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Abstract

We investigate locally compact topological groups for which a generalized analog of
the Heisenberg uncertainty inequality hold. In particular, it is shown that this
inequality holds for R” x K (where K is a separable unimodular locally compact group
of type I), Euclidean motion group and several general classes of nilpotent Lie groups
which include thread-like nilpotent Lie groups, 2-NPC nilpotent Lie groups and
several low-dimensional nilpotent Lie groups.
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1 Introduction

In 1927, Heisenberg presented a principle related to the uncertainties in the measurements
of position and momentum of microscopic particles. This principle is known as Heisenberg
uncertainty principle and can be stated as follows:

It is impossible to know simultaneously the exact position and momentum of a particle.
That is, the more exactly the position is determined, the less known the momentum, and
vice versa.

In 1933, Wiener gave the following mathematical formulation of the Heisenberg uncer-
tainty principle:

A nonzero function and its Fourier transform cannot both be sharply localized.

Heisenberg’s uncertainty inequality is a precise quantitative formulation of the above
principle.
The Fourier transform of f € L(R") is given by

FE) = | flre i) gy,
Rn

where (-,-) denotes the usual inner product on R”. This definition of Fourier transform
holds for functions in L}(R”) N L%(R"). Since L'(R") N L*(R") is dense in L2(R"), the defi-
nition of Fourier transform can be extended to the functions in L*(R").

The following theorem gives the Heisenberg uncertainty inequality for the Fourier trans-
form on R”. For a proof of the theorem, see [1].
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Theorem 1.1 For any f € L*(R"), we have

I£ 113 172 X 12
—”i’;zs(/w ||x||2[f(x)|2dx) </R ||y||2[f(y)|2dy> , (L1)

where || - ||, denotes the L*>-norm and || - || denotes the Euclidean norm.

The Heisenberg uncertainty inequality has been established for the Fourier transform
on the Heisenberg group by Thangavelu [2]. Further generalizations of the inequality on
the Heisenberg group have been established by Sitaram et al. [3] and Xiao and He [4]. For
some more details, see [1].

The inequality given below can be proved using Holder’s inequality and the inequality
(1.1).

Theorem 1.2 For any f € L*(R") and a,b > 1, we have

E+h) L L
A% 2 . 2a A 2b
W < ([ meporas)” ([ mfors)”,

where || - ||, denotes the L*>-norm and || - || denotes the Euclidean norm.

In Section 2, we shall prove a generalized analog of the Heisenberg uncertainty inequal-
ity for R” x K, where K is a separable unimodular locally compact group of type L. In
the next section, a generalized analog of the Heisenberg uncertainty inequality for the Eu-
clidean motion group M(n) is proved. The last section deals with a generalized analog of
the Heisenberg uncertainty inequality for several general classes of nilpotent Lie groups
for which the Hilbert-Schmidt norm of the group Fourier transform 7¢(f) of f attains a
particular form. These classes include thread-like nilpotent Lie groups, 2-NPC nilpotent
Lie groups and several low-dimensional nilpotent Lie groups.

2 R" x K, K alocally compact group

Consider G = R” x K, where K is a separable unimodular locally compact group of type I.

The Haar measure of G is dg = dx dk, where dx is the Lebesgue measure on R” and dk is

the left Haar measure on K. The dual G of G is R” x K, where K is the dual space of K.
The Fourier transform of f € L2(G) is given by

F,0) = /R ) /K f, ke g (k) dk dx,

for (y,0) e R” x K.

Theorem 2.1 Forany f € L*(R" x K) (where K is a separable unimodular locally compact
group of type 1) and a,b > 1, we have

1
+3)

(% N
1l ) L
% = (/Rannxnz [f(x,k)!zdkdx)

x ( /R n /f{ ||y||2”|lf(y,o>||i[sdyda) . 2.1)

&=



Bansal and Kumar Journal of Inequalities and Applications (2015) 2015:168 Page 3 of 15

Proof Without loss of generality, we may assume that both integrals on the right-hand side
of (2.1) are finite.

