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Abstract
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1 Introduction
The corrected quadrature formulae are quadrature formulae where the integral is approx-
imated not only by the values of the integrand in certain points but also by the values of its
first derivative in the end points of the interval. These formulae have a degree of exactness
higher than the adjoint original formulae. The term corrected quadrature formulae was
first introduced in the inequalities area by Ujević and Roberts in [].

The Chebyshev functional [] is defined by

T(f , g) =


b – a

∫ b

a
f (s)g(s) ds –


b – a

∫ b

a
f (s) ds · 

b – a

∫ b

a
g(s) ds,

where f , g : [a, b] →R are two real functions such that f , g, f · g ∈ L[a, b].
For two integrable functions f , g : [a, b] → R such that γ ≤ f (s) ≤ �, and φ ≤ g(s) ≤ �,

for all s ∈ [a, b], where γ , �, φ, � are real constants, the following integral inequality is
known as the Grüss inequality (see [], p.):

∣∣∣∣ 
b – a

∫ b

a
f (s)g(s) ds –


b – a

∫ b

a
f (s) ds · 

b – a

∫ b

a
g(s) ds

∣∣∣∣ ≤ 


(� – γ )(� – φ).

Over the last decades some new inequalities of this type have been considered and ap-
plied in numerical analysis (see [–] and the references cited therein).

In [], the authors proved the following inequalities for the Chebyshev functional:
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Theorem  Let f , g : [a, b] →R be two absolutely continuous functions on [a, b] with

(· – a)(b – ·)(f ′), (· – a)(b – ·)(g ′) ∈ L[a, b],

then

∣∣T(f , g)
∣∣ ≤ √


[
T(f , f )

]/ √
b – a

[∫ b

a
(s – a)(b – s)

(
g ′(s)

) ds
]/

≤ 
(b – a)

[∫ b

a
(s – a)(b – s)

(
f ′(s)

) ds
]/

·
[∫ b

a
(s – a)(b – s)

(
g ′(s)

) ds
]/

. ()

The constants /
√

 and / are the best possible.

Theorem  Assume that g : [a, b] → R is monotonic nondecreasing on [a, b] and f :
[a, b] →R is absolutely continuous with f ′ ∈ L∞[a, b], then

∣∣T(f , g)
∣∣ ≤ 

(b – a)
∥∥f ′∥∥∞ ·

∫ b

a
(s – a)(b – s) dg(s). ()

The constant / is the best possible.

The aim of this note is to consider some new Grüss type inequalities for the general cor-
rected three-point quadrature formulae of Euler type. This will be done by using the above
theorems and the corrected three-point quadrature formulae recently introduced in [].
Also, we use the obtained results to get the error estimates for the corrected Euler Simpson
formula, the corrected dual Euler Simpson formula and the corrected Euler Maclaurin for-
mula. Finally, the corresponding error estimates for the corrected Euler Bullen-Simpson
formula are derived.

More about quadrature formulae and error estimations (from the point of view of in-
equality theory) can be found in the monographs [] and [].

Since we deal with quadrature formulae of Euler type, let us recall a few features of the
Bernoulli polynomials. The symbol Bk(s) denotes the Bernoulli polynomials, Bk = Bk()
the Bernoulli numbers, and B∗

k(s), k ≥ , periodic functions of period  defined by the
condition

B∗
k(s + ) = B∗

k(s), s ∈R,

and related to the Bernoulli polynomials as follows:

B∗
k(s) = Bk(s),  ≤ s < .

The Bernoulli polynomials Bk(s), k ≥ , are uniquely determined by the identities

B′
k(s) = kBk–(s), k ≥ ; B(s) = , Bk(s + ) – Bk(s) = ksk–, k ≥ .
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Further, B∗
(s) = , B∗

 (s) is a discontinuous function with a jump of – at each integer and
for k ≥ , B∗

k(s) are continuous functions. We get

B∗′
k (s) = kB∗

k–(s), k ≥ , ()

for every s ∈R when k ≥ , and for every s ∈R \ Z when k = , .
For some further details as regards Bernoulli polynomials, Bernoulli numbers and peri-

odic functions B∗
k , see [].

