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Abstract

As is well known, the diagonal-Schur complements of strictly diagonally dominant
matrices are strictly diagonally dominant. In this paper, we verify the block
diagonal-Schur complements of I-block strictly doubly diagonally dominant matrices
are |-block strictly doubly diagonally dominant matrices, the same is true for ll-block
strictly doubly diagonally dominant matrices. The theoretical analysis is supported by
numerical experiments.
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1 Introduction

The Schur complements and the diagonal-Schur complements have appeared to be use-
ful tools in the study of matrix theory (see e.g., [1-3]), linear control theory (see e.g., [4]),
numerical analysis (see e.g., [5-9]) and statistics (see e.g., [10, 11]), and so on. At the same
time, given a matrix family, it is always interesting to see whether some important prop-
erties or structures of the family of matrices are inherited by the submatrices or by the
matrices associated with the original matrices. These heritable properties have been used
for the convergence of iterations in numerical analysis (see e.g., [12]).

A great deal of classic works on the relationships of the Schur complements and the
diagonal-Schur complements with the original matrices have been contributed, for a com-
plete survey of these works we refer to (see e.g., [12]). As is shown in [1, 2], the Schur com-
plements of positive semidefinite matrices are positive semidefinite and the Schur comple-
ments of strictly diagonally dominant matrices are strictly diagonally dominant, the same
is true for M-matrices, H-matrices, inverse M-matrices, strictly doubly diagonally dom-
inant matrices and generalized strictly diagonally dominant. In addition, Liu and Huang
[3] proposed that the diagonal-Schur complements of strictly diagonally dominant matri-
ces are strictly diagonally dominant, the same is true for strictly y-diagonally dominant
matrices and strictly product y -diagonally dominant matrices.

As regards the block matrix, the concept of a diagonally dominant matrix is extended
and two kinds of block diagonally dominant matrices are proposed, i.e., I-block diagonally
dominant matrices [13] and II-block diagonally dominant matrices [13]. Later, on the ba-
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sis of previous works, two kinds of generalized block strictly diagonally dominant matri-
ces are also presented, in other words, I-block H-matrices [14] and II-block H-matrices
[15]. Based on the above results, it is easy to see that a block diagonally dominant ma-
trix is not always a diagonally dominant matrix; an example is given in [16], (2.6). Sub-
sequently, Zhang et al. [17] showed that the Schur complement of I-(generalized) block
diagonally dominant matrix is I-(generalized) block diagonally dominant, the same is true
for II-(generalized) block diagonally dominant matrix.

Let C"*" be the set of all n x n complex matrices. Suppose A € C"*",N ={1,2,...,n},and
|| equals the cardinality of «. For nonempty index sets «, 8 € N, we denote by A(«, 8) the
submatrix of A € C"*” lying in the rows indicated by « and the columns indicated by g.
The submatrix A(x, ) is abbreviated to A(a). Let 7 be the transpose of the vector x and
I, be the n x n unit matrix.

Let A = (a;) € C"™". An n x n matrix A is strictly diagonally dominant (abbreviated
SD,), if

la;| > Pi(A), Pi(A)= Z lagl, i=12,...,n.
joLi

An n x n matrix A is strictly generalized diagonally dominant (abbreviated SGD,,), if
there exists D = diag(ds,...,d,) > 0, such that AD is strictly diagonally dominant.
An n x n matrix A is strictly doubly diagonally dominant (abbreviated SDD,,), if

|laiaj| > Pi(A)Pi(A), V1<i<j<n.

An n x n matrix A is generalized strictly doubly diagonally dominant (abbreviated
SGDDJVYI’NZ), with N; UN; = N, Ny NN, =, and ¢ denoting the empty set, for all i € Ny
and j € Ny, if

(lairl = i) (lay] = &) > v;8s,
where

Vs = Z |ast|’ 85: Z |ﬂst|y WithS:iorj.

teNy,t#s teNy,t#s

Let R"*" be the set of all # x n real matrices. For A = (a;) € R"*" and B = (b;;) € R™*", we
write A > B, if a; > b;; for all i, j. A real n x n matrix A is called an M-matrix if A = sI - B,
where s > 0, B> 0, and s > p(B), p(B) is the spectral radius of B. Let M,, denote the set of
n X n M-matrices.

