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Abstract
In this paper, a kind of Schurer type q-Bernstein-Kantorovich operators is introduced.
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1 Introduction
In , Phillips [] introduced and studied q analogue of Bernstein polynomials. During
the last decade, the applications of q-calculus in the approximation theory have become
one of the main areas of research, q-calculus has been extensively used for constructing
various generalizations of many classical approximation processes. It is well known that
many q-extensions of the classical objects arising in the approximation theory have been
introduced and studied (e.g., see [–]). Very recently, the book Convergence Estimates
in Approximation Theory written by Gupta and Agarwal (see []) introduced some ap-
proximation properties of certain complex q-operators in compact disks. Also, the Stancu
variants of some q-operators have been recently discussed (e.g., see [–]).

The goal of this paper is to introduce a kind of Schurer type q-Bernstein-Kantorovich
operators and to study the approximation properties of these operators with the help of the
Korovkin type approximation theorem. We also estimate the rate of convergence of these
operators by using the modulus of continuity and the help of functions of the Lipschitz
class. Then, we give the global approximation property for these operators.

Throughout the paper, we use some basic definitions and notations of q-calculus which
can be found in Aral et al. [].

In the paper, C is a positive constant. In different places, the value of C may be different.
For f ∈ C[a, b], we denote ‖f ‖ = max{|f (x)| : x ∈ [a, b]}.

2 Construction of the operators
Let p ∈ N ∪ {} be fixed. In , Schurer [] introduced and studied the linear posi-
tive operators Bn,p : C[,  + p] → C[, ] defined for any n ∈ N and any f ∈ C[,  + p] as
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follows:

Bn,p(f ; x) =
n+p∑

k=

(
n + p

k

)
xk( – x)n+p–kf (k/n), x ∈ [, ].

In , Muraru [] introduced and studied the following q-Bernstein-Schurer opera-
tors for any fixed p ∈ N ∪ {}:

Bn,p(f ; q; x) =
n+p∑

k=

Pn+p,k(q; x)f
(
[k]q/[n]q

)
,

where Pn+p,k(q; x) :=
[ n+p

k
]

qxk( – x)n+p–k
q and f ∈ C[,  + p], x ∈ [, ], n ∈ N,  < q < .

The moments of these operators Bn,p(f ; q; x) were obtained as follows (see []).

Remark  For Bn,p(tj; q; x), j = , , , we have

Bn,p(; q; x) = , Bn,p(t; q; x) =
[n + p]qx

[n]q
,

Bn,p
(
t; q; x

)
=

[n + p]q

[n]
q

(
[n + p]qx + x( – x)

)
.

In , Mahmudov and Sabancigil [] defined q-Bernstein-Kantorovich operators as
follows:

B∗
n,q(f , x) =

n∑

k=

Pn,k(q; x)
∫ 


f
(

[k]q + qkt
[n + ]q

)
dqt,

where Pn,k(q; x) :=
[ n

k
]

qxk( – x)n–k
q and f ∈ C[, ], x ∈ [, ], n ∈ N,  < q < .

Inspired by the operators above, we introduce a kind of Schurer type q-Bernstein-
Kantorovich operators as follows.

Let f ∈ C[,  + p] and p ∈ N ∪ {} be fixed. For x ∈ [, ], n ∈ N,  < q < , we define the
Schurer type q-Bernstein-Kantorovich operators by

Sn,p(f ; q; x) =
n+p∑

k=

Pn+p,k(q; x)
∫ 


f
(

[k]q + qkt
[n + ]q

)
dqt, ()

where

Pn+p,k(q; x) =

[
n + p

k

]

q

xk( – x)n+p–k
q .