Given that f € L2(R” x K), there exists A C K of measure zero such that for k € K\ A = A’
(say), we have

[, k)| dax < 00
Rn

For all k € A’, we define fi(x) = f(x, k), for every x € R".
Clearly, for all k € A, f; € L>(R"), and for all y € R”,

S = fx, ke dy = Ff (5, K).

By Theorem 1.1, we have

1/2 1/2
L mx,k)yzdxs(/ nxn2vk<x>}2dx) (/ ||y||2tfk(y)y2dy) .
R” R” R”

Integrating both sides with respect to dk, we obtain

n [f(x,k)\zdxdk< [l [fk(x) |” dx " ||y|| [fk(y)y dy v dk.
<1 J(L ) (I

The integral on the L.H.S. is equal to ||f]|3, so using the Cauchy-Schwarz inequality and
Fubini’s theorem, we have

””f”2 < ( / / 2 f @ )| dxdk)m< /R i? /A , U?k(y)izdkdy)m~ (2.2)

Now, using Holder’s inequality, we have

:
(/ ||x||2“[f(x,k)]2dkdx> (/ [f(x,k)\zdkdx)
" JK R" JK
2 :
> /}R n /K 12 lf s &)
=/ /||x||2[f(x,k)\2dkdx,
R" JK

which implies

1, )Y dkdix

2 2 2a 2 % 2 1—%
/Rnfl(nxn [f (x, k)| dk dx < (/W/Knxn If (x, 6] dkdx> (ILF113) <. (2.3)

Combining (2.2) and (2.3), we obtain

n|[f||2 (/ /” 122 (x, |dkdx) (”f||)%—217
([ [ o) er
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Since

/Rn /:4’ |y1f(y,k)|2dydk:/w /A, [f(x,k)|2dxdk: If112 < oo,

therefore, Zf € L2(R" x A'). Therefore, .7,.7f is well defined a.e. By approximating f €
L2(R" x A’) by functions in L' N L2(R" x A’), we have

FoFif =1,

for all f € L>(R" x A’). Applying the Plancherel formula on the locally compact group K,
we have

[ ho ak= [ o) l}do.
A K

Thus, (2.4) can be written as
nl[f1I3 2 2 % Lol
WE < ([ [ el of dcas) i)
T R JK

1/2
x ( /R n /k ||y||2|lf(y,a>ni[sdyda> . 25)

Now, again using Holder’s inequality, we have

2|7 2 b R 5 1-}
([, [ ool ) ([ [ 1Fo.0lddo)

N 2 R 1
Z/Rn /,A(”y”zVV@rU)HﬁlefU,o)lli{s D dydo

= f ﬁ Iy f (. 0)|; dydo,
R” JK

which implies

, ) b 0
[ [wrvooliswde < ([ [mloolidde) @@t eo

Combining (2.5) and (2.6), we obtain
nl|f 13 % 11
WE < ([ [ el of dcas) " i)
T R JK

27 2 :
<[ [ ioolisdd)

which implies

E+h)
AP < (f / ||x||2“[f(x,k)]2dkdx)
47‘[ R” JK

8-

(IF12)27,

R

(L Lorevoolidae)” o
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3 Euclidean motion group M(n)
Consider M(n) to be the semi-direct product of R” with K = SO(#). The group law is given
by

(2. k) (W, k') = (z + k- w,kK'),

for z,w € R” and k, k' € K. The group M(n) is called the motion group of the Euclidean
plane R”.

As in [5], M = SO(n — 1) can be considered as a subgroup of K leaving the point ¢; =
(1,0,0,...,0) fixed. All the irreducible unitary representations of M(#n) relevant for the
Plancherel formula are parametrized (up to unitary equivalence) by pairs (A, o), where
A>0and o € M, the unitary dual of M.

Given o € M realized on a Hilbert space H, of dimension d,, consider the space,

[*(K,0) = {go oK~ Mdaxd{,,/ ()| dic < o0,

o(uk) = o (u)p(k),for u € M and k € K}.

