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Abstract

The split variational inclusion problem is an important problem, and it is a
generalization of the split feasibility problem. In this paper, we present a
descent-conjugate gradient algorithm for the split variational inclusion problems in
Hilbert spaces. Next, a strong convergence theorem of the proposed algorithm is
proved under suitable conditions. As an application, we give a new strong
convergence theorem for the split feasibility problem in Hilbert spaces. Finally, we
give numerical results for split variational inclusion problems to demonstrate the
efficiency of the proposed algorithm.

Keywords: split variational inclusion problem; maximal monotone mapping; split
feasibility problem; resolvent mapping; conjugate gradient method

1 Introduction

Let H be a real Hilbert space, and B: H — H be a set-valued mapping with domain
D(B) := {x € H : B(x) # #}. Recall that B is called monotone if (x — v,x — y) > 0 for any
u € Bx and v € By; B is maximal monotone if its graph {(x,y) : x € D(B),y € Bx} is not
properly contained in the graph of any other monotone mapping. An important problem
for set-valued monotone mappings is to find x € H such that 0 € Bx. Here, X is called a zero
point of B. A well-known method for approximating a zero point of a maximal monotone
mapping defined in a real Hilbert space is the proximal point algorithm first introduced
by Martinet [1] and generated by Rockafellar [2]. This is an iterative procedure which gen-
erates {x,} by x; =x € H and

Xp1 =Jg 20 nEN, (11)

where {8,} C (0,00), B is a maximal monotone mapping in a real Hilbert space, and ],B is
the resolvent mapping of B defined by /2 = (I + rB)™! for each r > 0. In 1976, Rockafellar
[2] proved the following in the Hilbert space setting: If the solution set B~1(0) is nonempty
and liminf,_, - B, > 0, then the sequence {x,} in (1.1) converges weakly to an element of
B71(0). In particular, if B is the subdifferential 9f of a proper lower semicontinuous and
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convex function f : H — R, then (1.1) is reduced to

1
2

Xnsl =arg1;gl;{f(y)+ IIy—xnIIZ}, neNl. 1.2)
In this case, {x,} converges weakly to a minimizer of f.

Let H; and H; be two real Hilbert spaces, B, : H; — Hj and B, : H, — H; be two set-
valued maximal monotone mappings, A : H; — H, be a linear and bounded operator, and
A* be the adjoint of A. Let f : Hy — H; and g : H, — H, be two proper lower semicon-
tinuous, and convex functions. In 2011, Moudafi [3] presented the following general split

variational inclusion problem:
Find x € H; such that 0 € f(x) + B1(¥) and 0 € g(AX) + By(Ax). (GSFVIP)

Clearly, we know that split variational inclusion problem (SFVIP) is a generalization of
variational inclusion problems and a generalization of split feasibility problem. Hence, it
is important to study the split variational inclusion problems in Hilbert spaces.

For problem (GSFVIP), Moudafi [3] gave the following algorithm and a weak conver-
gence theorem under suitable conditions:

Xt = S = M) (20 + yA*(J22 (1 = Ag) — I)Ax,).

It is worth noting that A and y are fixed numbers. Hence, it is important to establish gen-
eralized iteration processes and strong convergence theorems for problem (SEVIP).

In this paper, we consider the following split variational inclusion problems in Hilbert
spaces:

Find x € H; such that 0 € B;(x) and 0 € By(Ax). (SEVIP)

In 2011, Byrne et al. [4] gave the following two convergence theorems for split variational
inclusion problems.

First, from the idea of the algorithms for fixed point theorem, the algorithm given in
Theorem 1.1 can be seen as a Picard iteration method.

Theorem 1.1 [4] Let Hy and Hj be two real Hilbert spaces, A : H — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy — Hy and B, : Hy — H,
be two set-valued maximal monotone mappings. Let 8 > 0 and p € (0, W). Let Q2 be the
solution set of (SEVIP) and suppose that Q # (. Let {x,} be defined by

Knl = ]gl [xn - pA* (1 _Igz)Axn]
for each n € N. Then {x,} converges weakly to an element x € Q2.

Next, from the idea of the algorithms for fixed point theorem, the algorithm given in
Theorem 1.2 can be seen as Halpern’s iteration method.

Theorem 1.2 [4] Let H; and H, be two real Hilbert spaces, A : HL — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let B, : Hy —o Hy and By : Hy —o H,
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be two set-valued maximal monotone mappings. Let {a,} be a sequence of real numbers
in [0,1] and let B > 0. Let u € H be fixed and let p € (0, W). Let Q2 be the solution set of
(SEVIP) and suppose that Q2 # 0. Let {x,} be defined by

Xpsl i= Aplh + (1 - an)]gl [xn - ,OA* (I _jgz)Axn]

for each n € N. Assume that lim,_, . a, = 0, Zz‘il ay = 00. Then lim,_, X, = X _for some
x € Q.

Remark 1.1 In Theorems 1.1 and 1.2, we know that 8 and p are fixed numbers.

In 2013, Chuang [5] gave the following two convergent theorems for problem (SFVIP).
Indeed, from the idea of the algorithms for fixed point theorem, the algorithm given in

Theorem 1.3 can be seen as Halpern-Mann type iteration method.

Theorem 1.3 [5] Let H and H, be two real Hilbert spaces, A : H — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let B, : Hy — Hy and B, : Hy — H,
be two set-valued maximal monotone mappings. Let {a,}, {b,}, and {c,} be sequences of
real numbers in [0,1] with a, + b, + ¢, =1 and 0 < a, <1 for each n € N. Let {B,} be a
sequence in (0,00). Let u € H be fixed. Let {p,} be a sequence in (0, —%—). Let Q be the

lAI2+1
solution set of (SEVIP) and suppose that Q # . Let {x,} be defined by

Kpal 1= Aplh + bpxy + c,,]fi [%n — oA™(1 —]gj A%, ]

for each n € N. Assume that lim,.a, = 0, Zf’il a, = oo, liminf,_ c,0, > O,
liminf,_, o b,c, > 0, and liminf,_, , B, > 0. Then lim,_, ., x,, = X, where x = Pqu.