2 Main results
Let x ∈ [, /) and f : [, ] → R be such that f (n+) is a continuous function of bounded
variation on [, ] for some n ≥ . In [], the authors proved the following general three-
point quadrature formula of Euler type:

∫ 


f (s) ds – w(x)f (x) –

(
 – w(x)

)
f
(




)
– w(x)f ( – x) + Tn(x)

=


(n + )!

∫ 


Fn+(x, s) df (n+)(s), ()

where

Tn(x) =
n∑

k=


k!

Gk(x, )
[
f (k–)() – f (k–)()

]
, ()

Gk(x, s) = w(x)
[
B∗

k(x – s) + B∗
k( – x – s)

]
+

(
 – w(x)

)
B∗

k

(



– s
)

, k ≥ , ()

Fk(x, s) = Gk(x, s) – Gk(x, ), k ≥  ()

and s ∈R.
From the properties of the Bernoulli polynomials it easily follows that

Gk(x,  – s) = (–)kGk(x, s), s ∈ [, ],

∂Gk(x, s)
∂s

= –kGk–(x, s)

and Gk–(x, ) = , for k ≥  and for any choice of the weight w. In general Gk(x, ) 
= .
If we impose the condition G(x, ) =  the obtained formula will include the value of the

first derivative at the end points of the interval and is known in the literature as a corrected
quadrature formula. So, condition G(x, ) =  gives

w(x) =


(x – )(–x + x + )
, x ∈

[
,




)
. ()

Now, for f : [, ] →R such that f (n+) is a continuous function of bounded variation on
[, ] for some n ≥ , x ∈ [, /), () becomes

∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x) =


(n + )!

∫ 


FCQ

n+(x, s) df (n+)(s), ()
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where

QC

(
x,




,  – x
)

=


(x – )(–x + x + )

[
f (x) – B(x)f

(



)
+ f ( – x)

]
,

TCQ
n (x) =

n∑
k=


(k)!

GCQ
k (x, )

[
f (k–)() – f (k–)()

]

=
x – x + 

(–x + x + )
[
f ′() – f ′()

]

+
n∑

k=


(k)!

GCQ
k (x, )

[
f (k–)() – f (k–)()

]
,

GCQ
k (x, s) =


(x – )(–x + x + )

·
[

B∗
k(x – s) – B(x) · B∗

k

(



– s
)

+ B∗
k( – x – s)

]
, k ≥ ,

FCQ
k (x, s) = GCQ

k (x, s) – GCQ
k (x, ), k ≥  ()

and s ∈R.
Assuming f (n–) is a continuous function of bounded variation on [, ] for some n ≥ ,

then the following identity holds:

∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x) =


(n)!

∫ 


GCQ

n (x, s) df (n–)(s), ()

while assuming f (n) is a continuous function of bounded variation on [, ] for some n ≥ 
it follows that

∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x) =


(n + )!

∫ 


GCQ

n+(x, s) df (n)(s). ()

The identities (), (), () and the following lemma were proved in [], p..

Lemma  For x ∈ [, 
 –

√


 ) ∪ [ 
 , 

 ) and k ≥ , GCQ
k+(x, s) has no zeros in variable s on

the interval (, 
 ). The sign of this function is determined by

(–)k+GCQ
k+(x, s) > , for x ∈

[
,




–
√




)

and

(–)kGCQ
k+(x, s) > , for x ∈

[



,



)
.

Now, we can state some new Grüss type inequalities for the general corrected three-
point quadrature formulae of Euler type.
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Theorem  Let f : [, ] → R be such that f (n) is an absolutely continuous function for
some n ≥  and x ∈ [, /). Then the following equality holds:

∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x) = KCQ

n (f ) ()

and the remainder KCQ
n (f ) satisfies the inequality

∣∣KCQ
n (f )

∣∣

≤ 
(x – )(–x + x + )

[
–

(n)!

