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Abstract
The generalized Nash equilibrium problem is an extension of the standard Nash
equilibrium problem where both the utility function and the strategy space of each
player depend on the strategies chosen by all other players. Recently, the generalized
Nash equilibrium problem has emerged as an effective and powerful tool for
modeling a wide class of problems arising in many fields and yet solution algorithms
are extremely scarce. In this paper, using a regularized Nikaido-Isoda function, we
reformulate the generalized Nash equilibrium problem as a mathematical program
with complementarity constraints (MPCC). We then propose a suitable method for
this MPCC and under some conditions, we establish the convergence of the
proposed method by showing that any accumulation point of the generated
sequence is a M-stationary point of the MPCC. Numerical results on some generalized
Nash equilibrium problems are reported to illustrate the behavior of our approach.

Keywords: standard Nash equilibrium problem; generalized Nash equilibrium
problem; normalized Nash equilibrium; Nikaido-Isoda function; M-stationary point

1 Introduction
This paper considers the generalized Nash equilibrium problem with jointly convex con-
straints (GNEP). To be more specific, let us now give formal definitions of the stan-
dard Nash equilibrium problem (NEP) and the GNEP. We assume there are N players,
each player ν ∈ {, . . . , N} controls the variables xν ∈ �nν and x = (x, . . . , xN )T ∈ �n with
n = n + · · · + nN denotes the vector comprised of all these decision variables. To empha-
size the νth player’s variables within the vector x, we sometimes write x = (xν , x–ν)T , where
x–ν subsumes all the other players’ variables. We will also write n–ν = n – nν . Moreover,
for both NEPs and GNEPs, let θν : �n → � be the νth player’s payoff (or loss or utility)
function.

For a NEP, there is a separate strategy set Xν ⊆ �nν for each player ν . Let

X :=
N∏

ν=

Xν (.)

be the Cartesian product of the strategy sets of all players, then a vector x∗ ∈ X is called a
Nash equilibrium, or a solution of the NEP, if each block component x∗,ν is a solution of
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the optimization problem

min
xν

θν
(
xν , x∗,–ν

)

s.t. xν ∈ Xν ,

i.e., x∗ is a Nash equilibrium if no player can improve his situation by unilaterally changing
his strategy.

On the other hand, in a GNEP, there is a common strategy set X ⊆ �n for all players, and
a vector x∗ = (x∗,, . . . , x∗,N )T ∈ �n is called a generalized Nash equilibrium or a solution of
the GNEP if each block component x∗,ν is a solution of the optimization problem

min
xν

θν
(
xν , x∗,–ν

)

s.t.
(
xν , x∗,–ν

) ∈ X.

If X has the Cartesian product structure as (.), then a GNEP reduces to a NEP. Through-
out this paper, we assume that X can be represented as

X =
{

x ∈ �n | g(x) ≤ 
}

(.)

for some functions g : �n → �m. Note that usually, a player ν might have some additional
constraints of the form hν(xν) ≤  depending on his decision variables only. However,
these additional constraints can be viewed as part of the joint constraints g(x) ≤ , with
some of the component functions gi of g depending on the block component xν of x only.
So, we include these latter constraints in the former ones.

The GNEP was formally introduced by Debreu [] as early as , but it is only from
the mid-s that the GNEP attracted much attention because of its capability of model-
ing a number of interesting problems in economy, computer science, telecommunications
and deregulated markets (for example, see [–]). Motivated by the fact that a NEP can
be reformulated as a variational inequality problem (VI); see, for example, [, ], Harker
[] characterized the GNEP as a quasi-variational inequality (QVI). But unlike VI, there
are few efficient methods for solving QVI, and therefore such a reformulation is not used
widely in designing implementable algorithms. The idea of using an exact penalty ap-
proach to the GNEP was proposed by Facchinei and Pang [] and Facchinei and Kanzow
[], but the disadvantage of this method is that a nondifferentiable NEP has to be solved
to obtain a generalized Nash equilibrium.

Another approach for solving the GNEP is based on the Nikaido-Isoda function. Relax-
ation methods and proximal-like methods using the Nikaido-Isoda function are investi-
gated in [–]. A regularized version of the Nikaido-Isoda function was first introduced
in [] for NEPs then further investigated by Heusinger and Kanzow [], they reformu-
lated the GNEP as a constrained optimization problem with continuously differentiable
objective function.