Besides, the algorithm in Theorem 1.4 comes from the optimization theorem and

Tikhonov regularization method.

Theorem 1.4 [5] Let Hy and H, be two real Hilbert spaces, A : HH — H, be a linear and
bounded operator, and let A* denote the adjoint of A. Let By : Hy —o Hy and By : Hy —o H,
be two set-valued maximal monotone mappings. Let {B,} be a sequence in (0,00), {a,} be
a sequence in (0,1), and {p,} be a sequence in (0,2/(|A||> + 2)). Let Q2 be the solution set of
(SEVIP) and suppose that 2 # 0. Let {x,} be defined by

KXn+l = ]gi [(1 — Ay )Xy — pnA*( _]gnz)Axn]

for each n € N. Assume that lim,_.a, = 0, ZZZI a,p, = 0o, liminf,_, o, p, > 0 and
liminf, . B, > 0. Then lim,_, » x, = X, where x = Pq0, i.e., x is the minimal norm solu-
tion of (SFVIP).

Further, we also observed that Bnouhachem et al. [6] proposed the following descent-
projection algorithm to study the split feasibility problem.

Let A : R"” — R" be a bounded linear operator, and A* be the adjoint of A. Let f : R” —
(—00,00] and g : R” — (—00, 00] be two proper, lower semicontinuous, and convex func-

tions. Let {px} be a sequence of positive real numbers.
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Algorithm 1.1 For given x; € R”, find the approximate solution by the following iterative
process.

Step1l. Fork e N, let Cy and Qi be

Ci:={u e R": f(xk) + (ux, u — x) <0},
Qk = {V e R™ Ig(Axk) + (Vk,V—A?Ck) =< 0}’

where uy € of (x) and v € dg(Axy).
Step 2. yx = Pc, [xx — oAT(I - Pq,)Axy], where py > 0 satisfies

pr|AT( = Po)Ax, = AT(I - Po)Ayic| < 8llxi—yell, 0<8<1.

Step 3. If yx = xx, then stop. Otherwise, go to Step 4.
Step 4. The new iterative x4, is defined by

%1 = Pe [k — axd (i, i) ),
where

A%, pi) = % — Y + kAT = Po,) Ay

ek = pk[AT (I = Po ) Ayx — AT (I - Po ) Axy],
D(xs pic) 1= %k = Yic + €

b5 k) = (X = Yio DX 1))

O = %

Let H; and H; be infinite dimensional Hilbert spaces, A : H; — H, be a bounded linear
operator, and A* be the adjoint of A. Let By : H; — H; and B, : H, —o H; be set-valued
maximal monotone mappings. Let {a,}, {n.}, {v,}, and {p,} be real sequences. Let § be a
fixed real numbers. Let €2 be the solution set of problem (SFVIP). In this paper, motivated
by the above works and related results, we present the following algorithm with conjugate
gradient method for the split variational inclusion problems in Hilbert spaces.

Motivated by Algorithm 1.1 and the above results, we want to give a strong convergence
theorem in infinite dimensional real Hilbert spaces. (Indeed, for computers and program
language, we can only give examples for a finite dimensional space.) Next, we want that
the convergent rate of the given algorithm are faster than the above algorithms. Hence, we
give the following algorithm with conjugate method. In our numerical results, we know
that this algorithm is very fast under some conditions.

Algorithm 1.2

Step 0. Choose x; € H; arbitrarily, set r; € (0,1) and dy = 0.
Step L. dy 1= —A*(I = J52) A%y + Nutdy1.
Step 2. FormeN, sety, as

In = Jg [ = @upu)n = PuA™ (I = J52) Ay + Vudly ), (13)
where p, > 0 satisfies

|| A1 = T52) Ay = A*(I = J52) Ay || < 81l = yull, 0<8<1. (1.4)
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Step 3. Ifx, =y,, then set n:= n + 1 and go to Step 1. Otherwise, go to Step 3.
Step 4. The new iterative x,,,1 is defined by

Xns1 = T [%n = uD(s pn)]s (15)
where

D%y pu) 1= Xn = Y + pu[A* (I = J2) Ay — A (I - T2 ) A, ], (1.6)

o 1w

Then update n:=n + 1 and go to Step 1.

Remark 1.2
(1) Itis worth noting that d,, is defined by using the idea of the so-called conjugate
gradient direction ([7], Chapter 5). Further, it is natural to assume that {x,} is a
bounded sequence for the convergence theorems with the conjugate gradient
direction method.
(2) If we set

Eni= pu A" (I = J52) Ayn — A* (I - J52) A%, (1.8)
then it follows from (1.4) and (1.8) that

[ = Vs &) | < 1% = Yl - NEnll < 811%n = ¥l - 1260 = yull = Sl = yul>. (1.9)

(3) If we choose p, such that 0 < p, < WSW = W, then (1.4) holds.
(4) In our convergence theorem, we may assume that x, # y, for each n € N by the
assumptions on the sequence {a,}.

Next, a strong convergence theorem of the proposed algorithm is proved under suitable
conditions. As an application, we give a descent-projection-conjugate gradient algorithm
and a strong convergence theorem for the split feasibility problem. Finally, we give numer-
ical results to demonstrate the efficiency of the proposed algorithm.