Note that L?(K, o) is a Hilbert space under the inner product
(00 = [ oy (er) ak
K

For each A > 0 and o € M, we can define a representation 1; , of M(n) on L?(K,o) as
follows.
For ¢ € L*(K,0), (z,k) € M(n),

0 (2 K)p(u) = €712 o (k)

foru e K.
If ¢;(k) are the column vectors of ¢ € L*(K,0), then ¢;(uk) = o (u)g;(k) for all u € M.
Therefore, L2(K, o) can be written as the direct sum of d,, copies of H(K, o), where

H(K,o0) = {(p ’ ¢:K— (Cd”,/ ||<p(k)||2dk<oo,
o(uk) = o (u)p(k),foru e Mand k € I(}.

It can be shown that 1, , restricted to H(K, o) is an irreducible unitary representation of
M(n). Moreover, any irreducible unitary representation of M(n) which is infinite dimen-
sional is unitarily equivalent to one and only one 7, ;.

The Fourier transform of f € L*(M(n)) is given by

~

f,o)= flz, k)1, 4 (2, k)* dz dk.
M(n)

A

f(x,0) is a Hilbert-Schmidt operator on H(K, o).
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A solid harmonic of degree m is a polynomial which is homogeneous of degree m and
whose Laplacian is zero. The set of all such polynomials will be denoted by Hj,,, and the
restriction of elements of H,, to S"~! is denoted by S,,,. By choosing an orthonormal basis
{gmj:j=12,...,d} of S, foreachm = 0,1,2,..., we get an orthonormal basis for L*(S" ).

The Haar measure on M(n) is dg = dzdk, where dz is Lebesgue measure on R” and dk
is the normalized Haar measure on SO(x).

The Plancherel formula on M(n) is given as follows (see [6]).
Proposition 3.1 (Plancherel formula) Let f € L*(M(n)), then
2 0 N 9
/ \f (21,20, 20, k)|  dz1 d2s - - - Az, = cn/ (Z do |[f (3, 0) ||HS>)\”-1 dr,
M) O Noem
where ¢, =

2
271/21"(%)'

We shall now state and prove the following generalized Heisenberg uncertainty inequal-
ity for a Fourier transform on M(n).

Theorem 3.2 For any f € L*(M(n)) and a,b > 1, we have

t+h L
If1l,"* (// 2 2 )2”
< lzl1** |f (z, k)|” dz dk
2\/(:71 K JR” v |

x ( /0 ~ > ded?|F (0 0) 1A dx) 7 (3.1)

oeM

Proof Consider the norm || - || on L*(M(n)) defined by

172
= 2a 2
Iri== ( /R ) /K (1+ 121*) |f 2, k)| dzdk)
e R ) 172
+(/0 Zda(l+)L2b)|[f()\,o)||Hs)\”—1d)\> )
oceM

This gives us a Banach space B = {f € L%(G) : ||f|| < oo}, which is contained in L?(M(#)) and
the space S(M(n)) of C*°-functions which are rapidly decreasing on M(#) can be shown to
be dense in B. It suffices to prove the inequality of Theorem 3.2 for functions in S(M(n));
it is automatically valid for any f € B. If 0 #f € L*(M(n)) \ B, then the right-hand side of
the inequality is always +oo and the inequality is trivially valid.

Let f € S(M(n)). Assuming that both integrals on the right-hand side of (3.1) are finite,
we have

[f(z, k)|2 dz< oo, forallkeK.
Rn

For k € K, we define fi(z) = f(z, k), for every z € R".
Clearly, f; € L*(R"), for all k € K.
Take z = (z1,22,...,2,) and w = (w1, wq, ..., w,).
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By the Heisenberg inequality on R”, we have

2 12 A 1/2
—HZ;E2 < (/Rn |Z1|2V}((Z)|2dz> (/Rn IW1|2[fk(w)|2dw>

1 Ly ) ol d 1/2 )i 2 1/2

= E/D;n V(Z, )| z =< (/Rn |1 V(Z, )| z) (./R" |wi| W(W)’ w) .