In , Özarslan and Vedi [] introduced the q-Bernstein-Schurer-Kantorovich oper-
ators Kp

n . Comparing the results of our present paper with [], we find that the literature
[] only estimated the rate of convergence in the pointwise sense for these operators Kp

n .
In the present paper, we not only estimate the rate of convergence in the pointwise sense,
but also give the global approximation for these operators Sn,p defined by (), and about the
estimate of the rate of convergence in the pointwise sense for these operators Sn,p, we get
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some new results, which are different from those in []. As regards [], the q-Bernstein-
Schurer-Stancu-Kantorovich operators K (α,β)

n,q were introduced. When α = β = , these
operators K (α,β)

n,q defined by [] are reduced to K (,)
n,q , which are q-Bernstein-Schurer-

Kantorovich type operators, but these operators K (,)
n,q are quite different from operators

Sn,p defined by (), and our research work is different from that in [], where statistical
approximation properties were studied for K (α,β)

n,q .
Now, we give some lemmas, which are necessary to prove our results.

Lemma  Let p ∈ N ∪{} be fixed. For any m ∈ N ∪{}, n ∈ N, x ∈ [, ],  < q < , we have

Sn,p
(
tm; q; x

)
=

m∑

j=

(
m
j

)
[n]j

q

[n + ]m
q [m +  – j]q

m–j∑

i=

(
m – j

i

)
(
qn – 

)iBn,p
(
tj+i; q; x

)
.

Proof When  < q < , we have qk –  = [k]q(q – ), so

Sn,p
(
tm; q; x

)

=
n+p∑

k=

Pn+p,k(q; x)
m∑

j=

∫ 



(
m
j

)
[k]j

qqk(m–j)tm–j

[n + ]m
q

dqt

=
n+p∑

k=

Pn+p,k(q; x)
m∑

j=

(
m
j

)
[k]j

qqk(m–j)

[n + ]m
q [m +  – j]q

=
m∑

j=

(
m
j

)
[n]j

q

[n + ]m
q [m +  – j]q

n+p∑

k=

(
qk –  + 

)m–j [k]j
q

[n]j
q

Pn+p,k(q; x)

=
m∑

j=

(
m
j

)
[n]j

q

[n + ]m
q [m +  – j]q

n+p∑

k=

m–j∑

l=

(
m – j

i

)
(
qk – 

)i [k]j
q

[n]j
q

Pn+p,k(q; x)

=
m∑

j=

(
m
j

)
[n]j

q

[n + ]m
q [m +  – j]q

m–j∑

i=

(
m – j

i

)
(
qn – 

)i
n+p∑

k=

[k]j+i
q

[n]j+i
q

Pn+p,k(q; x)

=
m∑

j=

(
m
j

)
[n]j

q

[n + ]m
q [m +  – j]q

m–j∑

i=

(
m – j

i

)
(
qn – 

)iBn,p
(
tj+i; q; x

)
.

�

Lemma  For Sn,p(ti; q; x), i = , , , we have

(i) Sn,p(; q; x) = ;

(ii) Sn,p(t; q; x) =
q[n + p]q

[]q[n + ]q
x +


[]q[n + ]q

;

(iii) Sn,p
(
t; q; x

)
=

(q + q + q)q[n + p – ]q[n + p]qx

[]q[]q[n + ]
q

+
(q + q + q)[n + p]qx

[]q[]q[n + ]
q

+


[]q[n + ]
q

.

Proof (i) For i = , since
∑n

k= Pn,k(q; x) = ,
∫ 

 dqt = ( – q)
∑∞

j= qj = , by () we can get
Sn,p(; q; x) = .
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In view of Lemma  and Remark , by direct computation, we obtain explicit formulas
for Sn,p(ti; q; x), i = ,  as follows.