2 Preliminaries

Let H be a (real) Hilbert space with inner product (-,-) and norm || - ||, respectively. We
denote the strongly convergence and the weak convergence of {x,} to x € H by x, — x and
x, — x, respectively. From [8, 9], for each x,y,u,v € H and A € [0,1], we have

ll + yII* < x> +2(p, % +y); 2.1)
lloe + y1I* = llll® + 24, ) + Iyl (2.2)
2=y, u—v) = llx—vI*+ ly—ull® = lx — ull® - [ly - vII>. (2.3)

Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and let T :
C — H be a mapping. Let Fix(T) := {x € C: Tx = x}. Then T is said to be a nonexpansive
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mapping if || 7x — Ty|| < ||x — y|| for every x,y € C. T is said to be a quasi-nonexpansive
mapping if Fix(T) # ¥ and || Tx — y|| < ||x — y|| for every x € C and y € Fix(7T). It is easy
to see that Fix(T) is a closed convex subset of C if T is a quasi-nonexpansive mapping.
Besides, T is said to be a firmly nonexpansive mapping if || Tx — Ty||* < (x — y, Tx — Ty) for
everyx,y € C, thatis, || Tx — Ty||> < |lx —y||*> = || = T)x — (I - T)y||? for every x,y € C.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Then for each
x € H, there is a unique element x € C such that

llx — X = min [lx - y|l.
yeC

Here, set Pcx = %, and Pc is called the metric projection from H onto C.

Lemma 2.1 [8] Let C be a nonempty, closed, and convex subset of a real Hilbert space H,
and let Pc be the metric projection from H onto C. Then (x — Pcx, Pcx—y) > 0 forallx € H
andyeC.

Lemma 2.2 Let H be a real Hilbert space. Let B: H —o H be a set-valued maximal mono-
tone mapping, B > 0, and let ]g be defined by ]g := (I + BB)™! (]g is called resolvent map-
ping). Then the following are satisfied:
(i) foreach B >0, ]g is a single-valued and firmly nonexpansive mapping;
(i) DUE) = H and Fix(J§) = {x € D(B): 0 € Bx};
(i) | —]ng <|lx —]fxllfor all0 < B <y and forall x € H;
(iv) (- ]g) is a firmly nonexpansive mapping for each 8 > 0;
(v) suppose that B™(0) # ¥, then |lx - J§x||* + |/fx - %||* < ||x — X|* for each x € H,
each x € BY(0), and each 8 > 0;
(vi) suppose that B(0) # @, then (x — Jjx,J§x — w) > 0 for each x € H and each
w e BY0), and each B > 0.

Lemma 2.3 Let H, and H, be two real Hilbert spaces, A : Hl — H, be a linear operator,
and A* be the adjoint of A, and let § > 0 be fixed. Let B : Hy — H, be a set-valued maximal
monotone mapping, and let ]g be a resolvent mapping of B. Let T : Hy — H; be defined by
Tx := A*(I - J§)Ax for each x € H,. Then

(i) 1 -T)Ax— (I -J§)Ay|*> < (Tx - Ty, x — ) for all x,y € Hy;

(i) 1A% -J§)Ax = A*(I - J) Ay < |AN? - (Tx - Ty, x —y) for all x,y € H,.

Lemma 2.4 Let Hy and Hj be two real Hilbert spaces, A : Hl — Hj be a linear operator,

and A* be the adjoint of A, and let B > 0 be fixed, and let p € (0, W). Let By : Hy —o H; be

a set-valued maximal monotone mapping, and let J5* be a resolvent mapping of B,. Then
[ = pA* (1= J§2)Ax] = [y - pA™ (1 - J5*) ]|
< llx— 1%~ (20 — P2 IAIP) | (I~ T52) Ax — (1 - T3 Ay
for all x,y € Hy. Furthermore, I - pA*(I - J;*)A is a nonexpansive mapping.

Lemma 2.5 [10] Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C — H be a nonexpansive mapping, and let {x,} be a sequence in C. If x, — w and
lim,_ oo |, — Tx,|| = 0, then Tw = w.
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Lemma 2.6 [11] Let {a,} be a sequence of real numbers such that there exists a subsequence
{n;} of {n} such that a,, < a,,.1 for all i € N. Then there exists a nondecreasing sequence
{mi} € N such that my — 00, Ay < A1, and ay < Gy, .1 are satisfied by all (sufficiently
large) numbers k € N. In fact, my = max{j < k:a; < aj}.

Lemma 2.7 [12] Let {a,},cn be a sequence of nonnegative real numbers, {«,} a sequence
of real numbers in [0,1] with Y .2, a, = 00, {u,} a sequence of nonnegative real numbers
with Z;ﬁl Uy, < 00, {t,} a sequence of real numbers with limsup ¢, < 0. Suppose that a, .1 <
(1-an)ay, + ayt, + uy, for each n € N. Then lim,_, o a, = 0.

3 Strong convergence theorems for (SFVIP)

In Remark 1.2, we have said that it is natural to assume that {x,} is a bounded sequence
in the following result. For example, ([13], Theorem 3.1) use the assumption: {Vf,(z,)} is a
bounded sequence; ([14], Assumption 3.2, Theorem 3.1) use the assumption: {y’ },,cy is a
bounded sequence; ([15], Assumption 2, Proposition 2.7) use the assumption: there exists
a positive number M3 such that ||Vf;(x)|| < M;3 for each x € R? and each ¢ = 1,2,...,L.
Here, we need a similar assumption for our algorithm and convergence theorem in this

paper.