Motivated by [], in this paper, we further reformulate the GNEP as a MPCC. Moreover,
we propose a smoothing method to this problem and give some suitable conditions for the
convergence of the proposed method. The organization of the paper is as follows. In the
next section, we recall some preliminaries and basic facts and definitions. In Section , we
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give details of our optimization reformulation of the GNEP and discuss the convergence
properties of our method. Finally, in Section , we present some numerical results.

We use the following notations throughout the paper. For a differentiable function
g : �n → �m, the Jacobian of g at x ∈ �n is denoted by J g(x), and it is transposed by
∇g(x). Given a differentiable function � : �n → �, the symbol ∇xν �(x) denotes the par-
tial gradient with respect to xν-part only. For a function f : �n × �n → �, f (x, ·) : �n → �
denotes the function with x being fixed. For vectors x, y ∈ �n, 〈x, y〉 denotes the inner prod-
uct defined by 〈x, y〉 := xT y and x ⊥ y means 〈x, y〉 = . Finally, throughout the paper, ‖ · ‖
denotes the Euclidean vector norm.

2 Preliminaries
Throughout this paper, we make the following blanket assumptions.

Assumption .
(i) The utility functions θν are twice continuously differentiable and as a function of xν

along, θν are convex.
(ii) The function g is twice continuously differentiable, its components gi are convex

(in x), and the corresponding strategy space X defined by (.) is nonempty.

Note that the convexity assumptions are absolutely standard setting under which the
GNEP is usually investigated in the literature, and Assumption .(ii) implies that the
strategy set X ⊆ �n is nonempty, closed, and convex. An important tool for both NEPs
and GNEPs is the Nikaido-Isoda function (NI function for short) � : �n × �n → �,

�(x, y) :=
N∑

ν=

[
θν
(
xν , x–ν

)
– θν

(
yν , x–ν

)]
.

In particular, the NI function provides an important subset of all the solutions of a GNEP.

Definition . A vector x∗ ∈ X is called a normalized Nash equilibrium of the GNEP if

sup
y∈X

�
(
x∗, y

)
= . (.)

However, the supremum in (.) may not be attained, or it may be attained at more than
one point. In order to overcome these disadvantages, in [] authors provided a regular-
ized version of the NI function. Let α >  be a given parameter that is assumed to be fixed
throughout this paper. The regularized NI function is given by

�α(x, y) := �(x, y) –
α


‖x – y‖.

We now define the corresponding value function by

Vα(x) := max
y∈X

�α(x, y) = �α

(
x, yα(x)

)
,

where yα(x) denotes the unique solution of the uniformly concave maximization problem

max�α(x, y)

s.t. y ∈ X.
(.)
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As noted in [], the function Vα is continuously differentiable with gradient given by

∇Vα(x) = ∇x�α(x, y)|y=yα (x),

and x∗ is a normalized Nash equilibrium of the GNEP if and only if it solves the constrained
optimization problem

min Vα(x)

s.t. x ∈ X
(.)

with optimal function value Vα(x∗) = .

3 Problem reformulation and a smoothing method
We now use the regularized NI function in order to obtain a MPCC reformulation of the
GNEP.

Based on (.), x∗ is a normalized Nash equilibrium of the GNEP if and only if x∗ solves
the following optimization problem:

min�α

(
x, yα(x)

)

s.t. yα(x) = arg max
y∈X

�α(x, y), (.)

x ∈ X.

We consider Problem (.). For every x ∈ X, let the linear independence constraint qual-
ification (LICQ) hold at yα(x), then by Assumption ., yα(x) is a solution of (.) if and
only if yα(x) satisfies

∇y�α

(
x, yα(x)

)
– ∇g

(
yα(x)

)
λα(x) = ,

 ≤ λα(x) ⊥ –g
(
yα(x)

)≥ ,

where λα(x) is a Lagrangian multiplier. Thus, Problem (.) is equivalent to

min�α(x, y)

s.t. ∇y�α(x, y) – ∇g(y)λ = ,

g(x) ≤ ,

 ≤ λ ⊥ –g(y) ≥ .

(.)

This problem is a MPCC.
Now, we can easily get the following result as regards the normalized Nash equilibrium

of the GNEP and the solution of the MPCC.

