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Abstract
In this paper, we obtain some improved reverses of Young type inequalities which
were established by Burqan and Khandaqji (J. Math. Inequal. 9:113-120, 2015).
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1 Introduction
Let Mn be the space of n × n complex matrices. Let ‖ · ‖ denote any unitarily invariant
norm on Mn. So, ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all unitary matrices U , V ∈ Mn.
For A = [aij] ∈ Mn, the Hilbert-Schmidt norm and the trace norm of A are defined by
‖A‖ =

√∑n
j= s

j (A), ‖A‖ =
∑n

j= sj(A), respectively, where si(A) (i = , . . . , n) are the singu-
lar values of A with s(A) ≥ · · · ≥ sn(A), which are the eigenvalues of the positive semidef-
inite matrix |A| = (AA∗) 

 , arranged in decreasing order and repeated according to multi-
plicity.

The classical Young inequality says that if a, b ≥  and  ≤ v ≤ , then

avb–v ≤ va + ( – v)b ()

with equality if and only if a = b.
Kittaneh and Manasrah [] obtained an improvement of inequality () which can be

stated as follows:

avb–v + r(
√

a –
√

b) ≤ va + ( – v)b, ()

where r = min{v,  – v}.
Recently, Burqan and Khandaqji [] gave the following reverses of the scalar Young type

inequalities:

va + ( – v)b ≤ ( – v)(a – b) + av[( – v)b
]–v,  ≤ v ≤ 


, ()

and

va + ( – v)b ≤ v(a – b) + (va)vb–v,



≤ v ≤ . ()
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A matrix Young inequality, proved in [], says that if A, B ∈ Mn are positive semidefinite,
then

sj
(
AvB–v) ≤ sj

(
vA + ( – v)B

)

for j = , . . . , n.
Based on the reverses of the scalar Young type inequalities () and (), Burqan and Khan-

daqji proved the following in [] if A, B, X ∈ Mn such that A and B are positive semidefinite.
If  ≤ v ≤ 

 , then

∥∥vAX + ( – v)XB
∥∥



≤ ( – v)‖AX – XB‖
 + v( – v)

∥∥A

 XB



∥∥

 + ( – v)(–v)∥∥AvXB–v∥∥
. ()

If 
 ≤ v ≤ , then

∥∥vAX + ( – v)XB
∥∥

 ≤ v‖AX – XB‖
 + v( – v)

∥∥A

 XB



∥∥

 + vv∥∥AvXB–v∥∥
. ()

At the same time, Burqan and Khandaqji proved the following in [] if A, B ∈ Mn such
that A and B are positive semidefinite. If  ≤ v ≤ 

 , then

( – v)–v∥∥Av∥∥


∥∥B–v∥∥


≥
√

v‖A‖
 + ( – v)‖B‖

 – ( – v)
(‖A‖

 + ‖B‖
 – ‖AB‖

)
. ()

If 
 ≤ v ≤ , then

vv∥∥Av∥∥


∥∥B–v∥∥
 ≥

√
v‖A‖

 + ( – v)‖B‖
 – v

(‖A‖
 + ‖B‖

 – ‖AB‖
)
. ()

For more information on matrix versions of the Young inequality () the reader is re-
ferred to [–].

The main purpose of this paper is to give improved reverses of Young type inequalities
() and (). Then we use these inequalities to establish corresponding inequalities for ma-
trices. To achieve our goal we need the following reverses of Young type inequalities for
scalars.

2 Reverses of Young type inequalities for scalars
We begin this section with the reverses of Young type inequalities for scalars.

Theorem  Let a, b ≥ . If  ≤ v ≤ 
 , then

va + ( – v)b + ra
(√

( – v)b –
√

a
) ≤ ( – v)(a – b) + av[( – v)b

]–v, ()

where r = min{v,  – v}.
If 

 ≤ v ≤ , then

va + ( – v)b + rb(
√

b –
√

va) ≤ v(a – b) + (va)vb–v, ()

where r = min{v – ,  – v}.
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Proof If  ≤ v ≤ 
 , then, by inequality (), we have

( – v)(a – b) – va – ( – v)b – ra
(√

( – v)b –
√

a
) + av[( – v)b

]–v

= a
[
( – v)a + v( – v)b

]
– ra

(√
( – v)b –

√
a
) – ( – v)ab + av[( – v)b

]–v

≥ a
{

a–v[( – v)b
]v} – ( – v)ab + av[( – v)b

]–v

= a–v[( – v)b
]v + av[( – v)b

]–v – ( – v)ab

=
[
a–v( – v)vbv – av( – v)–vb–v] ≥ ,

and so

va + ( – v)b + ra
(√

( – v)b –
√

a
) ≤ ( – v)(a – b) + av[( – v)b

]–v.