Theorem 3.1 Let H; and H, be infinite dimensional Hilbert spaces, A : Hi — H, be a
bounded linear operator, and A* be the adjoint of A. Let B, : H) —o H; and B, : Hy — H, be
set-valued maximal monotone mappings. Let {a,}, {n.}, {y.} be sequences in [0,1]. Choose
3 €(0,1/2), and let {p,} be a sequence in (0, min{ﬁ, HMI++2})' Let Q2 be the solution set of
problem (SFVIP) and assume that Q # (). For the sequence {x,} in Algorithm 1.2, and we
further assume that:
(i) limy,_ o0 a, =1limy,_ oo 1, =0, fo:l a, = 00, liminf,_, o 0, > 0, and liminf,_, , B8, > 0;
(i) limy,_ s Z—Z =t for some t > 0, and {x,} is a bounded sequence.
Then lim,,_, o x,, = X, Wwhere x := Pq0.

Proof Clearly, 2 is a closed and convex subset of Hj. Let X = Pg0. Since liminf,_, » p, > 0,
we may assume that p, > p for some p > 0. Without loss of generality, we may assume
that x,, # y, for each n € N. Take any w € Q and let w be fixed. Take any # € N, and let n
be fixed. Let x = Pq0. Since w € €2, we know that Aw € B;'(0). By Lemma 2.2(ii), we know
that

A*(I-]52)Aw = A* (Aw — ]2 Aw) = A*(Aw — Aw) = 0. (3.1)
By Lemma 2.2(v) and (1.5),
”xn+l - W||2 + ”xm—l —Xn + anD(xnr ;On)”2 5 ”xn - anD(xnr pn) - WHZ- (32)

By (3.2),

%0 = WII> = ll1 = wil®
> [|%n — W||2 - “xn — oy D(%, pn) — W”2 + ”xnﬂ — % + o, D(xy, pn)||2

> oty = Wl = |0 — @u D, ) — W
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= [lxy - W||2 = [lxn - W||2 - ”anD(xm pn)||2 + 2<xn - w,a,D(x,, pn))

= {65 = W, 0D, ) — 22| D, )| (3.3)
Besides, by Lemma 2.3,
(ax(1 —]gf YAy, —A*(1 —]gj)Aw,yn -w)>0. (3.4)

By (3.1) and (3.4),

(A% (1= T52) Ay 30 — W) = 0. (3.5)
By Lemma 2.2(vi) and (1.3),
(xn _yn - pnA* (1 _]gj)Axnvyn - W) 2 (ﬂnlonxn - yndnryn - W)- (36)

By (3.5) and (3.6), we have

(@nouXn — yndnryn -w)
< (0 = Y = PuA" (I = J52) Ak + puA* (1= J52) AYs Y — W)

= (D, Pn)s yu — W). 3.7)
By (3.7), we know that
(D )% = V) + (@ ouon = VnGins Y = W) < (D Xy )2 — W) (3.8)
Here, we set
en = Pul A" (1= J532)Ayn — A* (I = J52 ) A . (3.9)
Then it follows from (1.9) and (3.9) that

(D(xm pn)’xn _yn> = <xn —YwXn —Yn + 8;1)
= 1% = Y l® + (% = Yy £1)
= ”xn —J’n||2 - |<xn —Jn 871)‘

> (1= 8)ll%y — yull® (3.10)
and

(D(xm Pn)s%n _J/n> = (%n =Y Xn = Yn + En)

1% = Yull* + (% = Vs €0)

1 2 1 2
3 %0 = Yull” + (%0 — Yns €n) + 3 e = Yl

v

1 2 1 2
Enxn = yull” + X0 = Yus €0) + 5”871”
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1|| II*
=~y — Y+ &
o I1%n In n

1
2 D@ )] (3.11)

By (3.3) and (3.8),

1% = wII* = %1 — w)?
2
> 201, (%, — W, D, pn)) — ot | D(%y )
= 2Oln<D(xm Pn)s %n —)’n) + 20,8, 00 Xy Y = W) = 200V (A, Yo = W)

- Oli ||D(xn: Pn) ”2

= an(D(xnr pn)rxn _yn> + 20,4, 0y (xmyn —W) =20, Yy (dn:yn —-w). (3.12)
By (1.7) and (3.11), o, > % for each # € N. It follows from (1.9) and 1 > 24 that
[, —Ynt 8n||2 = ||x, _yn”2 + ||€n||2 +2{x%, _yn’8n>
> 196 = Yull* + l€nll® = 2| (n = s €4) |
> [l = yull> + lenll = 2811%, — yull®
> (1-28)llx, = yul* > 0. (3.13)
By (1.6), (1.7), (3.9), and (3.13),
— . —_— 2 —_— 2
4 e o R e P S e ¥ G U -
" ||xn—)/n+8n||2 - (1_25)”96}1_}’}1”2 1_25

So, {&,} is a bounded sequence. By (3.12) and (3.10),

%41 = W||2
<% — W||2 - an<D(xm Pn)s%n _yn) + 20080 05 Xy W = V) + 2000V (D Y — W)

< Nl = wI* = oty (1= 8) % = Yull* + 200 00 (Ko W = V) + 20,V (s Y — W)

1-§
=< ”xn - W||2 - T ”xn _yn”Z + 20[}1“;1)0;1 (xn’ w _yn) + 20571)/;1 (dn:yn - W)’ (315)

It follows from (2.3) and (3.15) that

2
%641 — W

< lon - W||2 —a,(1-8)llx, _ynH2 + 2anyn<dn:yn -w)

+ Qo (1% = Yull® + [WIP = 160 = I = llyal®)
S (1 - ananpn)”xn - W||2 - an[l - 8 - anpn] ”xn _yn”Z

+ Olnﬂruon(||1’v||2 - ||yn||2) + 20, Y@y Y — W). (3.16)

Since lim,,_, » 4, = 0, and two sequences {p,} and {«,} are bounded, we may assume that
aypy <1-38 and 0 < a,a,p, <1 for each n € N. Since {x,} is a bounded sequence, it is
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easy to see that {A*(/ —J ﬂ2)Axn} is a bounded sequence. Then there exists M > 0 such that
IA*(I - ]ﬁz)Aan <M foreach n € N.

