New inequalities for the Hadamard product of an M-matrix and its inverse

Fu-bin Chen ${ }^{*}$

"Correspondence:
chenfubinyn@163.com Department of Engineering, Oxbridge College, Kunming University of Science and Technology, Kunming, Yunnan 650106, P.R. China

Abstract

For the Hadamard product $A \circ A^{-1}$ of an M-matrix A and its inverse A^{-1}, some new inequalities for the minimum eigenvalue of $A \circ A^{-1}$ are derived. Numerical example is given to show that the inequalities are better than some known results. MSC: 15A06; 15A18; 15A48 Keywords: M-matrix; Hadamard product; inequality; eigenvalue

1 Introduction

The set of all $n \times n$ real matrices is denoted by $\mathbb{R}^{n \times n}$, and $\mathbb{C}^{n \times n}$ denotes the set of all $n \times n$ complex matrices.

A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called an M-matrix [1] if there exists a nonnegative matrix B and a nonnegative real number λ such that

$$
A=\lambda I-B, \quad \lambda \geq \rho(B),
$$

where I is an identity matrix, $\rho(B)$ is a spectral radius of the matrix B. If $\lambda=\rho(B)$, then A is a singular M-matrix; if $\lambda>\rho(B)$, then A is called a nonsingular M-matrix. Denote by M_{n} the set of all $n \times n$ nonsingular M-matrices. Let us denote

$$
\tau(A)=\min \{\operatorname{Re}(\lambda): \lambda \in \sigma(A)\}
$$

and $\sigma(A)$ denotes the spectrum of A. It is known that [2] $\tau(A)=\frac{1}{\rho\left(A^{-1}\right)}$ is a positive real eigenvalue of $A \in M_{n}$.

The Hadamard product of two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ is the matrix $A \circ B=\left(a_{i j} b_{i j}\right)$. If A and B are M-matrices, then it is proved in [3] that $A \circ B^{-1}$ is also an M-matrix.

A matrix A is irreducible if there does not exist any permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right],
$$

where A_{11} and A_{22} are square matrices.

[^0]For convenience, for any positive integer n, N denotes the set $\{1,2, \ldots, n\}$. Let $A=\left(a_{i j}\right) \in$ $\mathbb{R}^{n \times n}$ be a strictly diagonally dominant by row, for any $i \in N$, denote

$$
\begin{aligned}
& R_{i}=\sum_{k \neq i}\left|a_{i k}\right|, \quad C_{i}=\sum_{k \neq i}\left|a_{k i}\right|, \quad d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, \quad c_{i}=\frac{C_{i}}{\left|a_{i i}\right|}, \quad i \in N ; \\
& s_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}, \quad j \neq i, j \in N ; \quad s_{i}=\max _{j \neq i}\left\{s_{i j}\right\}, \quad i \in N ; \\
& m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{\left|a_{j j}\right|}, \quad j \neq i, j \in N ; \quad m_{i}=\max _{j \neq i}\left\{m_{i j}\right\}, \quad i \in N .
\end{aligned}
$$

Recently, some lower bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse have been proposed. Let $A \in M_{n}$, it was proved in [4] that

$$
0<\tau\left(A \circ A^{-1}\right) \leq 1 .
$$

Subsequently, Fiedler and Markham [3] gave a lower bound on $\tau\left(A \circ A^{-1}\right)$,

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{1}{n}
$$

and conjectured that

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n} .
$$

Chen [5], Song [6] and Yong [7] have independently proved this conjecture.
In [8], Li et al. gave the following result:

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} .
$$

Furthermore, if $a_{11}=a_{22}=\cdots=a_{n n}$, they have obtained

$$
\min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} \geq \frac{2}{n}
$$

In this paper, we present some new lower bounds for $\tau\left(A \circ A^{-1}\right)$. These bounds improve the results in [8-11].

2 Preliminaries and notations

In this section, we give some lemmas that involve inequalities for the entries of A^{-1}. They will be useful in the following proofs.

