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Abstract
We present asymptotic expansion of function involving the ratio of gamma functions
and provide a recurrence relation for determining the coefficients of the asymptotic
expansion. As a consequence, we obtain asymptotic expansion of the Wallis
sequence. Also, we establish sharp inequalities for the Wallis sequence.
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1 Introduction
The Wallis sequence to which the title refers is

Wn =
n∏

k=

k

k – 
, n ∈N := {, , , . . .}. (.)

Wallis (-) discovered that

∞∏

k=

k

k – 
=






















= · · · =
π


(.)

(see [], p.). Several elementary proofs of (.) can be found (see, for example, [–]).
An interesting geometric construction produces (.) []. Many formulas exist for the rep-
resentation of π , and a collection of these formulas is listed [, ]. For more history of π

see [, –].
Some inequalities and asymptotic formulas associated with the Wallis sequence Wn can

be found (see, for example, [–]). Hirschhorn [] proved that for n ∈N,

π



(
 –


n + 



)
< Wn <

π



(
 –


n + 



)
. (.)

Also in [], Hirschhorn pointed out that if the cj are given by

tanh

(
x


)
=

∞∑

j=

cj
xj+

(j)!
, (.)
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then, as n → ∞,

Wn ∼ π



(
 +


n

)– ∏

j≥

exp

(
cj

nj+

)
=

π



(
 +


n

)–

exp

( ∞∑

j=

cj

nj+

)
. (.)

Very recently, Lin et al. [] found that

cj =
(j+ – )Bj+

j+(j + )(j + )
, j ∈N := N∪ {}, (.)

where Bn (n ∈N) are the Bernoulli numbers defined by the following generating function:

z
ez – 

=
∞∑

n=

Bn
zn

n!
, |z| < π .

Also in [], Lin et al. derived

Wn =
π



(
 –


n + 



)– 
n + 

n – 
,n +O(n–)

, n → ∞. (.)

The gamma function is defined for x >  by

�(x) =
∫ ∞


tx–e–t dt.

The logarithmic derivative of �(x), denoted by ψ(x) = �′(x)/�(x), is called psi (or
digamma) function, and ψ (k)(x) (k ∈ N) are called polygamma functions. These functions
play an important role in various branches of mathematics as well as in physics and engi-
neering. For the various properties of these functions, please refer to [], pp.-.

Define the function W (x) by

W (x) =
π



(
 +


x

)– 
x

[
�(x + )
�(x + 

 )

]

. (.)

It is easy to see that

Wn = W (n).

The first aim of present paper is to establish sharp inequalities for Wn. More precisely,
we determine the best possible constants α, β , λ, and μ such that the double inequalities

π



(
 –


n + α

)
< Wn ≤ π



(
 –


n + β

)

and

π



(
 –


n + 



)λ

< Wn ≤ π



(
 –


n + 



)μ
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hold for all n ∈N. The second aim of present paper is to develop the formula (.) to pro-
duce a complete asymptotic expansion. More precisely, we provide a recurrence relation
for determining the coefficients rj (j ∈N) such that

W (x) ∼ π



(
 –


x + 



)∑∞
j= rjx–j

, x → ∞.

2 Lemmas
The following lemmas are required in our present investigation.

Lemma  ([], Corollary ) Let m, n ∈N. Then for x > ,

m∑

j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n–

< (–)n
(

ψ (n–)(x + ) – ψ (n–)
(

x +



))
+

(n – )!
xn

<
m–∑

j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n– , (.)

where Bn are the Bernoulli numbers.

It follows from (.) that, for x > ,


x

–


x +


x –


x < ψ(x + ) – ψ

(
x +




)
<


x

–


x +


x (.)

and

–


x +


x –


x < ψ ′(x + ) – ψ ′
(

x +



)
< –


x +


x –


x +


x . (.)

Lemma  For all x ≥ ,

[
�(x + )
�(x + 

 )

]

<

x

–


x +


x –


x +


,x . (.)