Since lim,_, - 1, = 0, there exists k € N such that », < 1/2 for each n > k. Let M* =
max{M, ||dk||}. Then ||di| < 2M*. Suppose that ||d,|| < 2M* for some n > k. Then we have

1
Idall < A" (1 =52 YA | + nost Il < M+ 5 ) < 20"

By the induction method, we know that ||d, || < 2M* for each n > k. So, {d,} is a bounded
sequence.
Next, we know that

lyn = wll
< 5 = @upu)tn — puA* (I = J52) A%in + Vudly
~ T [ = anpu)w — puA™ (I -T2 ) Aw] |
+ [ Tan [~ awpnw = puA™ (1= T2 ) Aw] = i [w = pud” (I = ]2 Aw]|
< (1= @) 1tn = Wil + Vulldall + |52 [0 = anpa)w] —J5 W] |
< A =anou)lln = wll + anpull Wil + yulldnll. (3.17)
Hence, if follows from (3.17) and the two sequences {x,} and {d,} being bounded that

sequence {y,} is bounded.
Besides, we have

1y = wll®
< [ = @bl — puA* (I = T52) A = [w = 0uA* (I = J52)AW] + yiud|*
= [ = puA* (1 =I5 ) Aa] = [w = puA" (1 = ]2 Aw] |
2l = oA (1) As] = [ a1~ 22) AL 1~ )
+ 1 Vuln = @nonnl®
< T = ™ (1 =752 ) Aa] = [ = ™ (1 = T2 ) AW] |
+ 2[5 — PuA (I = J52) Atn] = [W = puA* (I = J52) AW), Yty — i)

+ Vi lldnl® + (@0 1% 1° + 2Vt pulld | - 12,1 (3.18)

By (3.18) and Lemma 2.4,

Iy —wi®
< 12w = Wi = (200 — P2IANP) | (1 - T52) A — (1 - T52) Aw |
+ 2[00 — puA* (1= J52) Axs] = [W = puA* (1= J52)AW), Vs — @ pun)
+ V21 + (@n o) 1% + 29t 0l ]l - 16l
< 120 = Wi = (200 = P2IANP) | (1 = T52) A + v, 2112

+ 2], —wl| - (Vn”dn” + anpn”xn”) + (ﬂnpn)zllxnnz + 2Yn@nPulldnll - %41l (3.19)
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Next, we know that

9 =Tt
= 5 = @nputn — puA™ (I = T52) A + Yudn] = T 60
<[ = @npu)xn = oA (I = T52 ) A%] = 2| + vullddal
< anpullull + pu|A*(I = J52) A + Vull
< anpullXull + pullAll - | A, —],fijn |+ Vaulldnll. (3.20)

Further, by Lemma 2.2, we have

llyn — &I
= VL0 = upudn = pu” (L= J2) A + v = T [% = a1 - J2) AR] |
<A = @up)5 = PuA* (I = J32) Ay + Yty — % + puA* (I — ] 52) AR, y, — )
= (1= @n )% — puA™ (I = 2 ) Ay — (1= @, pu)5% + puA™ (1 = ]2 ) AX, 3, - )
= (5, Y = E) + Vs Yu — %)
< (U= @npn)5n — puA™ (I = J2) A — (1 = @) + puA™ (I - ]2 ) AR
N = FN + o (5 Y = B + Vil ehns Y = )
< (L= @up) 1% = FI| - llyn = Ell + B (5, Y = %) + Vialelys Y = %)

< (1 - ﬂnpn)2

= ) lloen — 21" + 5 190 = %1° + @non{—%,yn = X) + Y (dn, Y — %)

1-a.p - 1 - = < 7
5( > n)nxn—xn“5||yn—x||2+anpn<—x»yn—x>+Vn<dwyn—x>' (321
This implies that

Nl — %I
< (L= @npn) 1% = % + 260 (~%, Y — ) + 275 (dyy yu — %)
= (1= @) 6n = XII* + 280 (=%, Y = %) + 20 (~%, % — X)
+ 2 (> Y — X)
< (L= anp) 180 = Z1 + 2,00 |E]| - 9 = Xl + 2000 (—E, %, — %)

+2¥ulldnll - 1y — |- (3.22)
By (3.22), we also have

1% = 12 = 1001 = Pull® = 2601 = %, Y = X)
= llyn — %I
<@1- ﬂnpn)”xn _~7_C||2 +2a,04|1%] - ”yn — Xl + 2,04 (—%, %, — X)

+ 2Yulldull - lyn — Il (3.23)
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That is,

=12
”xn+l _x”

< (1 —=anpu)llxn _7_C||2 +2a, 0ul|%N - 1yn = xull + 28, 00 (%, %, — %)

+ %1 = Yl + 20Xn01 = % Y = X) + 2¥ulldull - 170 — %] (3.24)
By (3.2) again, we have
-2 2 2
1941 = % I17 + (%041 — 2|l + ||anD(xnx pn)H + 2(xn+1 — %, 0 D, pn))
_ 2 -
g [ _x”2 + ”anD(xm pn)“ - 2<xn = %, 0, D(x, pn)>~
This implies that

2 =2 =2
S R el [ ] | e e [ 2<xn+1 = X, A D%y, pn))

- 2(xn - X, OlnD(xn: pn))

(3.25)
By (2.1) and (3.16), we have
”xn+1 _7_‘:”2 - 2Oann <dn:_yn - 7_6)
< (1= an@upn)1%n _9_C||2 + O5nﬂnlon(||9_c||2 - ||an|2)
= (1= atuan o) 1% = Z1* + €utn 0 (1% = Y + 3> = Iynll?)
= (1 - anﬂnpn)”xn _9_6”2 + 0y Pn (266 _ym?a + “.yn”2 - "yn”2)
<1 —-onaupn)llx, - 9_C||2 + 20,0 0 (X = Yy X)
=(1- anﬂnpn)”xn _~7_C”2 + 20,0, 0n (_&)yn - X)
= (1 = apnpn) %, — 3_6”2 + zanﬂnpn(<_7_ciyn —Xp) + (=%, %y _9_C>) (3.26)
This implies that
(B
1 _ a,p 4o,p _ _ _
< (1=5aup |y =217 + == - === ({=%, 50 = %) + (=%, %, = X))
2 2 P
a 4
L R LNV NP (3.27)
2 P ay

Case 1: there exists a natural number N such that ||x,,; — X|| < ||x, — x| for each n > N.

