG(xi, vi) = max
{

dG(x, vi) : x ∈ V (Ti)
}

,

where  ≤ i ≤ d. Clearly, xi is a pendent vertex if |V (Ti)| ≥ , and denote by x∗
i the unique

neighbor of xi in G.
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Since there are some vertices outside P in G, thus there exists some index, say k, such
that |V (Tk)| ≥ , where  ≤ k ≤ d – . By the choice of xk , it is easily seen that there are at
most two non-pendent neighbors of x∗

k in G.
Consider G = G – x∗

kxk + vxk . By Lemma , we have

ABC(G) – ABC(G) > –.. ()

Clearly, xk ∪ P = xkvv · · · vd is a diametrical path of G, thus the diameter of G is d + .
Observe that there are at least two vertices outside P in G, which implies that there are

some vertices outside (diametrical path) xk ∪ P in G. Similar to the transformation from
G to G, we can construct another tree G based on G, such that

ABC(G) – ABC(G) > –., ()

and the diameter of G is d + .
Now by () and (), it follows that

ABC(G) – ABC(G) =
[
ABC(G) – ABC(G)

]
+

[
ABC(G) – ABC(G)

]

> (–.) + (–.) = –. ()

On the other hand, by Lemma , we have

r(G) – r(G) =
⌊

d + 


⌋

–
⌊

d + 


⌋

= –. ()

Finally, by () and (), we get

[
ABC(G) – r(G)

]
–

[
ABC(G) – r(G)

]

=
[
ABC(G) – ABC(G)

]
–

[
r(G) – r(G)

]

> (–) – (–) = ,

i.e., ABC(G) – r(G) > ABC(G) – r(G), which is a contradiction to the minimality of
ABC(G) – r(G).

Then the result follows easily. �

Let Pn be the path on n vertices.

Lemma  Let G be a tree on n ≥  vertices with a diametrical path P. If there is at most
one vertex outside P in G, then

ABC(G) – r(G) ≥ n – √


–
⌊

n


⌋

with equality if and only if G ∼= Pn.

Proof From the hypothesis that there are at most one vertex outside P in G, we know
that either G is the path Pn, or G is a tree obtained from Pn– = vv · · · vn– by attaching a
pendent vertex to vi, where  ≤ i ≤ n – .
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If G is a tree obtained from Pn– = vv · · · vn– by attaching a pendent vertex to v or
vn–, then ABC(G) ≥ n–√

 + 
√


 with equality when n ≥  and r(G) = � n–

 	, and thus

ABC(G) – r(G) ≥ n – √


+ 
√




–
⌊

n – 


⌋

.

If G is a tree obtained from Pn– = vv · · · vn– by attaching a pendent vertex to vi, where
 ≤ i ≤ n – , then ABC(G) = n–√

 +
√


 and r(G) = � n–

 	, and thus

ABC(G) – r(G) =
n – √


+

√



–
⌊

n – 


⌋

.

If G ∼= Pn, then ABC(Pn) = n–√
 and r(Pn) = � n

 	, and thus

ABC(G) – r(G) =
n – √


–

⌊
n


⌋

.

It is easily verified that

n – √


+ 
√




–
⌊

n – 


⌋

>
n – √


+

√



–
⌊

n – 


⌋

>
n – √


–

⌊
n


⌋

.

Then the result follows easily. �

4 The main result
Now we give the main result of this paper.

Theorem  Let G be a connected graph on n ≥  vertices. Then

ABC(G) – r(G) ≥ n – √


–
⌊

n


⌋

with equality if and only if G ∼= Pn.

Proof Let G be a connected graph on n ≥  vertices.
If n = , then G ∼= P, and thus the result holds trivially. If n = , then either G is the path

P or the triangle, and thus the result follows from a simple calculation.
Suppose in the following that n ≥ .
Case . G is a tree.
Suppose that G is a tree with minimum value ABC(G) – r(G).
Let P be a diametrical path of G. By Lemma , there is at most one vertex outside P in G.

Furthermore, by Lemma , we have

ABC(G) – r(G) ≥ n – √


–
⌊

n


⌋

with equality if and only if G ∼= Pn.
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Case . G is not a tree.
Let T be a spanning tree of G. By Lemma , we have ABC(G) > ABC(T). On the other

hand, since the removal of edges potentially increases the eccentricities of some vertices,
thus r(G) ≤ r(T) follows clearly. So we have

ABC(G) – r(G) > ABC(T) – r(T).

Now together with the arguments in Case , we get

ABC(G) – r(G) > ABC(T) – r(T) ≥ n – √


–
⌊

n


⌋

.

Combining Cases  and , the result follows. �
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