Sn,p(t; q; x) =


[]q[n + ]q

(
Bn,p(; q; x) +

(
qn – 

)
Bn,p(t; q; x)

)
+

[n]q

[n + ]q
Bn,p(t; q; x)

=
(

qn – 
[]q[n + ]q

+
[n]q

[n + ]q

)
[n + p]qx

[n]q
+


[]q[n + ]q

=
q[n + p]q

[]q[n + ]q
x +


[]q[n + ]q

,

Sn,p
(
t; q; x

)

=


[]q[n + ]
q

(
Bn,p(; q; x) + 

(
qn – 

)
Bn,p(t; q; x)

+
(
qn – 

)Bn,p
(
t; q; x

))
+

[n]q

[]q[n + ]
q

(
Bn,p(t; q; x)

+
(
qn – 

)
Bn,p

(
t; q; x

))
+

[n]
q

[n + ]
q

Bn,p
(
t; q; x

)

=
(

(qn – )

[]q[n + ]
q

+
[n]q(qn – )
[]q[n + ]

q
+

[n]
q

[n + ]
q

)
q[n + p – ]q[n + p]q

[n]
q

x

+
(

(qn – )
[]q[n + ]

q
+

(qn – )

[]q[n]q[n + ]
q

+
[n]q

[]q[n + ]
q

+
[n]q(qn – )

[]q[n]q[n + ]
q

+
[n]

q

[n]q[n + ]
q

)
[n + p]q

[n]q
x +


[]q[n + ]

q

=
(q + q + q)q[n + p – ]q[n + p]qx

[]q[]q[n + ]
q

+
(q + q + q)[n + p]qx

[]q[]q[n + ]
q

+


[]q[n + ]
q

. �

Lemma  Let p ∈ N ∪ {} be fixed. For x ∈ [, ], n ∈ N,  < q < , we have

Bn,p
(
(t – x); q; x

)
= x

(
[n + p]q

[n]q
– 

)

+ x( – x)
[n + p]q

[n]
q

.

Proof For x ∈ [, ], n ∈ N,  < q < , by Remark , we have

Bn,p
(
(t – x); q; x

)
= Bn,p

(
t; q; x

)
– xBn,p(t; q; x) + x

=
[n + p]q

[n]
q

(
[n + p]qx + x( – x)

)
–

[n + p]qx

[n]q
+ x

= x
(

[n + p]q

[n]q
– 

)

+ x( – x)
[n + p]q

[n]
q

. �

Lemma  Let p ∈ N ∪ {} be fixed. For any n ∈ N, x ∈ [, ] and  < q < , we have

(i) Sn,p(t – x; q; x) =
([p]q – )qn+ – 

[]q[n + ]q
x +


[]q[n + ]q

;
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(ii) Sn,p
(
(t – x); q; x

) ≤ 
[n]q

(
x( – x) +

([p]q + )

[n]q

)
.

Proof (i) In view of [n + p]q = [n]q + qn[p]q, [n + ]q = [n]q + qn, by Lemma , we can easily
obtain

Sn,p(t – x; q; x) =
(

q[n + p]q

[]q[n + ]q
– 

)
x +


[]q[n + ]q

=
([p]q – )qn+ – 

[]q[n + ]q
x +


[]q[n + ]q

.

(ii) For p ∈ N ∪{} and any n ∈ N, using Remark , Lemma  and [n + p]q = [n]q + qn[p]q,
we have

Sn,p
(
(t – x); q; x

)

=
n+p∑

k=

Pn+p,k(q; x)
∫ 



(
[k]q + qkt
[n + ]q

– x
)

dqt

=
n+p∑

k=

Pn+p,k(q; x)
∫ 



(
qkt

[n + ]q
–

qn[k]q

[n]q[n + ]q
+

[k]q

[n]q
– x

)

dqt

≤ 
n+p∑

k=

Pn+p,k(q; x)
∫ 



(
qkt

[n + ]q
–

qn[k]q

[n]q[n + ]q

)

dqt

+ 
n+p∑

k=

Pn+p,k(q; x)
∫ 



(
[k]q

[n]q
– x

)

dqt

≤ 
[n + ] Bn,p

(
t; q; x

)
+ 

n+p∑

k=

Pn+p,k(q; x)
∫ 

 t dqt
[n + ] + Bn,p

(
(t – x); q; x

)

≤ 
[n]q

(
x( – x) +

([p]q + )

[n]q

)
. �

Lemma  For f ∈ C[,  + p], x ∈ [, ] and n ∈ N, we have

∣∣Sn,p(f ; q; x)
∣∣ ≤ ‖f ‖.