Clearly, lim,, o ||x, — X|| exists. By (3.15) and lim,,_, » ¥, = 0, we know that

lim [|%, — ¥l = lim || D(x,, p,) | = 0. (3.28)
n— 00 n— 00

By (3.25) and (3.28),

lm %41 — 2, = lim [[x,41 = yull = 0. (3.29)
n—00 n—00
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By (3.23), (3.28), (3.29), and lim,,—, oo ¥, = 0,
lim ||y, —%| = lim |jx, —X|. (3.30)
n— 00 n— 00

By (3.19), (3.30), and lim,.o ¥y = 0,

lim (2p, - p;IAI?) [ A, — 52 Az, | = 0. (3.31)
By (3.31),

lim | Ax, - J52 A, = 0. (3.32)

H—>0Q

By (3.20), (3.32), and lim,,_, o @, = 0,

Tim [y, — g =0. (333)
By (3.28) and (3.33),

Tim [, = Jgtx | = 0. (3.34)

Since liminf,_, » 8, > 0, we may assume that 8, > 8 for some 8 > 0. By (3.32), (3.34) and
Lemma 2.2(iii),

lim ”xn —]glx,, || = lim ”Ax,, —]ngx,, || =0. (3.35)
n—00 n—00

Since {x,} is a bounded sequence, there is a subsequence {x,, } of {x,} and z € H such that

%y, — zand

lim sup(—%, , — %) = lim (=%, %,, — %) = (-%,z —%). (3.36)
n—00 k—o00

It follows from x,, — z and (3.35) that z € Fix(/'gl) = B7%(0). Besides, since Xpp, — 2, We
have

lim (A%, — Az,y) = lim {x,, —2A%)=0. (3.37)
—00

k—00

Then Ax,, — Az. Similarly, we know that Az € Fix(]?z) = B;%(0). So, z € Q. By (3.36) and
Lemma 2.1, we know that

lim sup(—%, &, — ) = lim (=%, x,, — &) = (~X,z — %) < 0. (3.38)
n—00 k—o00

We also have

lim sup(d,,, x,, — x)
n—0oQ0

=lim sup(—A* (I —]gz)Axn + Nply1, Xy — a'c)

n
n— 00
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= limsup((~A* (I - J52)Axy + A*(I = ) A%, %y = &) + (-1, %0 — )

n—00

<lim SUp 7, (dn-1,%, —%) = 0. (3.39)

n—00

Hence, it follows from (3.28) and (3.39) that

limsup(d,;, y, — X)

n—o0

= limsup((d,,,y,, —Xp) + (dy, %y —56))

n—0o0
<limsup{dy,, y, — x,) + limsup(d,, x, —x) < 0. (3.40)
n—00 n—00

By (3.27), (3.38), (3.40), and Lemma 2.7, we know that lim,,_, oo X, = X.
Case 2: suppose that there exists a subset {#;} of {n} such that |x,, — x| < l|%4,+.1 — X||
for all i € N. By Lemma 2.6, there exists a nondecreasing sequence {1} in N such that

mi — 00,
%, =%l < 1%me =%l and  [lag = X[ < %41 = ]| (3.41)
for all k € N. By (3.26),

=112
%41 = ||
- 2 -
<@1- Ay Ay pmk) 1%y — X7 + 20, Gy Oy (=2 Yoy, — Xy )

+ 20y Ay Prig =%y Xy, — X) + 200, Vg (g s Yy, — %) (3.42)
for all k € N. By (3.41) and (3.42),

Oy Ay Loy Xy _9_5”2
< % = ZI* = Zmg 1 = XN + 20 o g~ Yy, = o)
+ 20y Ay Prig =% Xy, — X) + 200 Vg (g s Yy, — %)
= 20 Ay, Py {—% Yoy, — Xy ) + 20y Ay Py, (=% Xy, — X))

+ 2amk J/mk <dmk)ymk - 56) (3.43)
for all k € N. This implies that

”xmk _56”2 = 2<_7_C:ymk _xmk) + 2(—9_6,96,,,]( _9_C>

2 _
VI (B Yo — ) (3.44)

Ay Py
for all k € N. By (3.41), and following a similar argument to the above, we know that
limg, oo Ny = %m || = limg, o0 1%y +1 = % | = O,

limsup;_, oo (=%, %, — %) <0, (3.45)

lim Squ»oo<dmk»)’mk - 7_6) <O0.
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By (3.41), (3.44), and (3.45), we can get the following and this is the conclusion of Theo-

rem 3.1:
lim [|%,, — | = lim |l — || = 0. (3.46)
k— o0 k— o0

Now, for completeness, we show the proof of (3.45).