Proposition . For every x ∈ X, let the LICQ hold at yα(x), then x∗ is a normalized Nash
equilibrium if and only if there exists a vector (y∗,λ∗) such that (x∗, y∗,λ∗) is a solution of
Problem (.).
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Let z = (x, y,λ), f (z) = �α(x, y), h(z) = ∇y�α(x, y) – ∇g(y)λ, ḡ(z) = g(x), G(z) = λ, and
H(z) = –g(y), we rewrite (.) more compactly as

min f (z)

s.t. h(z) = ,

ḡ(z) ≤ ,

 ≤ G(z) ⊥ H(z) ≥ .

(.)

Define the Lagrangian of (.) as

L
(
z,μ,η, ξG, ξH) = f (z) + h(z)Tμ + ḡ(z)Tη – G(z)TξG – H(z)TξH

and the index sets of active constraints as

Iḡ(z) =
{

i | ḡi(z) = 
}

, IG(z) =
{

i | Gi(z) = 
}

, IH (z) =
{

i | Hi(z) = 
}

,

the MPCC-LICQ for (.) at a feasible point z̄ says that the following vectors:

∇hi(z̄), i = , . . . , n, ∇ ḡi(z̄), i ∈ Iḡ(z̄),

∇Gi(z̄), i ∈ IG(z̄), ∇Hi(z̄), i ∈ IH (z̄)

are linearly independent.
We next consider two simple GNEPs which show that the MPCC-LICQ for (.) holds

at a solution z∗.

Example . Consider the GNEP with N = , X = {x ∈ � | x ≥ , x ≥ }, and payoff
functions θ (x) = xx and θ(x) = x. Now let us consider yα(x), the unique solution of

max

(
xx – yx + x – y –

α


(
y – x) –

α


(
y – x)

)

s.t. y ∈ X.

An elementary calculation shows that

y
α(x) = max

{
,
(

x –
x

α

)}
,

y
α(x) = max

{
,
(

x –

α

)}
.

Furthermore, we get

λ
α(x) = max

{
,
(
x + α – αx)},

λ
α(x) = max

{
,
(
α +  – αx)}.
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We see that x∗ = (, ) is the normalized Nash equilibrium and z∗ = (, , , , , ) is a solu-
tion of (.). It is easy to compute that

∇h
(
z∗) = (α, –, –α, , , )T ,

∇h
(
z∗) = (,α, , –α, , )T ,

∇ ḡ
(
z∗) = (–, , , , , )T ,

∇ ḡ
(
z∗) = (, –, , , , )T ,

∇H
(
z∗) = (, , , , , )T ,

∇H
(
z∗) = (, , , , , )T .

Moreover, we can see ∇hi(z∗), i = , , ∇ ḡi(z∗), i = , , ∇Hi(z∗), i = , , are linearly inde-
pendent, hence the MPCC-LICQ holds at z∗.

Example . Consider the GNEP with two players:

min xx

s.t. x ≥ ,

x ≥ ,

x + x ≤ ,

min –xx

s.t. x ≥ ,

x ≥ ,

x + x ≤ .

The regularized NI function is

�α(x, y) = –yx + yx –
α


(
x – y) –

α


(
x – y),

and X = {x |  – x ≤ ,  – x ≤ , x + x –  ≤ }. It can be seen that x∗ = (, ) is the
unique normalized Nash equilibrium and

z∗ =
(
x,∗, x,∗, y,∗

α , y,∗
α ,λ,∗

α ,λ,∗
α ,λ,∗

α

)
= (, , , , , , )

is the solution of (.). Moreover, we have

∇h
(
z∗) = (α, –, –α, , , , –)T ,

∇h
(
z∗) = (,α, , –α, , , –)T ,

∇ ḡ
(
z∗) = (–, , , , , , )T ,

∇ ḡ
(
z∗) = (, , , , , , )T ,

∇H
(
z∗) = (, , , , , , )T ,

∇H
(
z∗) = (, , –, –, , , )T ,

∇G
(
z∗) = (, , , , , , )T .

Obviously, ∇hi(z∗), i = , , ∇ ḡi(z∗), i = , , ∇Hi(z∗), i = , , ∇Gi(z∗), i = , are linearly
independent, hence the MPCC-LICQ for (.) holds at z∗.
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In the study of MPCCs, there are several kinds of stationarity defined for Problem (.).