Integrating both sides with respect to dk, we get

1 1/2 .
E/K/]};" lf(Z;k)|2dde§ \/;((/Rn |Z1|2lf(zyk)|2dz) </Rn |W1|2lﬁ((w)|2dw)

which implies

1

/2
dk,

7113

1/2 12
2 2 2|7 2
477 S/K(/l;{n 21 *|f (2, k)| dz) (/ﬂ;n lwi | |[fe(w)| dw> dk
2 112 2 1/2
2 215
<(f fterirentasas) ([ [ mmetioo avar)

(by the Cauchy-Schwarz inequality)

1/2 1/2
5(/KAn"Z||2V(Z”<)|2dzdk> </KfRn|wllzlfk(w){2dwdk> . (3.2)

Now,

1 i
2a 2 a 9 7
(/K el If (z, k)| dzdk) (/K /R I (z,K)| dzdk>
: : 1y, —- 1-1
- (/K /R” (||Z||2Lf(z,k)|a)‘Z dzdk) (/K [Rn (V(Z,k)|2(l_a))(17) dzdk)

> / / ||z||2[f(2,k)|%[f(z,k)|2(1_%)dzdk (by Holder’s inequality)
K Jrr

:// ||Z||2[f(2,k)|2d2dk' (3.3)
K JRA

Combining (3.2) and (3.3), we get
2 % 1.1
VR < ([ [ 1l deae) ™ i
T K JR"

1/2
x</K/Rn|w1|2[fk(w)|2dwdk> : (3.4)

Now, using the Plancherel formula on R”, we have

// il |fiw)|” dw dk
K JR”

:// lwi |*
K Jrn

2
flz, ke @) dz| dwdk
RVI
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:// |W1|2\91,2,...,J(W1,W2,...,Wn,k)|2dW1dW2-~-dwndk
K JRr

=f/ |w1|2‘91f(w1,zg,...,z,,,k)|2dw1dzg---dz,,dk. (3.5)
K Jrr

Smce - € S(M(n)), we have

/R S

321

2

(21,225 020, k)| dz1 < 00,

forall ze Rand k € K.
Therefore, w1 Zf (w1, 2y, . .., 24, k) € L*(R) and

8 A
(é(zlr 2250432y k)) (wl) = 27[iwlglf(wlr 2250032y k)x
1
for all z; e R and k € K. Then

/|w1|2‘ﬁ1f(w1,zg,...,z,,,k)’zdwl
R

1 of
= W/R'a—zl(zhzz,m,zm

which implies

2
dzl )

/ (wil| Zf (w1, 20, ., 20, )| dwr dzs - dz, dk
K JR"?

o L

By Proposition 3.1, we obtain

Jo LI

2
—(21,Z2, ozZm k)| dzidzy - dz, dk. (3.6)

2
—(ZI,ZZ, <1 Zns d21 dZ2 e dZn dk

() o

o T
Combining (3.4), (3.5), (3.6), and (3.7), we obtain

13 el o ) (112)
ﬁg(/K/R I2117#|f (z, k)| dzdk) (IL£115)

([ Za] () oo

For each A > 0 and o € M, consider the representation 1, , (z, k) realized on L2(K, o) as

2
AL, (3.7)

HS

2 1/2
At dA) ) (3.8)
HS

0 (2, K)g(u) = e"“”_l'el’”g(uk), u € SO(n).
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Denote u = [u;],x,; we have

-1 T T
uo-er=u -er=[up w0 Ul .

Therefore, (u™ - e1,2) =Y 1, unizi.