Lemma 2.1 [7] If $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is a strictly row diagonally dominant matrix, that is,

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \quad i \in N,
$$

then $A^{-1}=\left(b_{i j}\right)$ exists, and

$$
\left|b_{j i}\right| \leq \frac{\sum_{k \neq j}\left|a_{j k}\right|}{\left|a_{j j}\right|}\left|b_{i i}\right|, \quad j \neq i
$$

Lemma 2.2 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant M-matrix by row. Then, for $A^{-1}=\left(b_{i j}\right)$, we have

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} b_{i i} \leq m_{j} b_{i i}, \quad j \neq i, i \in N
$$

Proof For $i \in N$, let

$$
d_{k}(\varepsilon)=\frac{\sum_{l \neq k}\left|a_{k l}\right|+\varepsilon}{a_{k k}}
$$

and

$$
s_{j i}(\varepsilon)=\frac{\left|a_{j i}\right|+\left(\sum_{k \neq j, i}\left|a_{j k}\right|+\varepsilon\right) d_{k}(\varepsilon)}{\left|a_{j j}\right|}, \quad j \neq i .
$$

Since A is strictly diagonally dominant, then $0<d_{k}<1$ and $0<s_{j i}<1$. Therefore, there exists $\varepsilon>0$ such that $0<d_{k}(\varepsilon)<1$ and $0<s_{j i}(\varepsilon)<1$. For any $i \in N$, let

$$
S_{i}(\varepsilon)=\operatorname{diag}\left(s_{1 i}(\varepsilon), \ldots, s_{i-1, i}(\varepsilon), 1, s_{i+1, i}(\varepsilon), \ldots, s_{n i}(\varepsilon)\right)
$$

Obviously, the matrix $A S_{i}(\varepsilon)$ is also a strictly diagonally dominant M-matrix by row. Therefore, by Lemma 2.1, we derive the following inequality:

$$
\frac{b_{j i}}{s_{j i}(\varepsilon)} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}(\varepsilon)}{s_{j i}(\varepsilon) a_{j j}} b_{i i}, \quad j \neq i, j \in N
$$

i.e.,

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}(\varepsilon)}{a_{j j}} b_{i i}, \quad j \neq i, j \in N
$$

Let $\varepsilon \longrightarrow 0$ to obtain

$$
\left|b_{j i}\right| \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} b_{i i} \leq m_{j} b_{i i}, \quad j \neq i, i \in N
$$

This proof is completed.

Lemma 2.3 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a strictly row diagonally dominant M-matrix. Then, for $A^{-1}=\left(b_{i j}\right)$, we have

$$
\frac{1}{a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| m_{j i}} \geq b_{i i} \geq \frac{1}{a_{i i}}, \quad i \in N
$$

Proof Let $B=A^{-1}$. Since A is an M-matrix, then $B \geq 0$. By $A B=I$, we have

$$
1=\sum_{j=1}^{n} a_{i j} b_{j i}=a_{i i} b_{i i}-\sum_{j \neq i}\left|a_{i j}\right| b_{j i}, \quad i \in N .
$$

Hence

$$
a_{i i} b_{i i} \geq 1, \quad i \in N
$$

that is,

$$
b_{i i} \geq \frac{1}{a_{i i}}, \quad i \in N
$$

By Lemma 2.2, we have

$$
\begin{aligned}
1 & =a_{i i} b_{i i}-\sum_{j \neq i}\left|a_{i j}\right| b_{j i} \\
& \geq a_{i i} b_{i i}-\sum_{j \neq i}\left|a_{i j}\right| \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} b_{i i} \\
& =\left(a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| m_{j i}\right) b_{i i} \\
& \frac{1}{a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| m_{j i}} \geq b_{i i}, \quad i \in N .
\end{aligned}
$$

i.e.,

Thus the proof is completed.

Lemma 2.4 [12] If A^{-1} is a doubly stochastic matrix, then $A e=e, A^{T} e=e$, where $e=$ $(1,1, \ldots, 1)^{T}$.

Lemma 2.5 [13] Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ and $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then all the eigenvalues of A lie in the region

$$
\bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{z \in C:\left|z-a_{i i}\right|\left|z-a_{j j}\right| \leq\left(x_{i} \sum_{k \neq i} \frac{1}{x_{k}}\left|a_{k i}\right|\right)\left(x_{j} \sum_{k \neq j} \frac{1}{x_{k}}\left|a_{k j}\right|\right)\right\} .
$$

Lemma 2.6 [3] If P is an irreducible M-matrix, and $P z \geq k z$ for a nonnegative nonzero vector z, then $\tau(P) \geq k$.

3 Main results

In this section, we give two new lower bounds for $\tau\left(A \circ A^{-1}\right)$ which improve some previous results.