Suppose A € C"™, the comparison matrix p(A) = (u;), is defined by

_|"ZL'1'|: i?/j’
Mij = .
|atj|¢ 1=].

A complex n x n matrix A is called an H-matrix if (A) € M,. By H, is denoted the set of
n X n H-matrices.

In this paper, we propose the concept of the block diagonal-Schur complement on block
matrices and study the properties on the diagonal-Schur complement of two kinds of (gen-
eralized) block doubly diagonally dominant matrices.
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2 Definitions and lemmas
Consider an 7 x n complex matrix A. Let s (1 < s < n) be an arbitrary natural number and
A be partitioned into the following form:

A(alral) A(Oll,Olz) e A(ah as)
Aoy, 1) Alag,ap) -+ Ao, @)

A= . . . . ) 1)
Alag, 1) Alas, o) -+ Ao, o)

where o = @ and

i-1 i s
=Y ol +1,., ) ol fy i=1,2,8 ) |l =mn,
t=0 t=0 t=0

with A(wy, o) being a |a;| X |o;| nonsingular principal submatrix of A, t=1,2,...,s.

Let C*" be the set of all s x s block matrices in C"*" partitioned as (1). Suppose
A = (Ao, 00))sxs € CI*" and let N(A) = (|[A(as, aim)l)sxs denote the norm matrix of block
matrix A.

Leta C N, «¢ =N — «, and A(«) be nonsingular. The Schur complement of A(x) in A is
defined by

AJA(@) = Ala = A(a) - A%, @) [A@)] A, o), 2)
and the block diagonal-Schur complement of A(«) in A is defined by

AlLA(@) = Aloa = A(a) - {A(e%,@)[A@)] " A(a,a€)} 0 E(w), 3)
where ‘o’ denotes the Kronecker product symbol and

a=o; Ua;, U---Ua, a‘=a; Ua, U---Uaj,

<< - <ipji<ja<---<jrk+l=s,

—

Ej

!

Q

Lo
—
—
—

Eq = . ) Eq, = Lo ,

Joe | Jet|

withi=1,2,...,s.

Definition 2.1 [13] Let A = (A(a, 0))sxs € C/7" and Aoy, ) (= 1,2,...,5) be nonsingu-
lar. If

, Viles, (4)

A en] ™[> DAl e
m=1

m#l

then A is an I-block strictly diagonally dominant matrix (abbreviated I-BSDj).
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Definition 2.2 [13] Let A = (A(ot, 00))sxs € C" and A(a, ) (I=1,2,...,5) be nonsin-
gular. If

ZH (o, 00)] Al am)|| <1, Vies, (5)

m;!l
then A is an II-block strictly diagonally dominant matrix (abbreviated II-BSDj).
Definition 2.3 [5] Let A = (A(a, @m))sxs € C" and Ao, ) (I=1,2,...,5) be nonsingu-

lar. For 1 <i<j <s, if and only if

(6)

At e]™ | [ty o] Z||A<a,,am)||z||A(a,,

m#z m;’/

then A is an I-block strictly doubly diagonally dominant matrix (abbreviated I-BSDD;).

Definition 2.4 [5] Let A = (A(as, 0m))sxs € C2*" and Ao, ) (I=1,2,...,s) be nonsingu-
lar. For 1 <i<j <s, if and only if

ZH ()] A(auam)HZH [Ae) )] Al )] <1, @)

Wl'y/l m;/]

then A is an II-block strictly doubly diagonally dominant matrix (abbreviated II-BSDDj).

Lemma 2.1 [5] Let A = (A(ay, 06))sxs € C™ be an 11-BSDD;. Then DA is an 1-BSDD;,
where D = diag(A(ay, o), A, o), ..., Ao, ).

Remark 2.1 [5] If A is an I-BSD; (or I-BSDDj), according to the following inequality:

| A ) Al @) || < [ Al o) ||| Ales, 8)

then A is an II-BSD; (or II-BSDDj).