Proof In view of the definition given by () and Lemma , we have

∣∣Sn,p(f ; q; x)
∣∣ ≤ Sn,p(; q; x)‖f ‖ = ‖f ‖. �

Let W  = {g ∈ C[,  + p] : g ′, g ′′ ∈ C[,  + p]}. For δ > , f ∈ C[,  + p], the Peetre’s K-
functional is defined as

K(f , δ) = inf
{‖f – g‖ + δ

∥∥g ′′∥∥ : g ∈ W }. ()

Let δ > , f ∈ C[,  + p], the second order modulus of smoothness for f is defined as

ω(f ,
√

δ) = sup
<h≤√

δ

sup
x,x+h∈[,+p]

∣∣f (x + h) – f (x + h) + f (x)
∣∣,
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the usual modulus of continuity for f is defined as

ω(f , δ) = sup
<h≤δ

sup
x,x+h∈[,+p]

∣∣f (x + h) – f (x)
∣∣.

For f ∈ C[,  + p], following [], p., Theorem ., there exists a constant C >  such
that

K(f , δ) ≤ Cω(f ,
√

δ). ()

3 Main results
Firstly we give the following convergence theorem for the sequence {Sn,p(f ; q)}.

Theorem  Let qn ∈ (, ). Then the sequence {Sn,p(f ; qn)} converges to f uniformly on [, ]
for any f ∈ C[,  + p] if and only if limn→∞ qn = .

Proof Let qn ∈ (, ) and limn→∞ qn = , we have [n]qn → ∞ as n → ∞ (see []). Thus, by
Lemma , we have limn→∞ ‖̃Sn,p(ej; qn; ·) – ej‖C[,] =  for ej(x) = xj, j = , , . According
to the well-known Bohman-Korovkin theorem [], p., Theorem ., we get that the
sequence {̃Sn,p(f ; qn)} converges to f uniformly on [, ] for any f ∈ C[,  + p].

We prove the converse result by contradiction. If {qn} does not tend to  as n → ∞, then
it must contain a subsequence {qnk } ⊂ (, ) such that limk→∞ qnk = q ∈ [, ). Thus

lim
k→∞


[nk]qnk

= lim
k→∞

 – qnk

 – (qnk )nk
=  – q.

Taking n = nk , q = qnk in Sn,p(t; q; x), by Lemma  we get

Snk ,p(t; qnk ; x) =
qnk [nk + p]qnk

[]qnk
[nk + ]qnk

x +


[]qnk
[nk + ]qnk

→  – q + qx
 + q

�= x, as k → ∞.

This leads to a contradiction, hence limn→∞ qn = . The theorem is proved. �

Next we estimate the rate of convergence.

Theorem  Let f ∈ C[,  + p], x ∈ [, ], q ∈ (, ), we have |Sn,p(f ; q; x) – f (x)| ≤
ω(f , δn(x)), where

δn(x) =
[


[n]q

(
x( – x) +

([p]q + )

[n]q

)]/

. ()

Proof By Lemma  we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣ =

∣∣Sn,p
(
f (t) – f (x); q; x

)∣∣ ≤ Sn,p
(∣∣f (t) – f (x)

∣∣; q; x
)
.

Since for t ∈ [,  + p], x ∈ [, ] and any δ >  we have

∣∣f (t) – f (x)
∣∣ ≤ (

 + δ–(t – x))ω(f , δ),
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we get

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ [

Sn,p(; q; x) + δ–Sn,p
(
(t – x); q; x

)]
ω(f , δ).

By Lemma  and Lemma , for x ∈ [, ], we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ (

 + δ–δ
n(x)

)
ω(f , δ).