Definition .
() A feasible point z̄ of (.) is called a critical point if there exist multipliers μ̄, η̄, ξ̄G,

and ξ̄H such that

∇zL
(
z̄, μ̄, η̄, ξ̄G, ξ̄H) = ,

η̄ ≥ , η̄T ḡ(z̄) = ,

ξ̄G
i = , if i /∈ IG(z̄),

ξ̄H
i = , if i /∈ IH (z̄).

(.)

() Clarke (C)-stationarity: η̄i ≥  and ξ̄G
k ξ̄H

k ≥  for all k ∈ IG(z̄) ∩ IH (z̄).
() Mordukhovich (M)-stationarity: η̄i ≥  and either ξ̄G

k , ξ̄H
k >  or ξ̄G

k ξ̄H
k =  for all

k ∈ IG(z̄) ∩ IH (z̄).

We now propose our smoothing method for (.). This method is similar to one given
in [] which, however, uses a different reformulation of the complementarity constraints.
Let

φ(a, b, ε) = a + b –
√

(a – b) + ε.

and ε >  is the smoothing parameter. We have

φ(a, b, ε) =  ⇔ a > , b > , ab =
ε



and

∂

∂a
φ(a, b, ε) =  –

a – b√
(a – b) + ε

,

∂

∂b
φ(a, b, ε) =  –

b – a√
(a – b) + ε

,

∂

∂a φ(a, b, ε) =
–ε

[(a – b) + ε] 


,

∂

∂b φ(a, b, ε) =
–ε

[(a – b) + ε] 


,

∂

∂a ∂b
φ(a, b, ε) =

ε

[(a – b) + ε] 


.

By the definition of the function φ and the calculation formulas for its first- and second-
order partial derivatives, we can easily obtain the following properties of φ.

Lemma . Let (a, b, ε) satisfy φ(a, b, ε) =  and ε > .
(i) We have

∂

∂a
φ(a, b, ) = , if a >  = b,

∂

∂b
φ(a, b, ) = , if a =  < b.
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(ii) Let (ak , bk) → (, ) as εk → + with φ(ak , bk , εk) = . If

lim
k→∞

∂
∂aφ(ak , bk , εk)
∂
∂bφ(ak , bk , εk)

→ r > ,

we have

(
V k)Hk(V k)T → –∞, as k → ∞,

where V k = ( ∂φ

∂b , – ∂φ

∂a ) and Hk is the Hessian of φ with respect to a and b evaluated at
(ak , bk , εk).

Now, we consider the following problem with ε > :

min f (z)

s.t. h(z) = ,

ḡ(z) ≤ ,

�ε(z) = ,

(.)

where �ε(z) = (φ(G(z), H(z), ε), . . . ,φ(Gm(z), Hm(z), ε))T . We recall that zε is stationary
for (.) if it is feasible and there exist Lagrangian multiplier vectors με ∈ �n, ηε ∈ �m,
and ξ ε ∈ �m satisfying

∇zL
(
zε ,με ,ηε , ξ ε

)
= ,

h
(
zε
)

= ,

ḡ
(
zε
)≤ , ηε ≥ , ḡ

(
zε
)T

ηε = ,

�ε
(
zε
)

= ,

where the Lagrangian function is

L(z,μ,η, ξ ) = f (z) + h(z)Tμ + ḡ(z)Tη + �ε(z)Tξ .

A stationary point zε with Lagrangian multipliers με , ηε , ξ ε of (.) is said to satisfy a
second-order necessary condition (SONC) if

dT∇
zzL
(
zε ,με ,ηε , ξ ε

)
d ≥ 

for any d in the critical cone,

C
(
zε
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
d

∣∣∣∣∣∣∣∣∣

∇hi(zε)T d = , i = , . . . , n
∇�ε

i (zε)T d = , i = , . . . , m
∇ ḡi(zε)T d = , i : ḡi(zε) = ,ηε

i > 
∇ ḡi(zε)T d ≤ , i : ḡi(zε) = ,ηε

i = 

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.
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We need a slightly weaker condition that we call the weak second-order necessary condi-
tion (WSONC), which requires the positive semidefiniteness of ∇

zzL(zε ,με ,ηε , ξ ε) on the
critical subspace

lin C
(
zε
)

=

⎧
⎪⎨

⎪⎩
d

∣∣∣∣∣∣∣

∇hi(zε)T d = , i = , . . . , n
∇�ε

i (zε)T d = , i = , . . . , m
∇ ḡi(zε)T d = , i ∈ Iḡ(zε)

⎫
⎪⎬

⎪⎭
.