Definition 2.5 [14, 15] Let A = (A(a, o))sxs € C" and A, 04) (I=1,2,...,5) be non-
singular. If the comparison matrices of block matrix A, u(A) = (wym) € R*** or puy(A) =
(w1,m) € R®** is an M-matrix, respectively, where

- A, eI, ifl=m,
" -1Anan)l,  ifl#m,

1, ifl = m,
Oy = = .
_H [A((X[,Ol])] A((X[,Olm)”, if/ #Wl,

then A is called an I-block H-matrix or an II-block H-matrix.

Lemma 2.2 [13] Let A = (A(as, m))sxs € I-(1I-) block H-matrix. Then A is nonsingular.
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Remark 2.2 If A is an [-(II-)BSD; or an I-(II-)BSDDy, by (4)-(7), then w;(A) (or pi(A))
is an M-matrix. Further, by Definition 2.5 and Lemma 2.2, then A is a nonsingular I-(II-)
block H-matrix.

Lemma 2.3 [15] IfA € SD,,SDD,,,SGD,, or SGDDN'™N2. Then 1u(A) is an M-matrix, i.e.,
A is an H-matrix.

Lemma 2.4 [1] Let A € C"™". If |A|| <1, then I, — A is nonsingular and

-1
where I, denotes the n x n identity matrix.
Lemma 2.5 [18] Let A = (A(oy, a,))sxs € I-(11-)BSDy. Forall t =1,2,...,1, then

Aloy, 05,)
Yp=1- [A(ozjt,ot/t)]fl (A(a,-t,ot,-l), . ..,A(a,t,aik)) [1"1(0()]71 > 0.

A(Otik,Olj[)

3 On block diagonal-Schur complement of I-(1I-)BSDD;
In this section, to verify the heritable properties of the block diagonal-Schur complements
from the original matrix I-BSDD; and I-BSDDj;, we only need to consider two cases as
follows:

(1) If A is an I-BSDD; but is not an [-BSD;, by Definition 2.3, there exists one and only
one index iy, A(e;,, o) being nonsingular and such that

I[A@iy, @i)] | < Py (A). )

(2) If A is an II-BSDD; but not an II-BSDj, by Definition 2.4, there exists one and only
one index iy, A(e;,,o;,) being nonsingular and satisfying

ZH alﬂ’alo (al()’ar ” > 1. (10)

Theorem 3.1 Let A be an n x n 1-BSDD; but be not an n x n 1-BSDy, and iy (1 < iy <s)
satisfy the condition in (9). For any index set « C N, writinga = a; U, U -+ Uy, and
a=a; Uay, U---Uaj, with k + [ =s, then:

(i) Ifay, S o, then Al,a € I-BSD;.

(i) Ifa;, S af, then Aloa € I-BSDD;.

Proof Without loss of generality, we can assume A/« = (Ao, ;) and denote

Aoy, j,)
@, = (Al a), .., Aley,, @) [Al@)] : )

Alay,, a,)
] ajv)”)T’
W, =K, - /L[{[A(Ol)] } wr Yo=K, - {/L][A(Ol)]} H,, withw,v=tu.

Kw = (”A(Oljw, Ol,'1

’ H, = (”A(ail’a'u
) j

O[l‘k
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By the definition of the block diagonal-Schur complement (3), denote |a;, | = /;. Accord-

ing to Remark 2.2, we obtain ||[A(c),,, a/w)]‘IQDw I <1, = ¢, u. Further, consider the follow-
ing two cases:

(i) If oty < o, then
|[Ana)]™ Z | A o)
r7’t

i
= ” {A(ait’aiz) - q)f}_l H_l - ZHA(ait’O‘ir)

r=
r#t

l

= {5, - [A0i )] @} [Aloy )] 7 - D Al )
r=1
r#t

> {1~ [Ag )] @ | [ [Aleg )] ZIIA(%»%) ||

r#t

1
> {1- [ [l )] @ H [Als )] 7 - D Aty )

r;t

= At )] 1™ = [TA 0] |7 [l )] <I>tH—ZHA %> )

r;!t

!
> | (At )] = [TAG )] | [t )] [0ell = 3 Aley )]

r=1
r#t
- —1
= ” [A(aiz’a}t Z“A(Ol;p%, v,
r#t
= ” [A(ait’alt Z”A(ah,a/r Yoo
r#t
A det31
det[ser(A())]’
where
A, o) = 0, A, @) —K;
Bl = r#t .
-H, pilAe)]