Taking δ = δn(x), from the above inequality we obtain the desired result. �

Corollary  Let M > ,  < α ≤ , f ∈ Lipα
M on [,  + p], q ∈ (, ), we have

∥∥Sn,p(f ; q; ·) – f
∥∥

C[,] ≤ Mηα
n ,

where

ηn =
[


[n]q

(
 +

([p]q + )

[n]q

)]/

. ()

Proof Let M > ,  < α ≤ , f ∈ Lipα
M on [,  + p], we have f ∈ C[,  + p]. For any δ > ,

since f ∈ Lipα
M is equivalent to ω(f , δ) ≤ Mδα , thus, by Theorem , for x ∈ [, ], we have

|Sn,p(f ; q; x) – f (x)| ≤ ω(f , δn(x)) ≤ Mδα
n (x) ≤ Mηα

n , where δn(x) and ηn are given in ()
and (), respectively, which implies the proof is complete. �

Theorem  Let f ∈ C[,  + p], x ∈ [, ], q ∈ (, ), we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ Cω

(
f , δn(x)

)
+ ω

(
f ,

∣∣∣∣
(([p]q – )qn+ – )x + 

[]q[n + ]q

∣∣∣∣

)
,

where C is a positive constant, δn(x) is given by ().

Proof For f ∈ C[,  + p], x ∈ [, ], we define

Ŝn,p(f ; q; x) = Sn,p(f ; q; x) + f (x) – f (anx + bn), ()

where an = q[n+p]q
[]q[n+]q

, bn = 
[]q[n+]q

. By Lemma  we get Ŝn,p(; q; x) = , Ŝn,p(t; q; x) = x. Let
g ∈ W , t ∈ [,  + p], x ∈ [, ], by Taylor’s formula, we obtain

Ŝn,p(g; q; x) = g(x) + Ŝn,p

(∫ t

x
(t – u)g ′′(u) du; q; x

)
.

Using the inequality (a – b) ≤ (a + b), we have

Sn,p
(
(t – x); q; x

)
+ (anx + bn – x)

≤ 
[n]q

(
x( – x) +

([p]q + )

[n]q

)
+

( – [p]q + [p]
q)

[n]
q

x +


[n]
q

≤ δ
n(x), ()
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so, by the definition given by () and Lemma , for x ∈ [, ], we have

∣∣̂Sn,p(g; q; x) – g(x)
∣∣

≤
∣∣∣∣Sn,p

(∫ t

x
(t – u)g ′′(u) du; q; x

)∣∣∣∣ +
∣∣∣∣
∫ anx+bn

x
(anx + bn – u)g ′′(u) du

∣∣∣∣

≤ Sn,p

(∣∣∣∣
∫ t

x
|t – u|∣∣g ′′(u)

∣∣du
∣∣∣∣; q; x

)
+

∣∣∣∣
∫ anx+bn

x
|anx + bn – u|∣∣g ′′(u)

∣∣du
∣∣∣∣

≤ [
Sn,p

(
(t – x); q; x

)
+ (anx + bn – x)]∥∥g ′′∥∥

≤ δ
n(x)

∥∥g ′′∥∥.

On the other hand, by the definition given by () and Lemma , we have

∣∣̂Sn,p(f ; q; x)
∣∣ ≤ ∣∣Sn,p(f ; q; x)

∣∣ + ‖f ‖ ≤ ‖f ‖. ()

Thus, for x ∈ [, ], using Lemma (i), we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣

≤ ∣∣̂Sn,p(f – g; q; x)
∣∣ +

∣∣̂Sn,p(g; q; x) – g(x)
∣∣ +

∣∣g(x) – f (x)
∣∣ +

∣∣f (anx + bn) – f (x)
∣∣

≤ ‖f – g‖ + δ
n(x)

∥∥g ′′∥∥ + ω

(
f ,

∣∣∣∣
(([p]q – )qn+ – )x + 

[]q[n + ]q

∣∣∣∣

)
.

Hence, taking infimum on the right-hand side over all g ∈ W , we can get

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ K

(
f , δ

n(x)
)

+ ω

(
f ,

∣∣∣∣
(([p]q – )qn+ – )x + 

[]q[n + ]q

∣∣∣∣

)
.