Theorem 3.1 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an M-matrix, and suppose that $A^{-1}=\left(b_{i j}\right)$ is doubly stochastic. Then

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} m_{j i}}, \quad i \in N
$$

Proof Since A^{-1} is doubly stochastic and A is an M-matrix, by Lemma 2.4, we have

$$
a_{i i}=\sum_{k \neq i}\left|a_{i k}\right|+1=\sum_{k \neq i}\left|a_{k i}\right|+1, \quad i \in N
$$

and

$$
b_{i i}+\sum_{j \neq i} b_{j i}=1, \quad i \in N
$$

The matrix A is strictly diagonally dominant by row. Then, by Lemma 2.2 , for $i \in N$, we have

$$
\begin{aligned}
1 & =b_{i i}+\sum_{j \neq i} b_{j i} \leq b_{i i}+\sum_{j \neq i} \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} b_{i i} \\
& =\left(1+\sum_{j \neq i} \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}}\right) b_{i i} \\
& =\left(1+\sum_{j \neq i} m_{j i}\right) b_{i i}
\end{aligned}
$$

i.e.,

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} m_{j i}}, \quad i \in N
$$

This proof is completed.

Theorem 3.2 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an M-matrix, and let $A^{-1}=\left(b_{i j}\right)$ be doubly stochastic. Then

$$
\begin{align*}
\tau\left(A \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} b_{i i}+a_{i j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{i j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\} . \tag{3.1}
\end{align*}
$$

Proof It is evident that (3.1) is an equality for $n=1$.
We next assume that $n \geq 2$.
Firstly, we assume that A^{-1} is irreducible. By Lemma 2.4, we have

$$
a_{i i}=\sum_{j \neq i}\left|a_{i j}\right|+1=\sum_{j \neq i}\left|a_{j i}\right|+1, \quad i \in N,
$$

and

$$
a_{i i}>1, \quad i \in N .
$$

Let

$$
m_{j}=\max _{i \neq j}\left\{m_{j i}\right\}=\max _{i \neq j}\left\{\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}}\right\}, \quad j \in N .
$$

Since A is an irreducible matrix, then $0<m_{j} \leq 1$. Let $\tau\left(A \circ A^{-1}\right)=\lambda$, so that $0<\lambda<a_{i i} b_{i i}$, $i \in N$. Thus, by Lemma 2.5 , there is a pair (i, j) of positive integers with $i \neq j$ such that

$$
\begin{align*}
\left|\lambda-a_{i i} b_{i i}\right|\left|\lambda-a_{j j} b_{j j}\right| & \leq\left(m_{i} \sum_{k \neq i} \frac{1}{m_{k}}\left|a_{k i} b_{k i}\right|\right)\left(m_{j} \sum_{k \neq j} \frac{1}{m_{k}}\left|a_{k j} b_{k j}\right|\right) \\
& \leq\left(m_{i} \sum_{k \neq i} \frac{1}{m_{k}}\left|a_{k i}\right| m_{k} b_{i i}\right)\left(m_{j} \sum_{k \neq i} \frac{1}{m_{k}}\left|a_{k j}\right| m_{k} b_{j j}\right) \\
& =\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right) \tag{3.2}
\end{align*}
$$

From inequality (3.2), we have

$$
\begin{equation*}
\left(\lambda-a_{i i} b_{i i}\right)\left(\lambda-a_{j j} b_{j j}\right) \leq\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right) . \tag{3.3}
\end{equation*}
$$

Thus, (3.3) is equivalent to

$$
\begin{aligned}
\lambda \geq & \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{j j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\},
\end{aligned}
$$

that is,

$$
\begin{aligned}
\tau\left(A \circ A^{-1}\right) \geq & \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{i j}-\left[\left(a_{i i} b_{i i}-a_{i j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} b_{i i}+a_{i j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{i j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

If A is reducible, without loss of generality, we may assume that A has the following block upper triangular form:

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 s} \\
& A_{22} & \cdots & A_{2 s} \\
& & \cdots & \cdots \\
& & & A_{s s}
\end{array}\right]
$$

with irreducible diagonal blocks $A_{i i}, i=1,2, \ldots, s$. Obviously, $\tau\left(A \circ A^{-1}\right)=\min _{i} \tau\left(A_{i i} \circ A_{i i}^{-1}\right)$. Thus, the problem of the reducible matrix A is reduced to those of irreducible diagonal blocks $A_{i i}$. The result of Theorem 3.2 also holds.