Since f € S(M(n)),

(%)A(x,a)gw

821

d
:/ /_f(21,zZ,...,zn,k)m,a(zl,m,...,zn,k)*g(u)dzleZ...dzndk
R Jx 021

:-/ flim fa+hz,..20,k) = fz1,20, - ., 20, K)
rn Jg h—0 h

X Mo (21,22, 20, k) 'gW) dz1 dzy - - - dz, dk

1
h [/ flar+h,z,. .20, k)70 5 (21,22, .- 20, K) @) dzy dzy - - - dz,, dk
n JK

- / flz1,20, 020, K06 (21,22, -, 20, k) g(U) dzy dzo - - - dzy, dk:|
R JK

! y
:;H%z[/ /f(ZI’ZZ;--ﬂka)e Mhuuﬂ)u,a(zl;zbn~;Zn:k)*
- R"* JK

x gu)dz1dz, - - - dz, dk

- / fzi,20,- 520, K) T 0 (21, 205 -« -y 20, k) g(10) dzy dzy - - - dzy, dk:|
R" JK

h—0 h

x gu)dz1 dz, - - - dz,, dk

) e*l’)»huu -1
= lim [7] / f(Zl’ 2254492, k)n)»,(l' (erZZy Y k)*
R” JK

=iAu11/ /f(zl,zg,...,z,,,k)m,g(zl,zg,...,z,,,k)*g(u)dzldzz~~-dz,,dk
R JK

= idunf (0, 0)g(u).
Hence,
af A 2 oo dpy R 3
(%) e, - %,ZI/K"“‘“ e e
[o¢] dm R A
=Wy / 700 )@ du = 32|73 0) [
m=0 j=1 *K

Therefore, (3.8) can be written as

i By
;lf_\)% S (/K/R “Z||2alf(z,k)|2dzdk> (ILf13)* >

[e9) 1/2
x( /0 Zd(,xz\[f(x,a)”imx"*m) . (3.9)

oceM
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Now, again using Holder’s inequality, we have

([ Zevootoma) (" Saloolia)
oeM oehl

o0 Vb2l 2 0-)% 20-4) 5 n-1
= | 2 AR O fsde PG5 T
0

oeM

- f h 3" do 22 |F (o) |fh
0

oeM

1-1

which implies

f N > dod2|f(h,0) || gh "
0

oeM

<([ S anoolta) it 310

oeM

Combining (3.9) and (3.10), we obtain

(1+1) L
IF1,"° (// 2 2 )2“
——F— = Izl |f (z, k)|” dz dk

2\/ Cn K JR" v |

1
o] N 2 2b
x ( /0 > d 2| f(h0)] sr 1dx> . -

oeM

4 A class of nilpotent Lie groups

In this section, we shall prove the Heisenberg uncertainty inequality for a class of con-
nected, simply connected nilpotent Lie groups G for which the Hilbert-Schmidt norm of
the group Fourier transform 7 (f) of f attains a particular form.

Let g be an n-dimensional real nilpotent Lie algebra, and let G = exp g be the associ-
ated connected and simply connected nilpotent Lie group [7]. Let B = {X3, X5, ...,X,} bea
strong Malcev basis of g through the ascending central series of g. We introduce a ‘norm
function’ on G by setting, for x = exp(x1 Xi + %2 Xa + - - +x,X,) € G, x; € R,

2)1/2'

2
llll = (47 + -+

The composed map

R" - g— G,
given as
n n
Xty eees ) =~ Zx,X, — exp(Zx,)(;),
j=1 j=1

is a diffeomorphism and maps a Lebesgue measure on R” to a Haar measure on G. In this
manner, we shall always identify g, and sometimes G, as sets with R”. Thus, measurable

(integrable) functions on G can be viewed as such functions on R”.
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Let g* denote the vector space dual of g and {X},..., X} the basis of g* which is dual to
{X1,...,X,}. Then {X},...,X;} is a Jordan-Holder basis for the coadjoint action of G on g*.
We shall identify g* with R” via the map

n
E=(,.06) > ) §X
j=1
and on g* we introduce the Euclidean norm relative to the basis {X7,..., X}, i.e.

=&+ +&) =&

n
D o5X
j=1

Let g; = R-span{Xj,...,X,}. For &£ € g*, O; denotes the coadjoint orbit of £. An index; €
{1,2,...,n} is a jump index for & if

9(6) +g; #79() +gj-
We consider
e(€) ={j:jis ajump index for £}.