(
Bn + Bn( – x)

– ,B(x)Bn

(
x +




)
+ B

(x)Bn

)]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

For f : [, ] → R such that f (n+) is an absolutely continuous function for some n ≥  and
x ∈ [, /), the following representation holds:

∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x) = KCQ

n+(f ) ()

and the remainder KCQ
n+(f ) satisfies the inequality

∣∣KCQ
n+(f )

∣∣

≤ 
(x – )(–x + x + )

[


(n + )!

(
Bn+ + Bn+( – x)

– ,B(x)Bn+

(
x +




)
+ B

(x)Bn+

)]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

Proof Applying Theorem  with GCQ
k in place of f and f (k) in place of g we obtain

∣∣∣∣
∫ 


GCQ

k (x, s)f (k)(s) ds –
∫ 


GCQ

k (x, s) ds ·
∫ 


f (k)(s) ds

∣∣∣∣

≤ √

[
T

(
GCQ

k (x, ·), GCQ
k (x, ·))]/

[∫ 


s( – s)

(
f (k+)(s)

) ds
]/

, ()

where

T
(
GCQ

k (x, ·), GCQ
k (x, ·)) =

∫ 



(
GCQ

k (x, s)
) ds –

(∫ 


GCQ

k (x, s) ds
)

.

By elementary calculations we obtain

∫ 


GCQ

k (x, s) ds = . ()
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Using integration by parts we get

∫ 



(
GCQ

k (x, s)
) ds

= (–)k– k(k – ) · · ·
(k + )(k + ) · · · (k – )

·
[

–


k
GCQ

k (x, s)G(x, s)| +


k

∫ 


GCQ

k (x, s) dG(x, s)
]

=
(–)k–(k!)

(x – )(–x + x + )(k)!

·
[

(x – )(x – x – 
)∫ 


GCQ

k (x, s) ds

+ GCQ
k (x, x) – B(x)GCQ

k

(
x,




)
+ GCQ

k (x,  – x)
]

=
(–)k–(k!)

(x – )(–x + x + )(k)!

·
[

Bk + Bk( – x) – ,B(x)Bk

(
x +




)
+ B

(x)Bk

]
.

Finally, if we put k = n using () and (), we obtain representation () and inequality
(). Since, for k = n +  by () and (), representation () and estimate () follow. �

Remark  From () and () we get

∫ 


FCQ

k (x, s) ds =
∫ 


GCQ

k (x, s) ds –
∫ 


GCQ

k (x, ) ds = –GCQ
k (x, )

and
∫ 



(
FCQ

k (x, s)
)ds =

∫ 



(
GCQ

k (x, s)
) ds – GCQ

k (x, )
∫ 


GCQ

k (x, s) ds

+
(
GCQ

k (x, )
).

Further, if we put k = n +  in the proof of Theorem , using () similar to () (with
n ↔ n + ), we deduce equality () and bound ().

Corollary  Let f : [, ] → R be such that f (n+) is absolutely continuous for some n ≥ 
and f (n+) ≥  on [, ]. Then for x ∈ [ 

 , 
 ),

 ≤ (–)n
{∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x)

}

≤ 
(x – )(–x + x + )

[


(n + )!

(
Bn+ + Bn+( – x)

– ,B(x)Bn+

(
x +




)
+ B

(x)Bn+

)]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

, ()
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and for x ∈ [, 
 –

√


 ),

 ≤ (–)n+
{∫ 


f (s) ds – QC

(
x,




,  – x
)

+ TCQ
n (x)

}

≤ 
(x – )(–x + x + )

[


(n + )!

(
Bn+ + Bn+( – x)

– ,B(x)Bn+

(
x +




)
+ B

(x)Bn+

)]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

Proof We use Lemma , representation () and inequality () to obtain inequalities ()
and (). �

As special cases of Theorem  for x = , x = / and x = / we derive inequalities related
to the corrected Euler Simpson formula, the corrected dual Euler Simpson formula and
the corrected Euler Maclaurin formula, respectively.