If 
 ≤ v ≤ , then

v(a – b) – va – ( – v)b – rb(
√

b –
√

va) + (va)vb–v

= (v – )b + ( – v)vab – rb(
√

b –
√

va) – vab + (va)vb–v

= b
[
(v – )b + ( – v)va – r(

√
b –

√
va)] – vab + (va)vb–v

≥ b
[
bv–(va)–v] – vab + (va)vb–v

=
[
bv(va)–v – (va)vb–v] ≥ ,

and so

va + ( – v)b + rb(
√

b –
√

va) ≤ v(a – b) + (va)vb–v.

This completes the proof. �

Remark  Obviously, () and () are improvement reverses of the scalar Young type in-
equalities () and ().

3 Reverses of Young type inequalities for matrices
Based on the reverses of the scalar Young type inequalities () and (), we obtain matrix
versions of these inequalities.

Theorem  Let A, B, X ∈ Mn such that A and B are positive semidefinite. If  ≤ v ≤ 
 , then

∥∥vAX + ( – v)XB
∥∥

 + r
[
( – v)

∥∥A

 XB



∥∥

 + ‖AX‖
 – 

√
 – v

∥∥A

 XB



∥∥



]

≤ ( – v)‖AX – XB‖
 + v( – v)

∥∥A

 XB



∥∥

 + ( – v)(–v)∥∥AvXB–v∥∥
, ()

where r = min{v,  – v}.
If 

 ≤ v ≤ , then
∥∥vAX + ( – v)XB

∥∥
 + r

[
v
∥∥A


 XB



∥∥

 + ‖XB‖
 – 

√
v
∥∥A


 XB



∥∥



]

≤ v‖AX – XB‖
 + v( – v)

∥∥A

 XB



∥∥

 + vv∥∥AvXB–v∥∥
, ()

where r = min{v – ,  – v}.
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Proof Since every positive semidefinite matrix is unitarily diagonalizable, it follows that
there are unitary matrices U , V ∈ Mn such that A = UDU∗ and B = VEV ∗, where

D = diag(λ, . . . ,λn), E = diag(μ, . . . ,μn), and λi,μi ≥ , i = , . . . , n.

Let Y = U∗XV = [yij]. Then

vAX + ( – v)XB = U
(
vDY + ( – v)YE

)
V ∗ = U

[(
vλi + ( – v)μj

)
yij

]
V ∗,

AX – XB = U
[
(λi – μj)yij

]
V ∗, A


 XB


 = U

[
λ



i μ



j yij

]
V ∗,

and

AvXB–v = U
[
λv

i μ
–v
j yij

]
V ∗.

If  ≤ v ≤ 
 , by inequality (), we have

∥∥vAX + ( – v)XB
∥∥



=
n∑

i,j=

(
vλi + ( – v)μj

)|yij|

≤ ( – v)
n∑

i,j=

(λi – μj)|yij| + ( – v)(–v)
n∑

i,j=

(
λv

i μ
–v
j

)|yij|

– r

n∑
i,j=

λi
(√

( – v)μj –
√

λi
)|yij| + v( – v)

n∑
i,j=

(
λ



i μ



j
)|yij|

= ( – v)
n∑

i,j=

(λi – μj)|yij| + ( – v)(–v)
n∑

i,j=

(
λv

i μ
–v
j

)|yij|

+ (v – r)( – v)
n∑

i,j=

(
λ



i μ



j
)|yij|

– r

n∑
i,j=

λ
i |yij| + r

√
( – v)

n∑
i,j=

(
λ



i μ



j
)|yij|

= ( – v)‖AX – XB‖
 + ( – v)(–v)∥∥AvXB–v∥∥



+ (v – r)( – v)
∥∥A


 XB



∥∥

 – r‖AX‖
 + r

√
 – v

∥∥A

 XB



∥∥

,

and so

∥∥vAX + ( – v)XB
∥∥

 + r
[
( – v)

∥∥A

 XB



∥∥

 + ‖AX‖
 – 

√
 – v

∥∥A

 XB



∥∥



]

≤ ( – v)‖AX – XB‖
 + v( – v)

∥∥A

 XB



∥∥

 + ( – v)(–v)∥∥AvXB–v∥∥
.