By inequality (), for every q ∈ (, ), we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ Cω

(
f , δn(x)

)
+ ω

(
f ,

∣∣∣∣
(([p]q – )qn+ – )x + 

[]q[n + ]q

∣∣∣∣

)
. �

Theorem  Let f ∈ C[,  + p], x ∈ [, ], q ∈ (, ), we have

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ ∥∥f ′∥∥

∣∣∣∣
([p]q – )qn+ – 

[]q[n + ]q
x +


[]q[n + ]q

∣∣∣∣

+ δn(x)ω
(
f ′, δn(x)

)
,

where ‖f ′‖ = max{|f ′(x)|; x ∈ [,  + p]}, δn(x) is given by ().

Proof Let f ∈ C[,  + p], for any t ∈ [,  + p], x ∈ [, ] and δ > , we get

∣∣f (t) – f (x) – f ′(x)(t – x)
∣∣ ≤

∣∣∣∣
∫ t

x

∣∣f ′(u) – f ′(x)
∣∣du

∣∣∣∣

≤ ω
(
f ′, |t – x|)|t – x|

≤ ω
(
f ′, δ

)(|t – x| + δ–(t – x)),



Ren and Zeng Journal of Inequalities and Applications  (2015) 2015:82 Page 9 of 12

hence

∣∣Sn,p
(
f (t) – f (x) – f ′(x)(t – x); q; x

)∣∣

≤ ω
(
f ′, δ

)(
Sn,p

(|t – x|; q; x
)

+ δ–Sn,p
(
(t – x); q; x

))
.

By using the Cauchy-Schwarz inequality, we have

∣∣Sn,p
(
f (t) – f (x) – f ′(x)(t – x); q; x

)∣∣

≤ ω
(
f ′, δ

)(√
Sn,p(; q; x) + δ–

√
Sn,p

(
(t – x); q; x

))√
Sn,p

(
(t – x); q; x

)
.

Thus, by Lemma  and Lemma , for x ∈ [, ], we can get

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ ∥∥f ′∥∥

∣∣∣∣
([p]q – )qn+ – 

[]q[n + ]q
x +


[]q[n + ]q

∣∣∣∣

+ ω
(
f ′, δ

)(
 + δ–δn(x)

)
δn(x).

Taking δ = δn(x), then from the above inequality we obtain the desired result.
Finally we give the global approximation for the sequence {Sn,p(f ; q)}. For the next theo-

rem we shall use some notations.
For f ∈ C[,  + p] and ϕ(x) =

√
x( – x), x ∈ [, ], let

ω
ϕ
 (f ,

√
η) = sup

<h≤√
η

sup
x±hϕ(x)∈[,+p]

∣∣f
(
x + hϕ(x)

)
– f (x) + f

(
x – hϕ(x)

)∣∣

be the second order Ditzian-Totik modulus of smoothness, and let

K,ϕ(f ,η) = inf
{‖f – g‖ + η

∥∥ϕg ′′∥∥ + η∥∥g ′′∥∥ : g ∈ W (ϕ)
}

be the corresponding K-functional, where W (ϕ) = {g ∈ C[,  + p] : g ′ ∈ ACloc[,  +
p],ϕg ′′ ∈ C[,  + p]} and g ′ ∈ ACloc[,  + p] means that g is differentiable and g ′ is ab-
solutely continuous on every closed interval [a, b] ⊆ [,  + p]. It is well known (see [],
p., Theorem ..) that

K,ϕ(f ,η) ≤ Cω
ϕ
 (f ,

√
η) ()

for some absolute constant C > .
Furthermore, the Ditzian-Totik modulus of first order is given by

–→ω ψ (f ,η) = sup
<h≤η

sup
x,x+hψ∈[,+p]

∣∣f
(
x + hψ(x)

)
– f (x)

∣∣, ()

where ψ is an admissible step-weight function on [, ]. �

Now we state our next main result.
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Theorem  Let {Sn,p(f ; q)} be defined by (). Then there exists an absolute constant C > 
such that

∥∥Sn,p(f ; q; ·) – f
∥∥ ≤ Cω

ϕ


(
f ,

√


[n]q

)
+ –→ω ψ

(
f ;


[n]q

)
,

where f ∈ C[,  + p],  < q < , ϕ(x) =
√

x( – x) and ψ(x) = ( + |[p]q – |)x + , x ∈ [, ].