This set contains exactly dim(Q;) indices. Also, there are two disjoint sets S and T of
indices with SU T = {1,...,n} and a G-invariant Zariski open set &/ of g* such that
e(§) = S for all § € U. We define the Pfaffian Pf(§) of the skew-symmetric matrix Ms(§) =

(E([Xi, Xi]))ijes as
[PE(E)|” = det Mi(&).

Let Vs = R-span{X/ :i € S}, V7 = R-span{X : i € T}, and d& be the Lebesgue measure on
Vr such that the unit cube spanned by {X; : i € T} has volume 1. Then g* = V+ & V5 and
Vr meets U. Let W =U N Vr be the cross section for the coadjoint orbits through the
points in U. If d§ is the Lebesgue measure on W, then du(§) = | Pf(§)| dé is a Plancherel
measure for G. The Plancherel formula is given by

12 = fw IO dne), f el nIG),

where |77z (f) |l 1s denotes the Hilbert-Schmidt norm of 7z (f) and dg is the Haar measure
on G.
We shall consider the case in which W takes the following form:

W = {& = (&1,&,...,6,) € g 1§ = 0,for (n - k) values of j with [Pf(§)| #0}.
We denote the vanishing variables by &;,,§;,,...,&; .

We consider the class of groups for which for all £ € W and f € L*(G) the Hilbert-
Schmidt norm |7z (f) |75 has the following form:

e () = [€)] /R TG oexp)nba+ Qo+ Q)| iy A, - d
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where .Z denotes the Fourier transform on R”*; /i is a function from W to R which is
nonzero on YV and the functions Q,, = Q,,(£1,&,...,&,_1) with 2 <m < n.

We have the following Heisenberg uncertainty inequality for such groups.

Theorem 4.1 Foranyf € L' N L*(G) and a,b > 1, we have

”f”f v ( [ sl dx)

2b 2 1 &
(Yo ) ()

Proof Assuming both integrals on the right-hand side of (4.1) to be finite, we have

, ) 172 ) 2 1 v
(/ann ) dx) (/W €1 ||ns(f>||Hs—|h(s)|d5)

" " 2 1/2
=< f > Il (foexp)(pr@) dx1-~~dxn>
R” g i=1

n 1/2
x (/Rk L. D o Qo Qo dsn)

" 2 172
> </ |21 |2 (f oexp) (inXL) dxy - dxn)
R~ i=1

1/2
X (/ / |$1|2‘y(foexp)(§l:§2+Q2’”~’§n+Qn)‘2dsl"'dsn)
Rk JR1-k

1/2
= (/ Ix1|2|F(x1,...,x,,)i2dx1--. dxn>
RVI

1/2
x ( /}R ) &P BE, & 6| dEdEs - - dsn) , 4.2)

where F(xy,...,x,) = (f o exp)(>_, x:X;) which is in L*(R"), F being its Fourier transform.
By the Heisenberg inequality on R”, we have

r 1/2
” ”2 (/ o1 2| E G, o )| ity - )

1/2
x ( fR ) & B 8. &) dE dEy - dsn) . (4.3)

But

1|2 = / G2 - d,
]Rn

=/ ’(foexp)(i:xixi)
R i=1

dxl---dx,,=/G[f(x)\2dx=|lf||§~ (4.4)



Bansal and Kumar Journal of Inequalities and Applications (2015) 2015:168 Page 13 of 15

Combining (4.2), (4.3), and (4.4), we get

|lf||% 2 2 12 2 2 1 2
o S ( fG llall2[f ()| dx) ( fw (] ||ng(f)||Hsmds) . (4.5)

Now, as in the proof of Theorem 3.2, applications of Holder’s inequality give

/ ||x||2[f(x)|2dx§( / ||x||2“bf(x>\2dx>“(m@)l‘; (4.6)
G G

and

2 2 1
/W VW e D s ey 9%

2 2 1 PPN
= </W 11 ”ﬂg(f)“HSWdé) (Hf“z) . (4.7)