Since A is an I-BSDD;, o, € @, and Vo, € o,

“[A(O‘}'t’alz - _1 Z”A(O‘lt'alr

r;’t

> Z“A(a,t,alr
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ForVo; Ca,x=1,2,...,k, if iy # iy, then

s k
Al )] 7> Y A @) | =Y Al @) + A, )],
Il j
s s

if i, = ip, by Definition 2.3 and the inequality (9), we have

(OliO, Olio)]_l ||_1

” [A(O‘Jr’ O‘/z Z ”A aj,» tj,)

r-7/t

= (At )] A o)~ | [Alergr )] AZM%%r

r;’t
s s s l
> Y A @) | YAl )| = Y[, )] DAl e;)
::;jt r‘;io rr;io ;;t
s [ s
= {ZHA(%%)H - Al ;) } > A, o)
s o 7o
k k
. ZHA(aﬁ,a,»n{an%,amn - }
r=1 r=1
irio

Thus, B; € SDDy,;. Further, by Lemma 2.3, we have By = u(B;) € My, and u;[A(a)] €
M. Therefore, det(B;) > 0 and det[u;(A(x))] > 0, ie.,

Al.a € I-BSD;.

(ii) If oy C ¢, for Ve, u =1,2,...,0 and t # u, we have

[ [Ater o] |7 [Alerwren)] | Z||A<anar>||ZIIA )|
r;’t r;’u

- Ao - o) A - @)

- Z ”A(a]t’a]r) || Z ||A(a]u’a/r) ||

r?'t r;z’u
= ” {Ifz - [A(“iz'a/t)] q)t}_l [A(“it’aiz)]
x [ {1, - [Al@}, )] @u} Al )] 7|
1 1
=D _lA@i ) YA, )
r;/t r;u

> {1 - [A )] @ 7 - [A, )]

-1 ”—1

-1 -1 ||—1

-1

-1 -1

)|
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X ” [A(O‘fw“iz)]il ||71 H [A O‘lwa/u Z”A(“w“/r Z“A(“Ju'“/r
r#t r;/u

> 1= [[Alir0)] " @ H1 - {4l 3)] " @}

x| [Alee)] |7 [A @ )] ZIIA(%% ZHA(%%
r;/t ry’u

> {1- [ )] 11 - [[Ali 5] [ I10l])
! )
x| [Ales )] | I[A@ )] 7 = Y At )| Y [Ale, o)
:;t :;u
= (I [A )] = e I[A, )] = el
[ !
- A, )] DA, )
vt i
> {[A@ )] 7 = W[ [Aley )] - W}

- Z”A a/t’alr Z”A a/u’alr

r#t r#u

> {[[A@0)] | = Yl [A@a)] [ - T

- Z ”A(a/t’a/r Z ”A(a/u’alr

"?’t r;z’u
= ([ [A@ )] |7 = Y} { [ )] = Y}
!
- Z||A(ajt,a,,>|| + Tm} [ZIIA(%W + Y
o o
a_ detB
~ det[p(A)(@)]
where
A, a1 - A, ) K
r#t
By=| - A, )l A, 0] =K,
r#u
—H; —-H, wr(A)(er)

Since A is an I-BSDDy, o, € @® and o), C o, 0 = £, u,

At A )T > YAt 3 Ae a0

r#jt r#ju
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ForVo;, Ca,x=1,2,...,k and o, S, w=t,u,

TG 0] | At 000

k s
Shalies |
r=1 r=1

r#x r#jw

+ | Al o) || + | Ay @3,)

and

k
[[Ates )] > {leA(aix,ai» + Al 0] + Al e }
r=1

r#x

Thus, By € SDDy,,. Further, by Lemma 2.3, we have By = (1(By) € My, and p;[A(e)] €
M. Therefore, det(B;) > 0 and det[u;(A)(«)] > 0, ie.,

Al.a € I-BSDD;.