Now, we state a convergence result for the smoothing method (.).

Theorem . Let {zk ,μk ,ηk , ξ k} be a Karush-Kuhn-Tucher (KKT) point of (.) for each
ε = εk , where εk → +. Suppose that z̄ is a limit point of {zk} and the MPCC-LICQ holds at
z̄ for (.). Then

(i) z̄ is a C-stationary point of (.);
(ii) if WSONC holds for (.) at each zk , then z̄ is a M-stationary point of (.).

Proof By taking a subsequence if necessary, we assume that zk → z̄, and it is easy to see
that z̄ is feasible for (.). To simplify notation, in the following, we denote

∂φi

∂a
=

∂

∂a
φ
(
Gi
(
zk), Hi

(
zk), εk),

∂φi

∂b
=

∂

∂b
φ
(
Gi
(
zk), Hi

(
zk), εk),

∂φi

∂a =
∂

∂a φ
(
Gi
(
zk), Hi

(
zk), εk),

∂φi

∂b =
∂

∂b φ
(
Gi
(
zk), Hi

(
zk), εk),

∂φi

∂a ∂b
=

∂

∂a ∂b
φ
(
Gi
(
zk), Hi

(
zk), εk).

First, we show that z̄ is a critical point of (.). The gradient equation of the KKT system
for (.) at zk is

∇f
(
zk) + ∇h

(
zk)μk + ∇ ḡ

(
zk)ηk +

m∑

i=

ξ k
i
∂φi

∂a
∇Gi

(
zk) +

m∑

i=

ξ k
i
∂φi

∂b
∇Hi

(
zk) = , (.)

h
(
zk) = ,

 ≤ ηk ⊥ –ḡ
(
zk)≥ ,

�ε
(
zk) = .

Equation (.) can be equivalently expressed as

∇f
(
zk) +

n∑

i=

μk
i ∇hi

(
zk) +

∑

i∈Iḡ (zk )

ηk
i ∇ ḡi

(
zk) +

∑

i∈IG(z̄)

ξ k
i
∂φi

∂a
∇Gi

(
zk)

+
∑

i /∈IG(z̄)

ξ k
i
∂φi

∂a
∇Gi

(
zk) +

∑

i∈IH (z̄)

ξ k
i
∂φi

∂b
∇Hi

(
zk) +

∑

i /∈IH (z̄)

ξ k
i
∂φi

∂b
∇Hi

(
zk) = . (.)

Let rk
i = ξ k

i
∂φi
∂a and vk

i = ξ k
i

∂φi
∂b , we show that limk→∞ rk

i exists and rk
i →  if i /∈ IG(z̄). Let

i /∈ IG(z̄), then i ∈ IH (z̄) by the feasibility of z̄. We assume that there exist a positive number
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ᾱ >  and a subsequence (we denote the subsequence by the sequence itself for the sake
of notational simplicity) such that |rk

i | ≥ ᾱ for sufficiently large k. Since

lim
k→∞

∂φ

∂a
(
Gi
(
zk), Hi

(
zk), εk) =

∂φ

∂a
(
Gi(z̄), Hi(z̄), 

)
= ,

then limk→∞ |ξ k
i | = +∞. Let βk := ‖(μk ,ηk , ξ k)‖, then βk → +∞. It is not difficult to ob-

tain for sufficiently large k, Iḡ(zk) ⊆ Iḡ(z̄). Dividing (.) by βk , and taking any limit point
(μ̃, η̃, r̃, ṽ) of (μk ,ηk , rk , vk)/βk yields (μ̃, η̃, r̃, ṽ) �=  and

n∑

i=

μ̃i∇hi(z̄) +
∑

i∈Iḡ (z̄)

η̃i∇ ḡi(z̄) +
∑

i∈IG(z̄)

r̃i∇Gi(z̄) +
∑

i∈IH (z̄)

ṽi∇Hi(z̄) = . (.)

Equation (.) contradicts the MPCC-LICQ at z̄. Therefore, limk→∞ rk
i = , for i /∈ IG(z̄).