Proof We consider the function G(x) defined by

G(x) =  ln�(x + ) – 
[

ln�

(
x +




)
+ ln

(
x +




)]

– ln

(

x

–


x +


x –


x +


,x

)
.

From the asymptotic expansion ([], p.):

xb–a �(x + a)
�(x + b)

=  +
(a – b)(a + b – )

x

+




(
a – b



)(
(a + b – ) – a + b – 

) 
x + · · · as x → ∞, (.)
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we conclude that

lim
x→∞ G(x) = .

Differentiating and applying the first inequality in (.) yield, for x ≥ ,

G′(x) = 
[
ψ(x + ) – ψ

(
x +




)]

–
,x – ,x + x – x + x – ,

x(x + )(,x – ,x + ,x – x + )

> 
(


x

–


x +


x –


x

)

–
,x – ,x + x – x + x – ,

x(x + )(,x – ,x + ,x – x + )

=
(
, + ,(x – ) + ,,(x – ) + ,,(x – )

+ ,(x – ) + ,(x – ))/
(
x(x + )

(
, + ,(x – )

+ ,(x – ) + ,(x – ) + ,(x – )))

> .

This leads to

G(x) = ln

[
�(x + )
�(x + 

 )

]

– ln

(

x

–


x +


x –


x +


,x

)

< lim
x→∞ G(x) = , x ≥ .

The proof of Lemma  is complete. �

By (.), we obtain

(x + )
[
ψ(x + ) – ψ

(
x +




)]
–  < (x + )

(


x
–


x +


x

)
– 

=


x
–


x +


x +


x . (.)

By (.), we get

 –
(

x +



)[
�(x + )
�(x + 

 )

]

>  –
(

x +



)(

x

–


x +


x –


x +


,x

)

=


x
–


x +


x –


,x –


,x . (.)

The proof of Theorem  makes use of (.) and (.).

Lemma  ([]) Let –∞ ≤ a < b ≤ ∞. Let f and g be differentiable functions on an interval
(a, b). Assume that either g ′ >  everywhere on (a, b) or g ′ <  on (a, b). Suppose that f (a+) =
g(a+) =  or f (b–) = g(b–) = . Then
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() if f ′
g′ is increasing on (a, b), then ( f

g )′ >  on (a, b);

() if f ′
g′ is decreasing on (a, b), then ( f

g )′ <  on (a, b).

3 Sharp inequalities
Theorem  For all n ∈N,

π



(
 –


n + α

)
< Wn ≤ π



(
 –


n + β

)
(.)

with the best possible constants

α =



and β =
 – π

π – 
= . . . . .

Equality in (.) occurs for n = .

Proof The inequality (.) can be written as

α ≤ F(n) < β ,

where

F(x) =


 – 
x+/ [ �(x+)

�(x+/) ]
– x.

Using (.), we conclude that

lim
x→∞ F(x) =




.

Differentiating F(x) and applying (.), (.), and (.) yield, for x ≥ ,

(
 –

(
x +




)[
�(x + )
�(x + 

 )

])

F ′(x)

=
{

(x + )
[
ψ(x + ) – ψ

(
x +




)]
– 

}[
�(x + )
�(x + 

 )

]

– 
(

 –
(

x +



)[
�(x + )
�(x + 

 )

])

<
(


x

–


x +


x +


x

)(

x

–


x +


x –


x +


,x

)

– 
(


x

–


x +


x –


,x –


,x

)

= –


,,x

(
,, + ,,(x – ) + ,,(x – )

+ ,,(x – ) + ,,(x – )

+ ,,(x – ) + ,(x – ))

< .
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Straightforward calculation produces

F() =
 – π

π – 
= . . . . ,

F() =
–π + ,

π – 
= . . . . ,

F() =
–,π + ,

π – 
= . . . . ,

F() =
–,π + ,

,π – ,
= . . . . ,

F() =
–,π + ,,

,π – ,
= . . . . ,

F() =
–,,π + ,,

,π – ,,
= . . . . .