Corollary  Let f : [, ] → R be such that f (n) is absolutely continuous for some n ≥ .
Then

∣∣∣∣
∫ 


f (s) ds –




[
f () + f

(



)
+ f ()

]
+ TCQ

n ()
∣∣∣∣

≤ 


[
–

 +  · –n

(n)!
Bn

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

If f (n+) is absolutely continuous for some n ≥  then

∣∣∣∣
∫ 


f (s) ds –




[
f () + f

(



)
+ f ()

]
+ TCQ

n ()
∣∣∣∣

≤ 


[
 +  · –n

(n + )!
Bn+

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

, ()

where TCQ
 () = , TCQ

 () = TCQ
 () = 

 [f ′() – f ′()] and for n ≥ ,

TCQ
n () =




[
f ′() – f ′()

]

+
n∑

k=


(k)!

(
– + –k)Bk

[
f (k–)() – f (k–)()

]
.

Remark  Specially, if f ′ is absolutely continuous then for n =  in Corollary , we derive

∣∣∣∣
∫ 


f (s) ds –




[
f () + f

(



)
+ f ()

]∣∣∣∣

≤ 


√



·
[∫ 


s( – s)

(
f ′′(s)

) ds
]/

.
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Further, if f ′′ is absolutely continuous then for n =  in Corollary  we obtain

∣∣∣∣
∫ 


f (s) ds –




[
f () + f

(



)
+ f ()

]
+




[
f ′() – f ′()

]∣∣∣∣

≤ 


√


·
[∫ 


s( – s)

(
f ′′′(s)

) ds
]/

.

Corollary  Let f : [, ] → R be such that f (n) is absolutely continuous for some n ≥ .
Then

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]
+ TCQ

n

(



)∣∣∣∣

≤ 


[
–

 +  · –n – –n

(n)!
Bn

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

If f (n+) is absolutely continuous for some n ≥  then

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]
+ TCQ

n

(



)∣∣∣∣

≤ 


[
 +  · –n – –n

(n + )!
Bn+

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

, ()

where TCQ
 ( 

 ) = , TCQ
 ( 

 ) = TCQ
 ( 

 ) = – 
 [f ′() – f ′()] and for n ≥ ,

TCQ
n

(



)
= –




[
f ′() – f ′()

]

+
n∑

k=


(k)!

(
–k –  · –k + 

)
Bk

[
f (k–)() – f (k–)()

]
.

Remark  If f ′ is absolutely continuous then for n =  in Corollary  we obtain

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]∣∣∣∣

≤ 


√



·
[∫ 


s( – s)

(
f ′′(s)

) ds
]/

.

If f ′′ is absolutely continuous then for n =  in Corollary  we get

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]
–




[
f ′() – f ′()

]∣∣∣∣

≤ 


√



·
[∫ 


s( – s)

(
f ′′′(s)

) ds
]/

.
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Corollary  Let f : [, ] → R be such that f (n) is absolutely continuous for some n ≥ .
Then

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
+ f

(



)
+ f

(



)]
+ TCQ

n

(



)∣∣∣∣

≤ 


[
–

 +  · –n

(n)!
Bn

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

If f (n+) is absolutely continuous for some n ≥  then

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
+ f

(



)
+ f

(



)]
+ TCQ

n

(



)∣∣∣∣

≤ 


[
 +  · –n

(n + )!
Bn+

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

, ()

where TCQ
 ( 

 ) = , TCQ
 ( 

 ) = TCQ
 ( 

 ) = – 
 [f ′() – f ′()] and for n ≥ ,

TCQ
n

(



)
= –




[
f ′() – f ′()

]

+
n∑

k=


(k)!

(
 – –k)( – –k)Bk

[
f (k–)() – f (k–)()

]
.

Remark  Specially, if f ′ is absolutely continuous then for n =  in Corollary  we obtain

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
+ f

(



)
+ f

(



)]∣∣∣∣

≤ 


√



·
[∫ 


s( – s)

(
f ′′(s)

) ds
]/

.