In the same way, we can also prove that limk→∞ vk
i = , for i /∈ IH (z̄). Furthermore, {μk

i }n
i=,

{ηk
i }i∈Iḡ (z̄), {rk

i }i∈IG(z̄), and {vk
i }i∈IH (z̄) are bounded. Otherwise, dividing (.) by βk and tak-

ing the limit will lead to a contradiction to the MPCC-LICQ at z̄ as done above. Due
to the MPCC-LICQ at z̄, Let (μ̄, η̄, r̄, v̄) denote the unique limit of (μk ,ηk , rk , vk), with
rk = (rk

 , . . . , rk
m)T and vk = (vk

 , . . . , vk
m)T , we can see, (z̄, μ̄, η̄, r̄, v̄) satisfies (.), so, z̄ is a

critical point of (.).
Note that, for any i ∈ IG(z̄) ∩ IH (z̄),

r̄iv̄i = lim
k→∞

(
rk

i vk
i
)

= lim
k→∞

(
ξ k

i
∂φi

∂a

)(
ξ k

i
∂φi

∂b

)
= lim

k→∞
(
ξ k

i
) ∂φi

∂a
∂φi

∂b
≥ ,

the C-stationarity of z̄ follows.
For the M-stationarity of z̄. If z̄ is not a M-stationary point of (.) which means that

there exists at least one index, denoted by l ∈ IG(z̄) ∩ IH (z̄) such that r̄l >  and v̄l > , so
we have ξ k

l >  and away from zero for sufficiently large k. First, it is easy to see that

lim
k→∞

ξ k
l

∂φl
∂a

ξ k
l

∂φl
∂b

= lim
k→∞

∂φl
∂a
∂φl
∂b

=
r̄l

v̄l
> .

Second, by the MPCC-LICQ at z̄, we have

⎛

⎜⎜⎜⎝

∇hi(z̄)T , i = , . . . , n
∇ ḡi(z̄)T , i ∈ Iḡ(z̄)
∇Gi(z̄)T , i ∈ IG(z̄)
∇Hi(z̄)T , i ∈ IH (z̄)

⎞

⎟⎟⎟⎠

has full row rank. Then for sufficiently large k,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇hi(zk)T , i = , . . . , n
∇ ḡi(zk)T , i ∈ Iḡ(z̄)

∇Gi(zk)T , i ∈ IG(z̄)\{l}
∇Hi(zk)T , i ∈ IH (z̄)\{l}

∇Gl(zk)T

∇Hl(zk)T

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠



Lai et al. Journal of Inequalities and Applications  (2015) 2015:90 Page 11 of 16

is full row rank also. Therefore there exists dk which is bounded and satisfies

∇hi
(
zk)T dk = , i = , . . . , n,

∇ ḡi
(
zk)T dk = , i ∈ Iḡ(z̄),

∇Gi
(
zk)T dk = , i ∈ IG(z̄)\{l},

∇Hi
(
zk)T dk = , i ∈ IH (z̄)\{l},

∇Gl
(
zk)T dk =

∂φl

∂b
,

∇Hl
(
zk)T dk = –

∂φl

∂a
.

It is easy to see that dk is in the critical subspace lin C(zk) of Problem (.) at zk , and

(
dk)T∇

zzL
(
zk ,μk ,ηk , ξ k)(dk)

=
(
dk)T

{
∇f

(
zk) +

n∑

i=

μk
i ∇hi

(
zk) +

m∑

i=

ηk
i ∇ḡi

(
zk)
}

dk

+
(
dk)T

( m∑

i=

ξ k
i
∂φi

∂a
∇Gi

(
zk)
)

dk +
(
dk)T

( m∑

i=

ξ k
i
∂φi

∂b
∇Hi

(
zk)
)

dk

+
(
dk)T

( m∑

i=

ξ k
i ∇Gi

(
zk) ∂φi

∂a ∂a
∇Gi

(
zk)T

)
dk

+ 
(
dk)T

( m∑

i=

ξ k
i ∇Gi

(
zk) ∂φi

∂a ∂b
∇Hi

(
zk)T

)
dk

+
(
dk)T

( m∑

i=

ξ k
i ∇Hi

(
zk) ∂φi

∂b ∂b
∇Hi

(
zk)T

)
dk .