Combining the proof of (i) and (ii), we complete the proof of Theorem 3.1. d

Theorem 3.2 Let A be an n x n II-BSDD; but be not an n x n II-BSDy, and iy (1 < iy <s)
satisfy the condition in (10). For any index set « C N, writing a = oy Uat;, U -+ - U oy, and
af=o Uay, U---Uaj, with k + 1 = s, then:

(i) Ifoy, S o, then Al € I1-BSDy,

(i) Ifai, S af, then Al.a € II-BSDD;.

Proof Without loss of generality, we can assume A/, = (A(ay, @,)), and we denote

Alayy, )
D, = (Ala,, @), -, Ale,, a;)) [Al@)] ™ : ,

Al o)

[A(Ol]'w, C(il)]_lA(Ol}'w,Oll'k) ),

[A (0{[1 » &y )]JA (aik’ Olj,u) ” ) T’

K, = (|[Aley,, )] Aley, )

yeeey

H, = (” [A(ail’ ai1)]71A(Olip @j,)

Dl = diag(A(aiI,(in), e ,A(aikraik))’

ooy

Y, =Kyl [A@] "D} - Hoy  Yow =Ko {uu[A@)]D'} - Ho,

with w,v = ¢, u.

i) If @;, C «, according to the proof of Theorem 3.1(i), for V¢ € «¢, we obtain
(i) If o, g p

I
1- Z || [A(at’ at)]_lg(at’ Qfr) ||
o
i
=1- ZH [A(aiﬂait) - q)t]_lA(aijljr)

r=1
r#t
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=1- Z” I - A(aﬂ,oth] CID,}J[A(a,'t,ajt)]flA(ajt,ajr)
r#t

>1- Z” I/z a/z’alt ] t}_l ” ” [A(a}-t,ozh)]_lA(ajt,a/r)
r;ﬂ

>1- > {1- |[Al, )] @} [Aley )] Al ) |

|

r#t

= (1= [l 05)] @]}

- H [A(aiz’alt q)t” - ZH a/z’alt A(Ot,'t,otj,)

r#t

!
> (1= [[Ali0)] | }'1{1 =T~ _[[[Aw@, )] Al )

r=1
r#t

det 133
(1 = A, )11 @, ) det[em(A) (@)]

>

where

1- 30 A, ) Al ) K
133 = r#t .
-H, wi(A) (@)
Since A is an II-BSDDy, «;, € o, and o, € o,
! k

1- Y[ [Als )] Al o) | > D[ [Ale )] Al 3, .

r=1 r=1

r#t

ForVo; Ca,x=1,2,...,k, if iy # iy, then

k
I [A(aix:aix)]_lA(aix¢ )| + Z I [A(aixvaix)]_lA(aix’ai,)

r=1
r#x

< > [l e)] Al )] <1
r%&x
if iy = iy, by Definition 2.4 and the inequality (10), we have
I
1= ) [[[Ater )] Aleys)]
r;%

z1- le (e e)] Al )| 3 [[Alery )] Alery )|
r=1

r7@ rio

|

Page 10 of 18
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k
>Z”[A(a’“a’f Al ) Z” 0‘1070‘10 A(aio’ar)H
! V#lo
k
z Z ” [A (Otj[, ait)]_lA(a/z’ ajr)
r=1
||[ alo,alo Alaiy, o, || +ZH a,o,alo Ao, a;,)
tr#to

Thus, B3 € SDDy,;. Further, by Lemma 2.3, we obtain Bs = u(B;) € My, and puy[A(e)] €
M. Therefore, det(B3) > 0 and det[u;;(A(«))] > 0, i.e.,

Al.a € II-BSD;.