If f ′′ is absolutely continuous then for n =  in Corollary  we get

∣∣∣∣
∫ 


f (s) ds –




[
f

(



)
+ f

(



)
+ f

(



)]
–




[
f ′() – f ′()

]∣∣∣∣

≤ 


√


·
[∫ 


s( – s)

(
f ′′′(s)

) ds
]/

.

Here, as in the rest of the paper, the symbol [f (k); , ] denotes the divided difference of
the function f (k),

[
f (k); , 

]
= f (k)() – f (k)().

Theorem  Let f : [, ] → R be such that f (n) is an absolutely continuous function and
f (n+) ≥  on [, ]. Then representation () holds and the remainder KCQ

n (f ) satisfies the
following inequality:

∣∣KCQ
n (f )

∣∣ ≤ 
(n – )!

∥∥GCQ
n–(x, s)

∥∥∞

{
f (n–)() + f (n–)()


–

[
f (n–); , 

]}
. ()
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If f (n+) is an absolutely continuous function and f (n+) ≥  on [, ], then equality ()
holds and the remainder KQ

n+(f ) satisfies the inequality

∣∣KCQ
n+(f )

∣∣ ≤ 
(n)!

∥∥GCQ
n (x, s)

∥∥∞

{
f (n)() + f (n)()


–

[
f (n–); , 

]}
. ()

Proof Applying Theorem  with GCQ
n in place of f and f (n) in place of g we deduce

∣∣∣∣
∫ 


GCQ

n (x, s)f (n)(s) ds –
∫ 


GCQ

n (x, s) ds ·
∫ 


f (n)(s) ds

∣∣∣∣

≤ n


∥∥GCQ
n–(x, s)

∥∥∞

∫ 


s( – s)f (n+)(s) ds. ()

Further,

∫ 


s( – s)f (n+)(s) ds =

∫ 


(s – )f (n)(s) ds

= f (n–)() + f (n–)() – 
[
f (n–)() – f (n–)()

]
.

Finally, using equality () and inequality (), we obtain estimate (). Similarly, from
identity () we get inequality (). �

3 Applications for the corrected Euler Bullen-Simpson formula
In [], the author proved that if f : [, ] → R is a -convex function then the following
Bullen-Simpson inequality holds:

 ≤
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]

≤ 


[
f () + f

(



)
+ f ()

]
–

∫ 


f (s) ds. ()

In [] a generalisation of inequality () for a class of (k)-convex functions was estab-
lished.

Franjić and Pečarić in [] derived similar type inequalities by using the corrected
Simpson formula and the corrected dual Simpson formula. They proved that the corrected
dual Simpson quadrature rule is more accurate than the corrected Simpson quadrature
rule, that is,

 ≤
∫ 


f (s) ds –




[
f

(



)
– f

(



)
+ f

(



)]
–




[
f ′() – f ′()

]

≤ 


[
f () + f

(



)
+ f ()

]
–




[
f ′() – f ′()

]
–

∫ 


f (s) ds. ()

Also, they obtained a generalisation of inequality () for a class of (k)-convex functions.
Let us define

DC(, ) =




[
f () + f

(



)
+ f

(



)
+ f

(



)
+ f ()

]
.
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We consider the sequences of functions (GC
k (s))k≥ and (FC

k (s))k≥ defined by

GC
k (s) = B∗

k( – s) + B∗
k

(



– s
)

+ B∗
k

(



– s
)

+ B∗
k

(



– s
)

, s ∈ R

and

FC
k (s) = GC

k (s) – B̃k , s ∈R, ()

where

B̃k = Bk + Bk

(



)
+ Bk

(



)
+ Bk

(



)
.

By direct calculation we get B̃ = / and B̃ = B̃ = B̃ = . Further, it is easy to see that
B̃k– = , k ≥ .