We know (dk)T {∇f (zk) +
∑n

i= μk
i ∇hi(zk) +

∑m
i= ηk

i ∇ḡi(zk)}dk , (dk)T (
∑m

i= ξ k
i

∂φi
∂a ×

∇Gi(zk))dk and (dk)T (
∑m

i= ξ k
i

∂φi
∂b ∇Hi(zk))dk are bounded, and

(
dk)T

( m∑

i=

ξ k
i ∇Gi

(
zk) ∂φi

∂a ∂a
∇Gi

(
zk)T

)
dk

+ 
(
dk)T

( m∑

i=

ξ k
i ∇Gi

(
zk) ∂φi

∂a ∂b
∇Hi

(
zk)T

)
dk

+
(
dk)T

( m∑

i=

ξ k
i ∇Hi

(
zk) ∂φi

∂b ∂b
∇Hi

(
zk)T

)
dk

=
(
dk)T

(
ξ k

l ∇Gl
(
zk) ∂φl

∂a ∂a
∇Gl

(
zk)T

)
dk

+ 
(
dk)T

(
ξ k

l ∇Gl
(
zk) ∂φl

∂a ∂b
∇Hl

(
zk)T

)
dk

+
(
dk)T

(
ξ k

l ∇Hl
(
zk) ∂φl

∂b ∂b
∇Hl

(
zk)T

)
dk . (.)
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For sufficiently large k, we have ξ k
l >  and (.) is equal to

ξ k
l

∂φl

∂a ∂a

(
∂φl

∂b

)

– ξ k
l

∂φl

∂a ∂b
∂φl

∂a
∂φl

∂b
+ ξ k

l
∂φl

∂b ∂b

(
∂φl

∂a

)

= ξ k
l
(
V k)Hk(V k)T ,

which tends to –∞ by Lemma .. This contradicts that zk satisfies WSONC. The M-sta-
tionarity of z̄ follows. �

4 Numerical experiments
We have tested the method on various examples of the GNEP. We applied MATLAB .
built-in solver function fmincon to solve the nonlinear programs for positive ε-values.
The computational results are summarized in Tables , , -, , which indicate that the
proposed method produces good approximate solutions.

Example . This problem is taken from []. There are two players, each player ν has a
one-dimensional decision variable xν ∈ �. The optimization problems of the two players
are given by

min
x

(
x – 

) s.t. x + x ≤ ,

min
x

(
x –




)

s.t. x + x ≤ .

This problem has infinitely many solutions {(α,  – α) | α ∈ [., ]}, but has only one nor-
malized Nash equilibrium at x̄ = ( 

 , 
 )T . Table  is for the corresponding numerical results.

Example . This is a duopoly model with two players taken from []. Each player ν

controls one variable xν ∈ �. The payoff functions are given by

θν(x) = xν
(
ρ̄
(
x + x) + λ – d

)
for ν = , ,

and the constraints are given by

– ≤ xν ≤  for ν = , ,

where d = , λ = , ρ̄ = .

Example . This example is a river basin pollution game also taken from []. There are
three players, each player controls a single variable xν ∈ �. The objective functions are
given by

θν(x) = xν
(
cν + cνxν – d + d

(
x + x + x))

Table 1 Numerical results for Example 4.1

ε x1 x2 �α(x, y)

1e–1 0.749996 0.250004 0.045135
1e–5 0.749997 0.250003 4.999308e–006
1e–8 0.750000 0.250000 4.336026e–009
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Table 2 Numerical results for Example 4.2

ε x1 x2 �α(x, y)

1e–1 5.333334 5.333333 1.848689e–005
1e–5 5.333333 5.333333 1.851667e–009
1e–8 5.333334 5.333331 1.067513e–012

Table 3 Values of constants for Example 4.3

Player ν c1,ν c2,ν eν μν,1 μν,2

1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750

Table 4 Numerical results for Example 4.3

ε x1 x2 x3 �α(x, y)

1e–1 21.148268 16.029412 2.722755 0.050083
1e–5 21.142311 16.026439 2.728349 5.000023e–004
1e–8 21.143711 16.029660 2.726270 3.893246e–008

Table 5 Numerical results for Example 4.4

ε x1 x2 x3 �α(x, y)

1e–1 0.090697 0.090697 0.090697 8.776339e–005
1e–5 0.089987 0.089987 0.089987 2.147441e–006
1e–8 0.090001 0.090001 0.090001 5.020587e–010

for ν = , , , and the constraints are

μex + μex + μex ≤ K, μex + μex + μex ≤ K.