Thus, the sequence (F(n))n∈N is strictly decreasing. This leads to




< lim
x→∞ F(x) < F(n) ≤ F() =

 – π

π – 
, n ∈N.

The proof of Theorem  is complete. �

Remark  In fact, Elezović et al. [] have previously shown that 
 is the best possible

constant for a lower bound of Wn of the type π
 ( – 

n+α
). Moreover, the authors pointed

out that

Wn =
π



(
 –


n + 



)
+ O

(


n

)
, n → ∞.

Theorem  For all n ∈N,

π



(
 –


n + 



)λ

< Wn ≤ π



(
 –


n + 



)μ

(.)

with the best possible constants

λ =  and μ =
ln(π/)
ln(/)

= . . . . .

Equality in (.) occurs for n = .

Proof Inequality (.) can be written as

λ > xn ≥ μ,

where the sequence (xn)n∈N is defined by

xn =
ln( 

n+ 


( �(n+)
�(n+ 

 )
))

ln( – 
n+ 


)

.
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We are now in a position to show that the sequence (xn)n∈N is strictly increasing. To this
end, we consider the function f (x) defined by

f (x) =
 ln�(x + ) –  ln�(x + 

 ) – ln(x + 
 )

ln( – 
x+ 


)

=
f(x)
f(x)

,

where

f(x) =  ln�(x + ) –  ln�

(
x +




)
– ln

(
x +




)

and

f(x) = ln

(
 –


x + 



)
.

We conclude from the asymptotic formula of ln�(z) ([], p.) that

f(∞) = lim
x→∞ f(x) = .

Elementary calculations show that

f ′
 (x)

f ′
(x)

=
(
x + x + 

)[
ψ(x + ) – ψ

(
x +




)
–


x + 

]
=: f(x).

By using inequalities (.) and (.), we obtain, for x ≥ ,

f ′
(x) = (x + )

[
ψ(x + ) – ψ

(
x +




)
–


x + 

]

+
(
x + x + 

)[
ψ ′(x + ) – ψ ′

(
x +




)
+


(x + )

]

> (x + )
[


x

–


x +


x –


x –


x + 

]

+
(
x + x + 

)[
–


x +


x –


x +


(x + )

]

=
 + ,(x – ) + ,(x – ) + ,(x – ) + ,(x – ) + (x – )

x(x + )

> .

Hence, f(x) and f ′
 (x)

f ′
(x) are both strictly increasing for x ≥ . By Lemma , the function

f (x) =
f(x)
f(x)

=
f(x) – f(∞)
f(x) – f(∞)

is strictly increasing for x ≥ . Therefore, the sequence (xn) is strictly increasing for n ≥ .
Direct computation would yield

x =
ln(π/)
ln(/)

= . . . . , x =
– ln  +  ln  + lnπ + ln 

– ln  + ln  + ln 
= . . . . .
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Consequently, the sequence (xn)n∈N is strictly increasing. This leads to

lim
n→∞ xn > xn ≥ x =

ln(π/)
ln(/)

for n ∈N.

It remains to prove that

lim
n→∞ xn = . (.)

We conclude from the asymptotic formula of ln�(z) ([], p.) that

f (x) =
 + O(x–)
 + O(x–)

→  as x → ∞,

which implies (.). This completes the proof of Theorem . �

4 Asymptotic expansion
Theorem  The function W (x), defined by (.), has the following asymptotic expansion:

W (x) ∼ π



(
 –


x + 



)∑∞
j= rjx–j

, x → ∞, (.)

with the coefficients rj given by the recurrence relation

r = , rj = 
j–∑

k=

rkqj–k+ – pj+, j ∈N, (.)

where

pj = (–)j–
(

–


jj +
((–)j+ – (–j – ))Bj+

j(j + )

)
, j ∈ N (.)

and

qj = –
j–∑

k=


(k + ) · k+

(
j – 

j – k – 

)(
–




)j–k–

, j ∈N. (.)