Proof Let

Ŝn,p(f ; q; x) = Sn,p(f ; q; x) + f (x) – f (anx + bn),

where f ∈ C[,  + p], an = q[n+p]q
[]q[n+]q

, bn = 
[]q[n+]q

. Let g ∈ W (ϕ), t ∈ [,  + p], x ∈ [, ],
by using Taylor’s formula, we have

Ŝn,p(g; q; x) = g(x) + Sn,p

(∫ t

x
(t – u)g ′′(u) du; q; x

)
–

∫ anx+bn

x
(anx + bn – u)g ′′(u) du.

Hence

∣∣̂Sn,p(g; q; x) – g(x)
∣∣ ≤

∣∣∣∣Sn,p

(∫ t

x
(t – u)g ′′(u) du; q; x

)∣∣∣∣

+
∣∣∣∣
∫ anx+bn

x
(anx + bn – u)g ′′(u) du

∣∣∣∣. ()

Let λ
n(x) = ϕ(x) + ([p]q+)

[n]q
, because the function λn is concave on [, ], we have for

u = t + τ (x – t), τ ∈ [, ], the estimate

|t – u|
λ

n(u)
≤ τ |x – t|

λ
n(t) + τ (λ

n(x) – λ
n(t))

≤ |x – t|
λ

n(x)
.

Hence, by () we have

∣∣̂Sn,p(g; q; x) – g(x)
∣∣

≤ 
λ

n(x)
Sn,p

(
(t – x); q; x

)∥∥λ
ng ′′∥∥ +


λ

n(x)
(anx + bn – x)∥∥λ

ng ′′∥∥.

In view of () and ‖λ
ng ′′‖ ≤ ‖ϕg ′′‖ + ([p]q+)

[n]q
‖g ′′‖, for x ∈ [, ], we have

∣∣̂Sn,p(g; q; x) – g(x)
∣∣ ≤ 

[n]q

(∥∥ϕg ′′∥∥ +
([p]q + )

[n]q

∥∥g ′′∥∥
)

.

Using (), for f ∈ C[,  + p], we find

∣∣Sn,p(f ; q; x) – f (x)
∣∣

≤ ‖f – g‖ +


[n]q

(∥∥ϕg ′′∥∥ +
([p]q + )

[n]q

∥∥g ′′∥∥
)

+
∣∣f (anx + bn) – f (x)

∣∣.
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Taking the infimum on the right-hand side over all g ∈ W (ϕ), we obtain

∣∣Sn,p(f ; q; x) – f (x)
∣∣ ≤ 

(
[p]q + 

)K,ϕ

(
f ,


[n]q

)
+

∣∣f (anx + bn) – f (x)
∣∣.

On the other hand, by () we have

∣∣f (anx + bn) – f (x)
∣∣

=
∣∣∣∣f

(
x + ψ(x)

(
(an – )x + bn

ψ(x)

))
– f (x)

∣∣∣∣

≤ sup
t,t+ψ(t)( (an–)x+bn

ψ(x) )∈[,+p]

∣∣∣∣f
(

t + ψ(t)
(

(an – )x + bn

ψ(x)

))
– f (t)

∣∣∣∣

≤ –→ω ψ

(
f ;

∣∣∣∣
(an – )x + bn

ψ(x)

∣∣∣∣

)

≤ –→ω ψ

(
f ;


[n]q

)
,

so, using () we obtain

∥∥Sn,p(f ; q) – f
∥∥ ≤ Cω

ϕ


(
f ,

√


[n]q

)
+ –→ω ψ

(
f ;


[n]q

)
. �
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