Theorem 3.3 Let $A=\left(a_{i j}\right) \in M_{n}$ and $A^{-1}=b_{i j}$ be a doubly stochastic matrix. Then

$$
\begin{aligned}
\min _{i \neq j} & \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{i j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\}
\end{aligned}
$$

Proof Since A^{-1} is a doubly stochastic matrix, by Lemma 2.4, we have

$$
a_{i i}=\sum_{k \neq i}\left|a_{i k}\right|+1=\sum_{k \neq i}\left|a_{k i}\right|+1, \quad i \in N
$$

For any $j \neq i$, we have

$$
\begin{aligned}
d_{j}-s_{j i} & =\frac{R_{j}}{a_{j j}}-\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}} \\
& =\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}}-\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}} \\
& =\frac{\left(1-d_{k}\right) \sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}} \geq 0,
\end{aligned}
$$

or equivalently

$$
\begin{equation*}
d_{j} \geq s_{j i}, \quad j \neq i, j \in N \tag{3.4}
\end{equation*}
$$

So, we can obtain

$$
\begin{equation*}
m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}}=s_{j i}, \quad j \neq i, j \in N \tag{3.5}
\end{equation*}
$$

and

$$
m_{i} \leq s_{i}, \quad i \in N
$$

Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
a_{i i} b_{i i}-m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i} \leq a_{j j} b_{j j}-m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j} \tag{3.6}
\end{equation*}
$$

Thus, (3.6) is equivalent to

$$
\begin{equation*}
m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j} \leq a_{j j} b_{i j}-a_{i i} b_{i i}+m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i} \tag{3.7}
\end{equation*}
$$

From (3.1) and (3.7), we have

$$
\begin{aligned}
& \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{j j} b_{j j}\right)^{2}+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \geq \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{j j} b_{i j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(a_{i j} b_{i j}-a_{i i} b_{i i}+m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{j j} b_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)^{2}+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(a_{j j} b_{j j}-a_{i i} b_{i i}\right)\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i i} b_{i i}+a_{i j} b_{j j}-\left[\left(a_{i j} b_{i j}-a_{i i} b_{i i}+2 m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)^{2}\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i i} b_{i i}+a_{i j} b_{j j}-\left(a_{j j} b_{j j}-a_{i i} b_{i i}+2 m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\right\} \\
& =a_{i i} b_{i i}-m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i} \\
& =b_{i i}\left(a_{i i}-m_{i} \sum_{k \neq i}\left|a_{k i}\right|\right) \\
& \geq \frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}} \\
& \geq \frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \min _{i \neq j} \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{j j}-\left[\left(a_{i i} b_{i i}-a_{j j} b_{j j}\right)^{2}+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \quad \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\}
\end{aligned}
$$

This proof is completed.

Remark 3.1 According to inequality (3.4), it is easy to know that

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| s_{k i}}{a_{j j}} b_{i i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}} b_{i i}, \quad j \in N
$$

That is to say, the result of Lemma 2.2 is sharper than that of Theorem 2.1 in [8]. Moreover, the result of Theorem 3.2 is sharper than that of Theorem 3.1 in [8], respectively.

Theorem 3.4 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an irreducible strictly row diagonally dominant M matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i}\right\} .
$$

Proof Since A is irreducible, then $A^{-1}>0$, and $A \circ A^{-1}$ is again irreducible. Note that

$$
\tau\left(A \circ A^{-1}\right)=\tau\left(\left(A \circ A^{-1}\right)^{T}\right)=\tau\left(A^{T} \circ\left(A^{T}\right)^{-1}\right)
$$

Let

$$
\left(A^{T} \circ\left(A^{T}\right)^{-1}\right) e=\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{T}
$$

where $e=(1,1, \ldots, 1)^{T}$. Without loss of generality, we may assume that $t_{1}=\min _{i}\left\{t_{i}\right\}$, by Lemma 2.2, we have

$$
\begin{aligned}
t_{1} & =\sum_{j=1}^{n}\left|a_{j 1} b_{j 1}\right|=a_{11} b_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| b_{j 1} \\
& \geq a_{11} b_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| \frac{\left|a_{j 1}\right|+\sum_{k \neq j 1}\left|a_{j k}\right| s_{k 1}}{a_{j j}} b_{11} \\
& =a_{11} b_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| m_{j 1} b_{11} \\
& =\left(a_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| m_{j 1}\right) b_{11} \\
& \geq \frac{a_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| m_{j 1}}{a_{11}} \\
& =1-\frac{1}{a_{11}} \sum_{j \neq 1}\left|a_{j 1}\right| m_{j 1} .
\end{aligned}
$$

Therefore, by Lemma 2.6, we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i}\right\} .
$$

This proof is completed.

Remark 3.2 According to inequality (3.5), we can get

$$
1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i} \geq 1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| s_{j i} .
$$

That is to say, the bound of Theorem 3.4 is sharper than the bound of Theorem 3.5 in [8].