(ii) If oy, € o, for Vt,u € o, with t,u =1,2,...,1, t # u, we obtain

1 !
1- Z || [A(at: at)]_lg(a“ ar) H Z ” [A(au’ au)]_lg(aw ar) ”

r=1

r=1
r#t r#u
! 1 ! 1
=1- Z” [A(a/t’ait) - q)f]_ A(ait’ajr) ” Z” [A(a/u’aju) - (D”]_ A(a/u’air) ”
r=1
r#t

r#u

=1- Z” I - A(a,t,oth] @,}71[A(a/t,oz,-t)]flA(ajt,ajr)
r#t

X ZH I]u A(Ol/u,otlu ] lq)u}_l[A(Olju,()l/u)]_lA(Ol/u,Oljr)
r;lu

>1- Z”{Ifz Alay,, aj, ]

r;z’t

@ )7 | [[Aler )] Al )|

X ZH I, - A(ot,u,a}u ]

} H ||[ a/u’alu ] A(aju’a/r)
o

< > (1= [Aj )] @u]} 7 [Alg )] Al )]

= {1= [[AGi0)] @} {1~ [l 0)] @]}

x 3 [1= [[AG )] @ 111~ [[Ali 05,)] @]
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|

> {1- |[A 0] @ |} {1 - | [Alr )] @4 }‘l{u = Yu)1 = Y

)

_E :” a/t’a}t Alwj,, @) E ” a/u’a]u Ao, @)

V#t r-f‘u

[Z H (e, O‘}: Alay,, )

+Tfu]|:2” (e, )] Al @)

r#t r#u

= {1 (A o)) @} {1 - | [Ale o] @uf]}

A det By

~ det[py(A)(@)]

where
1 —st —I<[ l
By = _Su 1 =K, ’ Ew = ZH [A(C(jw,()t/w)]_lA(Oljw, a]’,)Hr
-Hy -H, pp(A)(@) Yo

with w = ¢, u.
Since A is an II-BSDDy, «;, € @, and @j, C o, w = t,u,

S
Z” [A(ajt,a,ft A(a]t,a,) Z” oz,u,ot,u A(a/u,oz,) || <1

r#je rﬁu

ForVo;, Ca,x=1,2,...,k, and oj, Ca’, w=1t,u.

{Zn o) )

r#x

+ [ [Al, 0] Alei, )]

S
+ || [Ay, @)]  Alesy, ) | } > I[Ale,@,)] Aley, @) <1.
r=1
4w

For Vo, Ca,withx=1,2,...,k,

{ E H azxr alx alxl air)

r#x

+ [l )] Al 0]

+ | [A(aixfaix)]_lA(aix’a/t)||} <1

Thus, B4 € SDDg,,. Further, by Lemma 2.3, we have By = i(Bs) € My,2, wi[A(a)] € M.
Therefore, det(B,) > 0 and det[u;(A)(«)] > 0, i.e.,

Al.a € II-BSDD;.

Combining the proof of (i) and (ii), we complete this proof. O
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4 Numerical examples

In this section, we use two numerical examples to verify the accuracy of the theoretical
analysis, from two aspects of the iteration number (denoted by IT) and the solution time in
seconds (denoted by CPU), and then we further illustrate the feasibility and effectiveness
of PGMSS(J) [19] iteration method, and verify the superiority of PGMSS iteration method
is more efficient than that of the ordinary GMRES(/) iteration method. Here, we use the
integer / in GMRES(/) to denote the number of restarting steps.

In our numerical experiments, we choose the zero vector as the initial guess and take
the right-hand-side vector & so that the exact solutions x and y are the unity vectors with
all entries equal to one. In addition, all runs are initiated with the initial vector ¥ = 0.
We use

15— AxN |l

RES=—— "2 1078
b —AxO |,

or the prescribed iteration number k. = 7 as a stopping criterion, where x* is the solu-
tion at the kth iterate.

For convenience, without loss of generality, we suppose || - || = || - ||, @ = Ule a;, and
of = Ule aj,, and we denote the block diagonal-Schur complement A/,A(c) of A(e) in A
by

Ay Ap Ap
Al A(@)=|An Axn A
Azl Az Az

Let us consider the following linear system:

(A(Ot,Ol) A(O[,Olc)> (aq) <b1>
Ax = = .
Al a) A(afaf)) \x, b,

By solving the above linear system, we compare GMRES iteration method with the block
triangular approximate Schur complement preconditioner (11) established in this paper
with the ordinary GMRES iteration method. We have

p = <A(“’a) ) . (11)
At a) Al A(x)

In the following, we verify Theorem 3.1 and Theorem 3.2 by Example 4.1 and Exam-
ple 4.2, respectively.