Combining (4.5), (4.6), and (4.7), we obtain

|lf||2a » < 2a|f )l”( 2b 2 1 >ﬁ
Ll as) " ([ 16 w0 s e ) - o

Example 4.2 We now list several classes that are included in the above general class.
1. For thread-like nilpotent Lie groups (for details, see [8]), we have Pf(§) = & and

W= {E = (51,0»53,~~,§n—1,0)15/ GR;%_I 7{0}

Also, || (f)|lus is given by

1
76 () s = /Rz | Z(f o exp)(E1,t,65 + Qaye s Ent + Quorys)| disdt,

&l

where Q;(&1,0,&3,...,&.1,t) = Z’k 11 ,i, tkE, wfor3<j<m-1.

Thus, for h(§) = EL , one obtalns the Heisenberg uncertainty inequality

_ 1
[ PE(&)|

a b 1” 21_h
"f”Z (/ Il )| dx) (/ ||s||2bIINs(f)l|i[slflld5)
w

2. For 2-NPC nilpotent Lie groups (for details, see [9]),let {0} =go C g1 C---Cgn=9
be a Jordan-Holder sequence in g such that g,, = 3(g) and b = g, 5. Let us consider the ideal
[g, 9m+1] of g which is one or two dimensional in g. We discuss the two cases separately:

() dim [g, gms1] = 2.

In this case, for every basis {X7,X,} of h in g and every Y1 € g1 \ 3(g), the vectors
Zy = [X3,Y1] and Z; = [X3, 1] are linearly independent and lie in the center of g. Assume
that g; = R-span{Z,}, g, = R-span{Z;, Z,}. Let Z3, ..., Z,, be some vectors such that 3(g) =
R-span{Z,,...,Z,,} and B ={Z,,...,Z,} a Jordan-Holder basis of g chosen as follows:

(i) 3(g) = R-span{Zy,..., Z};
(ii) b =R-span{Zy,...,Z, 2}
(iii) g=R-span{Zi,...,Z,_2,X1 = Z,_1,X2 = Z,}.
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Form, =m+1land m+2 < m, <n-2,wedenote Z,,, = Z,,,1 = Y1, Z,y, = Y>. These vectors
can be chosen such that & = £([X3, Y1]) #0, &2 = ([ X2, Y2]) #0, for all £ € W, where

W = {5 = (Sl: 521 .. ':gmr 07 0:€m+3:€m+4: .o ~1$n—2: 01 0) : %‘/ S R; \Pf(é)| 7-/0}
Also, we have Pf(£) = £(Z1)6([X,, Y2]) — £([X1, Y21)E(Z,) and || 7 (f) |15 is given by

”ng(f)HHs !hé)’/ ‘9(foexp)<52,sl, ,,2(5 tl t2> e

< é SZZ) )
m+3 ? 2 >Smr»--+»S1

2
dSl dSz dl’l dtz,
where / is the function defined by

1616221

hE) = 22
) 161622 — £1,262 2

&j=&(X;, Vj1), éi,, =£([Xi(8), Y;]), and P;(&,t) is a polynomial function with respect to the
variables ¢ = (t;, f,) and £,,,1, ..., and rational in the variables &, ..., &,,. Thus, one obtains
the Heisenberg uncertainty inequality

| || (D) . % 1
il (/ Pl @) dx) (/W ||$||2b||ns(f>||i[sWdf)

(b) dim [g’ gm+1] =1
In this case, we have Pf(§) = £([X1, Y1]) - £([X3, Y3]) and

S

W = {E = (Sb 52: “es )Emr 0: §m+2; ce rém+d+1, 0:€m+d+3r Y] $n—2; O, 0) :
§ 2

Also, || (f)||us is given by

2 1 o 51 I+ R(_%rglw--rsmﬂi)
I gy o[ 71 o s (- ),

t 2
..,tz, Pm+2<§1 ) tl;Sm; rEl)
&

ds1 dSz dtl dtz.
, one obtains the Heisenberg uncertainty inequality,

Thus, for h(§) = gy

”f”2 (/ el (o) dx) (fw ||é||2”||ns(f>||2Hs|Pf(€>|df)Zb

3. For connected, simply connected nilpotent Lie groups G = exp g such that g(§) C [g, g]
for all £ € U (for details, see [10]), we consider S={j; <---<jzland T ={t <--- <t} to
be the collection of jump and non-jump indices, respectively, with respect to the basis B.