If 
 ≤ v ≤ , then by inequality () and the same method above, we have inequality ().

This completes the proof. �



Hu and Xue Journal of Inequalities and Applications  (2015) 2015:98 Page 5 of 6

Remark  Obviously, () and () are improvement reverses of the matrix Young type
inequalities () and ().

In the end, we present two new inequalities, by means of inequalities () and (). To do
this, we need the following lemmas.

Lemma  (Cauchy-Schwarz inequality) [] Let ai ≥ , bi ≥ , for i = , , . . . , n, then

n∑
i=

aibi ≤
( n∑

i=

a
i

) 

( n∑

i=

b
i

) 


.

Lemma  [] Let A, B ∈ Mn, then

n∑
j=

sj(AB) ≤
n∑

j=

sj(A)sj(B).

Theorem  Let A, B ∈ Mn such that A and B are positive semidefinite. If  ≤ v ≤ 
 , then

( – v)–v∥∥Av∥∥


∥∥B–v∥∥


≥
√

v‖A‖
 + ( – v)‖B‖

 – ( – v)
(‖A‖

 + ‖B‖
 – ‖AB‖

)
+ M, ()

where r = min{v,  – v}, M = r[( – v)‖AB‖ + ‖A‖
 – 

√
 – v‖A 

 ‖‖B 
 ‖].

If 
 ≤ v ≤ , then

vv∥∥Av∥∥


∥∥B–v∥∥
 ≥

√
v‖A‖

 + ( – v)‖B‖
 – v

(‖A‖
 + ‖B‖

 – ‖AB‖
)

+ M, ()

where r = min{v – ,  – v}, M = r[v‖AB‖ + ‖B‖
 – 

√
v‖A 

 ‖‖B 
 ‖].

Proof If  ≤ v ≤ 
 , then using Lemma , Lemma , and inequality (), we have

tr
(
vA + ( – v)B)

= v tr A + ( – v) tr B

=
n∑

j=

(
vs

j (A) + ( – v)s
j (B)

)

≤ ( – v)

[ n∑
j=

s
j (A) +

n∑
j=

s
j (B) – 

n∑
j=

sj(A)sj(B)

]

+
n∑

j=

( – v)(–v)[sj
(
Av)sj

(
B–v)] – r

n∑
j=

sj(A)
[√

( – v)sj(B) –
√

sj(A)
]

≤ ( – v)

[
‖A‖

 + ‖B‖
 – 

n∑
j=

sj(AB)

]
+ ( – v)(–v)

[ n∑
j=

sj
(
Av)sj

(
B–v)

]

– r

[
( – v)

n∑
j=

sj(A)sj(B) +
n∑

j=

s
j (A) – 

√
 – v

( n∑
j=

s


j (A)s



j (B)

)]
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≤ ( – v)[‖A‖
 + ‖B‖

 – ‖AB‖
]

+ ( – v)(–v)

[ n∑
j=

s
j
(
Av) n∑

j=

s
j
(
B–v)

]

– r

[
( – v)

n∑
j=

sj(AB) + ‖A‖
 – 

√
 – v

( n∑
j=

s


j (A)s



j (B)

)]

≤ ( – v)[‖A‖
 + ‖B‖

 – ‖AB‖
]

+ ( – v)(–v)∥∥Av∥∥


∥∥B–v∥∥


– r

[
( – v)‖AB‖ + ‖A‖

 – 
√

 – v

( n∑
j=

s


j (A)

n∑
j=

s


j (B)

)]
.

Thus

v‖A‖
 + ( – v)‖B‖

 ≤ ( – v)(‖A‖
 + ‖B‖

 – ‖AB‖
)

+ ( – v)(–v)∥∥Av∥∥


∥∥B–v∥∥


– r
[
( – v)‖AB‖ + ‖A‖

 – 
√

 – v
∥∥A



∥∥



∥∥B


∥∥



]
.

If 
 ≤ v ≤ , then by inequality () and the same method above, we have inequality ().

This completes the proof. �

Remark  It should be noticed that neither () nor () is uniformly better than the other.
At the same time, neither () nor () is uniformly better than the other.
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