Example 4.1 Consider a linear equation system Ax = b whose coefficient matrix A is de-
noted by

An An A Au A
An Ax Ay Ajn Az
A=Az Az Az Az Ass |,
Ag A Agz Aw Ags
As1 Asy Asz Asy Ass
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where the submatrices of the coefficient matrix A take on structures of the forms

150 -50
-50 150 -50
An = . . . ’
=50 150/ 55,50
1,500 -50
-50 1,500 -50
A = ,
-50 1500/,
1,500 -50
-50 1,500 -50
Asz = ,
-50 1500/,
1,500 -50
-50 1,500 -50
A44 = . . . ’
-50 1500/ _
-30 -50
A12 = . . . 4 AIS = . . . ’
=30 20%20 -50 20x15
-30 -30
A34 = . . . ’ A13 = . . . ’
-30 30x15 =30 20%30
and
-20 -20
A45 = . . . ’
-20 -20 15x15

with Agq = Ass, AL = A1y, Aa = A1s = Agy = Ags = ALy = AL = AL = AL, AL, = Ays, AL =
Asy = AL = Ass,and Af = Ay = AL, = Ans.

Tt and s; = 30, [|Aunll, with i =1,2,..., 5. After programming

m#i
and computation by the use of Matlab software, from Table 1, it is straightforward to show

that the matrix A is an I-BSDD; but is not an I-BSD.

We suppose ¢; = ||[A;]
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Table 1 The experimental verification of I-BSDDg

i 1 2 3 4 5

t-s;  -108.88  124x10° 397x10® 123x10° 123x10°
(i.j) (1,2) 1,3) 1,4) (1,5) (2,3)
GG-sis; 46x 10 524x 10 445x 107 445x 10" 194 x 10°
(i,j) (2,4) (2,5) (3,4) (3,5) (4,5)

GG-sisi 1.94x 105 194x10°  1.94x10° 194x 105 194 x 10°

Table 2 The experimental verification of I-BSD;

i 1 2 3
-5 1,341 1332 1332
TH-3% 196x 106 1.96x 10° 196 x 10°

Table 3 The experimental verification of I-BSD;

i 1 2 3

-5 -8.8985 1,341 1,341
TS5 68x10 68x10% 196 x 10°

Table 4 Number of iterations and solution time in seconds of PGMRES(/) iteration method
with preconditioner P; and the ordinary GMRES(/) iteration method, where & = {1, 2}

] 30 40 50 60 70 80 90

PGMRES() CPU 00106 00015 00024 00018 00014 00024 00015
T 4 4 4 4 4 4 4

GMRES() ~ CPU 00046 00054 00042 00018 00042 00156  0.0048
T 23 23 23 23 23 23 23

To verify the heritable properties of the block diagonal-Schur complements from the
original matrix I-BSDDy, we need to consider two conditions iy € « and iy € «¢, where i is
defined in (9). From Table 1, it is easy to see iy = 1. Firstly, we consider the condition iy € & =
(1,2} and o€ = {3,4,5), and assume % = ||[A;]"}]|"! and5; = > 14;]l, with i = 1,2,3, as

mi
follows from Table 2, we can easily see that the block diagonal-Schur complement A/,A(x)

of A(x) in A is an I-BSDy; thereby, we verify the conclusion (i) of Theorem 3.1. Secondly,
we consider the condition iy € «¢ = {1,2,3} and « = {4,5}, and assume Z; = || [Zﬁ]’lﬂ’l and

S = Zi’”:l 1 4;]l, with i = 1,2,3, as follows from Table 3, we can easily see that the block
m#i
diagonal-Schur complement A/,A(x) of A(x) in A is an [-BSDD; but is not an I-BSDj,

accordingly, we validate the conclusion (ii) of Theorem 3.1.