We have j; = n and

W ={& = (&,8,...,&) € g" : &, = 0,for j; € S with |Pf(§)] #0}.
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Also, ||7z¢(f) ||s is given by

1€ ([X),, X))
et s = S [ |7 oexpite,w P,
1€ (1, Xl . )
where & = (&,);,er and w = (w},);,es. Thus, for h(§) = —TpiEE  One obtains the Heisenberg

uncertainty inequality

f b+1 %
"f”z (/ Il o) dx) (/ HEEA) ||Hs%ds) '

4. For low-dimensional nilpotent Lie groups of dimension less than or equal to 6 (for
details, see [11]) except for G, Ge,12, Gs,14» Ge,15, Ge,17, an explicit form of || 7 (f)||us can
be obtained. Thus, an explicit Heisenberg uncertainty inequality can be written down.

5. The classes mentioned above are distinct. For instance, G5 is thread-like nilpotent
Lie group, but it does not belong to the class mentioned in item 3. above. Also, G5 3 belongs
to the class mentioned in item 3. above, but it is not a thread-like nilpotent Lie group.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this paper and they read and approved the final manuscript.

Author details
'Department of Mathematics, Keshav Mahavidyalaya, University of Delhi, H-4-5 Zone, Pitampura, Delhi, 110034, India.
’Department of Mathematics, University of Delhi, Delhi, 110007, India.

Acknowledgements
The second author was supported by R & D grant of University of Delhi. The authors would like to thank the referees for
many valuable suggestions which helped in improving the exposition.

Received: 10 October 2014 Accepted: 12 May 2015 Published online: 28 May 2015

References
1. Folland, GB, Sitaram, A: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207-238 (1997)
2. Thangavelu, S: Some uncertainty inequalities. Proc. Indian Acad. Sci. Math. Sci. 100(2), 137-145 (1990)
3. Sitaram, A, Sundari, M, Thangavelu, S: Uncertainty principles on certain Lie groups. Proc. Indian Acad. Sci. Math. Sci.
105, 135-151 (1995)
4. Xiao, J, He, J: Uncertainty inequalities for the Heisenberg group. Proc. Indian Acad. Sci. Math. Sci. 122(4), 573-581
(2012)
5. Sarkar, RP, Thangavely, S: On the theorems of Beurling and Hardy for the Euclidean motion group. Tohoku Math. J. 57,
335-351 (2005)
6. Kumahara, K, Okamoto, K: An analogue of the Paley-Wiener theorem for the Euclidean motion group. Osaka J. Math.
10,77-92 (1973)
7. Corwin, L, Greenleaf, FP: Representations of Nilpotent Lie Groups and Their Applications: Part I. Basic Theory and
Examples. Cambridge University Press, Cambridge (1990)
8. Kaniuth, E, Kumar, A: Hardy's theorem for simply connected nilpotent Lie groups. Math. Proc. Camb. Philos. Soc. 131,
487-494 (2001)
9. Baklouti, A, Salah, NB: On theorems of Beurling and Cowling-Price for certain nilpotent Lie groups. Bull. Sci. Math. 132,
529-550 (2008)
10. Smaoui, K: Beurling’s theorem for nilpotent Lie groups. Osaka J. Math. 48, 127-147 (2011)
11. Nielson, OA: Unitary Representations and Coadjoint Orbits of Low-Dimensional Nilpotent Lie Groups. Queens Papers
in Pure and Appl. Math. Queen’s University, Kingston (1983)



	Generalized analogs of the Heisenberg uncertainty inequality
	Abstract
	MSC
	Keywords

	Introduction
	Rn xK, K a locally compact group
	Euclidean motion group M(n)
	A class of nilpotent Lie groups
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