Here, Bn are the Bernoulli numbers.

Proof Write (.) as

ln( 
π

W (x))
ln( – 

x+ 


)
∼

∞∑

j=

rj

xj , x → ∞. (.)

The logarithm of gamma function has asymptotic expansion (see [], p.):

ln�(x + t) ∼
(

x + t –



)
ln x – x +




ln(π ) +
∞∑

n=

(–)n+Bn+(t)
n(n + )


xn (.)



Deng et al. Journal of Inequalities and Applications  (2015) 2015:186 Page 9 of 11

as x → ∞, where Bn(t) denotes the Bernoulli polynomials defined by the following gener-
ating function:

xetx

ex – 
=

∞∑

n=

Bn(t)
xn

n!
.

From (.), we obtain, as x → ∞,

[
�(x + t)
�(x + s)

]/(t–s)

∼ x exp

(


t – s

∞∑

j=

(–)j+(Bj+(t) – Bj+(s))
j(j + )


xj

)
. (.)

Setting (s, t) = ( 
 , ) in (.) and noting that

Bn() = (–)nBn() = Bn and Bn

(



)
=

(
–n – 

)
Bn for n ∈N

(see [], p.), we obtain, as x → ∞,

[
�(x + )
�(x + 

 )

]

∼ x exp

( ∞∑

j=

( – (–)j+(–j – ))Bj+

j(j + )

xj

)
. (.)

By using the Maclaurin expansion of ln( + t),

ln( + t) =
∞∑

j=

(–)j–

j
tj for – < t ≤ ,

we obtain

(
 +


x

)–

∼ exp

( ∞∑

j=

(–)j

jj

xj

)
as x → ∞. (.)

Applying (.) and (.) yields

ln

(

π

W (x)
)

∼
∞∑

j=

pj

xj , x → ∞ (.)

with

pj = (–)j–
(

–


jj +
((–)j+ – (–j – ))Bj+

j(j + )

)
, j ∈ N. (.)

The Maclaurin expansion of ln( + t) with t = – 
x+ 


, yields

ln

(
 –


x + 



)
∼ –

∞∑

j=


j · jxj

(
 +


x

)–j

∼ –
∞∑

j=


j · jxj

∞∑

k=

(
–j
k

)
k

kxk
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∼ –
∞∑

j=


j · jxj

∞∑

k=

(–)k
(

k + j – 
k

)
k

kxk

∼ –
∞∑

j=

j–∑

k=


(k + ) · k+

(
j – 

j – k – 

)(
–




)j–k– 
xj .

That is,

ln

(
 –


x + 



)
∼

∞∑

j=

qj

xj

with

qj = –
j–∑

k=


(k + ) · k+

(
j – 

j – k – 

)(
–




)j–k–

, j ∈N.

It follows from (.) that

∑∞
j= pjx–j

∑∞
j= qjx–j ∼

∞∑

j=

rj

xj ,

∞∑

j=

pj

xj ∼
∞∑

j=

rj

xj

∞∑

k=

qk

xk ,

∞∑

j=

pj

xj ∼
∞∑

j=

( j–∑

k=

rkqj–k

)

xj .

We then obtain

pj =
j–∑

k=

rkqj–k , j ∈N,

pj =
j–∑

k=

rkqj–k + rj–q, j ≥ .

Noting that q = – 
 , we obtain

rj– = 
j–∑

k=

rkqj–k – pj, j ≥ ,

and an empty sum (as usual) is understood to be nil. Noting that p = – 
 , we then obtain

the recurrence relation

r = , rj = 
j–∑

k=

rkqj–k+ – pj+, j ∈N.

The proof of Theorem  is complete. �
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Here, from (.), we give the following explicit asymptotic expansion:

Wn =
π



(
 –


n + 



)– 
n + 

n – 
,n – 

n +···
, n → ∞, (.)

which develops the formula (.) to produce a complete asymptotic expansion.
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