The economic constants d and d determine the inverse demand law and set to . and
., respectively. Values for constants c,ν , c,ν , eν , μν,, and μν, are given in Table , and
K = K = .

Example . This test problem is an Internet switching model introduced by Kesselman
et al. []. There are N players, the cost function of each player is given by

θν(x) =
xν

B
–

xν

∑N
ν= xν

,

with constraints xν ≥ ., ν = , . . . , N , and
∑N

ν= xν ≤ B. We set N = , B = . The ex-
act solution of this problem is x∗ = (., ., . . . , .)T . We only state the first three
components of x in Table .

Example . Let us consider the following GNEP. There are two players in the game,
where player  controls a two-dimensional variable x = (x, x)T ∈ � and player  controls
a one-dimensional variable x = x ∈ �. The problem is

min
x,x

x
 + xx + x

 + (x + x)x – x – x

s.t. x, x ≥ ,
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Table 6 Numerical results for Example 4.5

ε x1 x2 x3 �α(x, y)

1e–1 0.026144 10.972252 7.972330 0.121529
1e–5 0.000640 10.999360 7.999360 1.133698e–005
1e–8 0.000026 10.999974 7.999974 1.252339e–008
1e–10 0.000007 10.999993 7.999993 2.532424e–009

Table 7 Values of constants for Example 4.6

Player ν 1 2 3 4 5 6

ci 0.04 0.035 0.125 0.0166 0.05 0.05
di 2 1.75 1 3.25 3 3
ei 0 0 0 0 0 0

x + x – x ≤ ,

x + x + x ≤ ,

min
x

x
 + (x + x)x – x

s.t. x ≥ ,

x + x – x ≤ ,

x + x + x ≤ .

The problem has infinitely many solutions given by

{
(α,  – α,  – α) | α ∈ [, ]

}
,

but it has only one normalized Nash equilibrium at α = .

Example . This GNEP from [] is the electricity market problem. This model has
three players, player  controls a single variable x ∈ �, player  controls a two-dimensional
vector x = (x

 , x
), and player  controls a three-dimensional decision variable x =

(x
 , x

, x
). Let

x =
(
x

, x
 , x

, x
 , x

, x

)T = (x, x, x, x, x, x)T .

The utility functions are given by

θ (x) = ψ(x)x +
(




cx
 + dx + e

)
,

θ(x) = ψ(x)(x + x) +
∑

i=

(



cix
i + dixi + ei

)
,

θ(x) = ψ(x)(x + x + x) +
∑

i=

(



cix
i + dixi + ei

)
,

where ψ(x) = (x + · · · + x) – . and the constants ci, di, ei are given in Table .
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Table 8 Numerical results for Example 4.6

ε x1 x2 x3 x4 x5 x6 �α(x, y)

1e–1 46.661555 32.156981 15.000217 22.126220 12.328712 12.331506 1.158639e–006
1e–3 46.661654 32.148613 15.008479 22.092360 12.354163 12.339830 4.165322e–007
1e–5 46.661522 32.159056 14.999815 22.010223 12.366374 12.338851 2.523263e–007

The constraints are

 ≤ x ≤ ,  ≤ x ≤ ,  ≤ x ≤ ,

 ≤ x ≤ ,  ≤ x ≤ ,  ≤ x ≤ .

Table  is for the corresponding numerical results.

The numerical experiments show that the method proposed in this paper is imple-
mentable for solving GNEPs with jointly convex constraints.

5 Remarks
The main idea of this paper is to try use a smoothing method to solve the GNEP. Based
on the regularized Nikaido-Isoda function, we reformulate the set of normalized Nash
equilibria, which is a subset of the generalized Nash equilibria, as solutions of a MPCC
and we solve the MPCC by a smoothing method. There are some problems as regards the
smoothing method worth further investigating:

(i) In this paper, some conditions are given to establish the convergence of the
smoothing method by showing that any accumulation point of the generated
sequence is a M-stationary point of the MPCC. For the next step, less strict
assumptions than Theorem . to obtain the results of Theorem . are worth
considering.

(ii) Based on the special structure of the MPCC defined in (.), can we derive
convergence results tailored to the GNEP, which may possibly be stronger than
those known for the MPCC? This problem is worth studying.
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