By (3.15),
1 = %11
-n2 1 - 5 2 -
= ”xmk - x” - T ”xmk —)’mk ” + 2amkﬂmk/0mk (xmk’x _ymk>
+ 20lmk ymk <dmk)ymk - 7_C>' (347)

By (3.41) and (3.47),

N 9
T ”xmk = Vmy ”
- 2 - 2 -
= ”xmk —x||° = ||xm/<+1 —x||” + Zamkamkpmk (xmkxx_ymk)

+ ZOlmk ymk <dmk’ymk - x)

= 2amkdmkpmk (xmk,a_c _ymk> + 20lmk )/mk (dmk,ymk - 9_C>' (3'48)

By (3.48), we know that

klifgo ”xmk —J’mk ” =0. (349)
Further,

lim D(x,,, o, ) = 0. (3.50)

k—00

By (3.25) and (3.41),

2
”xmk+l — Xmy I

= —2<xmk+1 — Xmy> OlmkD(xmkr pmk)> - 2<xmk - X, amkD(xmk: pmk)>' (3.51)
By (3.50) and (3.51),
im0~ = 0. (352)

We also have

lim sup{d,,, x,, — x)
n— 00

=lim sup(—A* (I —]gj)Axn + N1, % — a'c)

n— o0

= limsup((~A* (I = J52 ) Ay + A" (I = J52) A%, % — &) + (uy-1, % — X))

n—00

<limsupn,(d,_1,%, —x) = 0. (3.53)

n—00



Chuang and Lin Journal of Inequalities and Applications (2015) 2015:176

Hence, it follows from (3.49) and (3.53) that

lim sup{d; , Y, — %)

k— o0

=1lim sup((dmk,ymk - xmk> + <dmk’xmk - 56))

k— o0

< imsup{dyu, Yimy = %m; ) + imsup{d,y; , X, — %) < 0.

k— 00 k—o00

By (3.19),
1y, - %12
< g = ZI2 = (20, = P2, AN [ (1= T2 ) A, |

+ Ml : (J/mk ”dmk ” + amkpmk ”xmk ”)

2 2 2 2
+ ymk”dmk” + (ﬂmkpmk) ”xmk I° + 2)/mkﬂmkpmk ”dmk” : ”xmk”;

where

My = sup(2]| [, ~ pMkA*(I_]gik)Aka] - [x- PmkA*(I—fgik)A’_‘] I}

keN

By (3.55),

(20m = PLNAIP) (1= T52 VA, |
< %y = Yy |l - (lemk =X\ + lym, —5CII)

+ Ml : (mG ”dmk ” + amkpmk ”xmk ”)

2 2 2 2
* VYo ”dmk -+ (amkpmk) ”xmk I° + 2)/mkﬂmkpmk ”dmk Il - ”xmk Il

By (3.49) and (3.56), we know that
. 2 2 B
klglolo(zlom = P 1Al )| (I_Iﬁrik)Axmk | =o.
This implies that
. B
klgrolo”Aka —]ﬂ;kAxmk “ =0.
By (3.20), (3.49), and (3.58), we have

kli‘{.‘o”ymk _]grlnkxmk ” - klggo”xmk _]’gflﬂkxmk ” =0

Since {x,,, } is bounded, there is a subsequence {z;} of {x,,, } such that z; — x and

lim sup(=%, x,,, — %) = lim (=, zx — X) = (=X, u — x).
k— 00 k—o00
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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By (3.58), (3.59), Lemma 2.2, and Lemma 2.5, we know that u € Q. So, by (3.60) and
Lemma 2.1, we know that

lim sup{(—%, X, —X) <O0. (3.61)
k— o0
Therefore, the proof is completed. d

4 Application: split feasibility problems

Let C and Q be nonempty, closed, and convex subsets of infinite dimensional real Hilbert
spaces H; and H,, respectively. Let A : H; — H; be a linear and bounded operator. The
split feasibility problem is the following problem:

Find ¥ € H; such that ¥ € C and Ax € Q. (SFP)

Let {a,}, {na}, {vn}, and {p,} be real sequences. Let § be a fixed real number. Let Q; be
the solution set of problem (SFP).

Algorithm 4.1

Step 0. Choose x; € H; arbitrarily, set r; € (0,1) and dy = 0.
Step 1. d, := —A*(I — Pg)Ax, + Nudy_1.
Step 2. ForneN, sety, as

In = PC[(l — @ Pn)%n — PrA* ([ _PQ)Axn + Vndn]: (4.1)
where p,, > 0 satisfies
pu||A*(I = PQ)Axy = A*(I = PQ)Ay,|| < 8llxw = yull, 0<8<1. (4.2)

Step 3. Ifx, =y,, then set n:=n + 1 and go to Step 1. Otherwise, go to Step 3.
Step 4. The new iterative x,,,1 is defined by

Xn+l = PC [xn - anD(xm )On)]v (43)
where
D(x, pn) 1= X = Y + Pn [A*(I - PQ)Ayn -A*(I _PQ)Axn], (4.4)

(xn _ymD(xm pn))

1Dy o)1 (4.5)

oy =

Then update n:= n + 1 and go to Step 1.

Following the same argument as in [5], we can get the following strong convergence
theorem of the proposed algorithm for the split feasibility problem.

Theorem 4.1 Let C and Q be nonempty, closed, and convex subsets of infinite dimensional
real Hilbert spaces Hy and H, respectively. Let A : Hy — Hj be a linear and bounded opera-
tor. Let {a,}, {n.}, {vu} be sequences in [0,1]. Choose § € (0,1/2), and let {p,} be a sequence

in (O,min{#, IIAH22+2})‘ Let Q) be the solution set of problem (SFVIP) and assume that
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@y # . For the sequence {x,} in Algorithm 4.1, we further assume that:
(1) hmn—)oo a, = hmn_>oo Ny = O, Z:ozl a, = 00, liminfn_ﬂjo Pn > 0;

(i) lim,— oo Z—Z =t for some t > 0, and {x,} is a bounded sequence.

Then lim,,_, o %, = X, where X := Pq, 0.