For any function f : [, ] → R such that f (n–) exists on [, ] for some n ≥  we define
TC

 (f ) = TC
 (f ) = ,

TC
 (f ) = TC

 (f ) = TC
 (f ) = TC

 (f ) = –



[
f ′() – f ′()

]

and for m ≥ ,

TC
m(f ) = –




[
f ′() – f ′()

]

+




m/�∑
k=


(k)!

–k( – –k)Bk
[
f (k–)() – f (k–)()

]
. ()

In [], the authors established the following corrected Euler Bullen-Simpson formu-
lae.

Lemma  Let f : [, ] → R be such that f (n–) is a continuous function of bounded varia-
tion on [, ], for some n ≥ . Then

∫ 


f (s) ds = DC(, ) + TC

n (f ) + RC
n (f ) ()

and

∫ 


f (s) ds = DC(, ) + TC

n–(f ) + R̂C
n (f ), ()

where

RC
n (f ) =


(n!)

∫ 


GC

n (s) df (n–)(s)
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and

R̂C
n (f ) =


(n!)

∫ 


FC

n (s) df (n–)(s).

Using Theorem  for identity () we get the following Grüss type inequality.

Theorem  Let f : [, ] → R be such that f (n) is absolutely continuous for some n ≥ .
Then

∫ 


f (s) ds – DC(, ) – TC

n (f ) = KC
n (f ), ()

and the remainder KC
n (f ) satisfies the inequality

∣∣KC
n (f )

∣∣ ≤ 


[
(–)n–

(n)!
(
–n +  · –n)Bn

]/

·
[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

. ()

Proof Applying Theorem  for f → GC
n , g → f (n), we obtain

∣∣∣∣
∫ 


GC

n (s)f (n)(s) ds –
∫ 


GC

n (s) ds ·
∫ 


f (n)(s) ds

∣∣∣∣

≤ √

[
T

(
GC

n (·), GC
n (·))]/ ·

[∫ 


s( – s)

(
f (n+)(s)

) ds
]/

, ()

where

T
(
GC

n (·), GC
n (·)) =

∫ 



(
GC

n (s)
) ds –

[∫ 


GC

n (s) ds
]

.

Easily we get
∫ 

 GC
n (s) ds =  and using integration by parts we have

∫ 



(
GC

n (s)
) ds

= (–)n– n(n – ) · · ·
(n + )(n + ) · · · (n – )

[∫ 


GC

 (s)GC
n–(s) ds

]

= (–)n– (n!)

(n)!

[
–

∫ 


GC

n(s) ds + GC
n() + GC

n

(



)]

= (–)n– (n!)

(n)!

[
Bn + Bn

(



)
+ Bn

(



)]
.

Using () and (), we deduce representation () and bound (). �

Remark  Because of () we get

∫ 


FC

k (s) ds =
∫ 


GC

k (s) ds –
∫ 


B̃k ds = –B̃k ,
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and also

∫ 



(
FC

k (s)
) ds =

∫ 



(
GC

k (s)
) ds – B̃k

∫ 


GC

k (s) ds + B̃
k .

So, using (), similar to (), we obtain equality () and inequality (), too.

The following Grüss type inequality also holds.

Theorem  Let f : [, ] → R be such that f (n) is absolutely continuous and f (n+) ≥  on
[, ]. Then representation () holds and the remainder KC

n (f ) satisfies the bound

∣∣KC
n (f )

∣∣ ≤ 
(n – )!

∥∥GC
n–(s)

∥∥∞

{
f (n–)() + f (n–)()


–

[
f (n–); , 

]}
. ()

Proof Applying Theorem  for f → GC
n , g → f (n), we obtain

∣∣∣∣
∫ 


GC

n (s)f (n)(s) ds –
∫ 


GC

n (s) ds ·
∫ 


f (n)(s) ds

∣∣∣∣

≤ n

∥∥GC

n–(s)
∥∥∞

(∫ 


s( – s)f (n+)(s) ds

)
. ()

So, similar to Theorem , using representation () and inequality (), we deduce ().
�
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