Table 4, for Example 4.1, lists the numerical results corresponding to the tolerance € =
1078, it means that the block diagonal Schur-based GMRES iteration method with the
preconditioner P; is more efficient than the ordinary GMRES(/) iteration method.
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Example 4.2 Consider a linear equation system Ax = b whose coefficient matrix A is de-

noted by

A
Az
Asq
Agq
Asy

where the submatrices of the coefficient matrix A take on structures of the forms

and

An =

Aga

Azy =

Ags =

-50

100 -50
-50 100
1,800 -50
-50 1,800
1,410 -40
-40 1,420
1,800 -50
-50 1,800
-30

-30

-20

-20

-50 100

-50

-40

-50

-30

-30

-20

-20

20%20

-50 1,800

-40 1,700

-50 1,800

20x20

30x15

15x15

20%20

30x30

15x15

-50

-50 20x15

-30

-30 20%30
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Table 5 The experimental verification of I-BSDDg

i 1 2 3 4 5

i 10.12 0.089 0.085 0.095 0.095
(irj) (1,2) (1,3) (1,4) (1,5) (2,3)
9] 0.9005 0.8622 0.9568 0.9568 0.0076
(i,j) (2,4) (2,5) (3,4) (3,5) (4,5)
Gigj 0.0084 0.0084 0.0081 0.0081 0.0089

Table 6 The experimental verification of [I-BSDD;

i 1 2 3
i 0.0432  0.0401  0.0401
53, 00017 00017 00016

Table 7 The experimental verification of 1I-BSDD;

i 1 2 3

S 4.0235 00334 0.0426
S 01345 01715 00014

Table 8 Number of iterations and solution time in seconds of PGMRES(/) iteration method
with preconditioner 71 and GMRES(/) iteration method

I 30 40 50 60 70 80 90

PGMRES() CPU 00021 00026 00016 00016 00033 00021 00016
T 4 4 4 4 4 4 4

GMRES()  CPU 00096 00159 00197 00141 0019 00186 00176
T 27 25 24 53 53 53 53

with Agy = Ass, A] = Aig, Al = Ais = Ass = Aps = AL = AL, = AL, = AL, AL, = Aus, AL =
A34 = Ag;’ = ASS, and A3T1 = A13 = A:{z :Azg.

After programming and computation by the use of Matlab software, denoting ¢; =

an:l I[A;] Asnll, with i =1,2,...,5, from Table 5, it is straightforward to show that the
m#i
matrix A is an II-BSDD; but is not an II-BSD;.

To verify the heritable properties of the block diagonal-Schur complements from the
original matrix II-BSDD;, we need to consider two conditions iy € & and iy € @¢, where
io is defined in (10). From the first line of Table 5, it is easy to see that iy = 1. Firstly, we

consider the condition iy € @ = {1,2} and «¢ = {3,4,5}, and assumes; = anq 1A Al
mi
with i =1,2,3, as follows from Table 6, we can easily see that the block diagonal-Schur

complement A/,A(«) of A(x) in A is an [-BSD;, therefore, we verify the result (i) of The-
orem 3.2. Secondly, we consider the condition iy € a = {1,2,3} and « = {4,5}, and as-

sume’s; = anzl [I [Z,',']‘lzim |, with i = 1,2, 3, as follows from Table 7, we can easily see that
mi
the block diagonal-Schur complement A/,A(«) of A(x) in A is an II-BSDD; but is not an

II-BSDq, accordingly, we validate the result (ii) of Theorem 3.2.
Table 8, for Example 4.2, lists the numerical results corresponding to the tolerance € =
1078, it means that the block diagonal Schur-based GMRES(/) iteration method with the
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preconditioner P; is more efficient than the ordinary GMRES(/) iteration method, where
o ={1,2}.

5 Conclusions

In this paper, the heritable properties of the block diagonal-Schur complements from the
original matrix are presented. Numerical experiments further indicate the practical per-
formance.

One of the advantages of the study of the heritable properties is that it is possible to
estimate the sharp bounds of the eigenvalues of the original matrix and the correspond-
ing block diagonal-Schur complements. Thereby we believe that the techniques presented
here can be used to develop robust and efficient Schur complement preconditioning tech-

niques for solving linear systems.
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