5 Numerical results for (SFVIP)
All codes were written in R language (version 2.15.2 (2012-10-26)), and all numerical re-

sults run on ASUS All in one PC series with i3-2100 CPU.

Setu=(L1), fi=1 Bu=1+ k5 forn=2n,= 5 an= 55, m=1and y, = ;15 for

n>2,and B =1. Let ¢ > 0 and the algorithm stop if ||x,; —x,|| < €.

Example 5.1 Let A and By, B, : R? — R? be defined by

A 10 ,
0 1
e 2 2|« N -2 ’
y -2 2 ||y 2
B, X _ 2 2| |x N -2 .
y 2 2|y -2
Find a point ¥ = (X1,%,) " € R? such that B;(x) = (0,0) T and B,(4x) = (0,0)". Indeed, X; =1

and x, = 0.

Example 5.2 Let By and B, be the same as in Example 5.1. Let

=)

Find a point X = (%1, %) € R? such that B;(x) = (0,0) T and By(Ax) = (0,0)".Indeed, ¥; = 0.5

and ¥, = —-0.5.

Example 5.3 Let B; : R? — R?, B, : R® — R3 be defined by

2 1
A=11 2|,
2 2
2 2 -2
B, x| X . ,
y 2 20|y -2
X 2 =2 2|«
Bylyl=]1-2 2 2 AR
z -2 2 2 z

Find a point X = (¥1,%2)" € R? such that B)(¥) = (0,0)" and B3(A%) = (0,0,0)". Indeed,
9_61 =1.5and .7_62 =-0.5.

For the above examples, we give the numerical results (see Tables 1-3) for the proposed

algorithm and related algorithms.
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Table 1 Numerical results for Example 5.1 (p = p, =0.01)

x=1,MT  e=1073 e=10"

Time Iteration Approximate solution  Time Iteration Approximate solution
Algorithm 1.2 0.02 19 (0.9853714,-0.01460836)  0.02 60 (0.9932032,-0.006789955)
Theorem 1.1 0.01 218 (1.087499,0.08749895) 0.05 505 (1.008727,0.008726755)
Theorem12 004 213 (1.237467,0.2433358) 0.08 939 (1.065859,0.06719048)
Theorem 1.3 001 137 (1.376151,0.3943719) 0.14 1,308 (1.094086,0.09599743)
Theorem 14 002 206 (1.083916,0.08392859) 0.06 484 (1.007433,0.007437749)
x1=(1,MT  e=10"5 e=10"

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 0.06 287 (0.9977524,-0.002246182) 0.25 970 (0.9993371,-0.0006624296)
Theorem 1.1 0.06 792 (1.000870,0.0008703675)  0.08 1,078 (1.000088, 8.750662e-05)
Theorem 1.2 0.25 2,974 (1.020805,0.02122562) 0.99 9,403 (1.006580,0.006713283)
Theorem 1.3 034 4,205 (1.029428,0.03002226) 1.59 13,297 (1.009306,0.009494477)
Theorem 1.4 0.07 749 (1.000037,4.018706e-05)  0.07 953 (0.9994309, -5.664470e-04)
x=(1,10T  e=107 e=108

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 0.75 2,999 (0.9997898,-0.0002100474)  2.62 9426  (0.9999335,-6.645199e-05)
Theorem 1.1 0.11 1,365 (1.000009, 8.727519e-06) 0.14 1,562 (1.000001,8.704438e-07)
Theorem 1.2 503 29,732 (1.002081,0.002123133) 19.63 94,018  (1.000658,0.000671414)
Theorem 1.3 873 42,047 (1.002943,0.003002578) 21.03 132961  (1.000931,0.0009495180)
Theorem 1.4 0.09 1,034 (0.9994033,-5.942738e-04)  0.09 1,047 (0.9994030,-5.945951e-04)

Table 2 Numerical results for Example 5.2 (p = p, = 0.001)

x1=(1,MT  e=103 e=10"

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 12 < 20 (0.4872068,-0.5128408)  0.02 61 (04953678 - 0.5046371)
Theorem 1.1 0.02 157 (1.382916,0.3832697) 0.26 3,035 (0.5882673,-0.4116973328)
x=(1,10T e=1073 e=10"

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 0.07 209 (0.4985109,-0.5014895) 0.19 716 (0.4996333,-0.5003667)
Theorem 1.1 056 5912 (0.5088314,-04911650960) 090 8,790 (0.5008829,-0.4991167527)
x1=(1,10T  e=107 e=10"%

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 049 1,984  (0.4999414,-0.5000586) 1.04 3944 (0.4999930,-0.5000070)
Theorem 1.1 133 11,668 (0.5000883,-0.4999116996)  1.79 14,545 (0.5000088,-0.4999911653)

Table 3 Numerical results for Example 5.3 (o = p, = 0.001)

x1=(1,1NT  e=1073 e=10"*

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 002 40 (1.540193,-0.5400902)  0.04 162 (1.515364,-0.5153539)
Theorem 1.1 < 7 (0.5038810,0.4956130) 033 3,658 (1.3762567,-0.3763273899)
x1=(1,MT  e=10"5 e=10"

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 0.19 697 (1.504028,-0.5040270) 0.55 2,233 (1.500311,-0.5003114)
Theorem 1.1 0.76 7,689 (1.4876280,-0.4876350226) 1.38 11,719 (1.4987623,-0.4987630241)
x=(1,10T e=107 e=10"%

Time Iteration Approximate solution Time Iteration Approximate solution
Algorithm 1.2 1.06 4,175 (1.499761,-0.4997615) 1.32 5188 (1.499727,-0.4997275)

Theorem 1.1 2.06 15,750 (1.4998763,-0.4998763253) 2.83 19,781 (1.4999876,-0.4999876348)
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