Remark 3.3 If A is an M-matrix, we know that there exists a diagonal matrix D with positive diagonal entries such that $D^{-1} A D$ is a strictly row diagonally dominant M-matrix. So the result of Theorem 3.4 also holds for a general M-matrix.

4 Example

Consider the following M-matrix:

$$
A=\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]
$$

Since $A e=e$ and $A^{T} e=e, A^{-1}$ is doubly stochastic. By calculations we have

$$
A^{-1}=\left[\begin{array}{llll}
0.4000 & 0.2000 & 0.2000 & 0.2000 \\
0.2333 & 0.3667 & 0.2000 & 0.2000 \\
0.1667 & 0.2333 & 0.4000 & 0.2000 \\
0.2000 & 0.2000 & 0.2000 & 0.4000
\end{array}\right]
$$

(1) Estimate the upper bounds for entries of $A^{-1}=\left(b_{i j}\right)$. If we apply Theorem 2.1(a) of [8], we have

$$
A^{-1} \leq\left[\begin{array}{cccc}
1 & 0.6250 & 0.6375 & 0.6375 \\
0.7000 & 1 & 0.6500 & 0.6500 \\
0.5875 & 0.6875 & 1 & 0.6500 \\
0.6375 & 0.6250 & 0.6375 & 1
\end{array}\right] \circ\left[\begin{array}{llll}
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44}
\end{array}\right]
$$

If we apply Lemma 2.2, we have

$$
A^{-1} \leq\left[\begin{array}{cccc}
1 & 0.5781 & 0.5718 & 0.5750 \\
0.6450 & 1 & 0.5825 & 0.5850 \\
0.5093 & 0.6562 & 1 & 0.5750 \\
0.5718 & 0.5781 & 0.5718 & 1
\end{array}\right] \circ\left[\begin{array}{llll}
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44}
\end{array}\right]
$$

Combining the result of Lemma 2.2 with the result of Theorem 2.1(a) of [8], we see that the result of Lemma 2.2 is the best.
By Theorem 2.3 and Lemma 3.2 of [8], we can get the following bounds for the diagonal entries of A^{-1} :

$$
\begin{array}{ll}
0.3419 \leq b_{11} \leq 0.5882 ; & 0.3404 \leq b_{22} \leq 0.5128 \\
0.3419 \leq b_{33} \leq 0.6061 ; & 0.3404 \leq b_{44} \leq 0.5882
\end{array}
$$

By Lemma 2.3 and Theorem 3.1, we obtain

$$
\begin{array}{ll}
0.3668 \leq b_{11} \leq 0.4397 ; & 0.3556 \leq b_{22} \leq 0.3832 \\
0.3668 \leq b_{33} \leq 0.4419 ; & 0.3656 \leq b_{44} \leq 0.4415
\end{array}
$$

(2) Lower bounds for $\tau\left(A \circ A^{-1}\right)$.

By the conjecture of Fiedler and Markham, we have

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n}=\frac{1}{2}=0.5 .
$$

By Theorem 3.1 of [8], we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\}=0.6624
$$

By Corollary 2.5 of [9], we have

$$
\tau\left(A \circ A^{-1}\right) \geq 1-\rho^{2}\left(J_{A}\right)=0.4145 .
$$

By Theorem 3.1 of [10], we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\}=0.8250 .
$$

By Corollary 2 of [11], we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-w_{i} \sum_{j \neq i}\left|a_{j i}\right|}{1+\sum_{j \neq i} w_{j i}}\right\}=0.8321 .
$$

If we apply Theorem 3.2, we have

$$
\begin{aligned}
\tau\left(A \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} b_{i i}+a_{j j} b_{i j}-\left[\left(a_{i i} b_{i i}-a_{i j} b_{i j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(m_{i} \sum_{k \neq i}\left|a_{k i}\right| b_{i i}\right)\left(m_{j} \sum_{k \neq j}\left|a_{k j}\right| b_{i j}\right)\right]^{\frac{1}{2}}\right\}=0.8456 .
\end{aligned}
$$

The numerical example shows that the bound of Theorem 3.2 is better than these corresponding bounds in [8-11].

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is grateful to the referees for their useful and constructive suggestions. This research is supported by the Scientific Research Fund of Yunnan Provincial Education Department (2013C165).

References

1. Berman, A, Plemmons, RJ: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1979)
2. Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
3. Fiedler, M, Markham, TL: An inequality for the Hadamard product of an M-matrix and inverse M-matrix. Linear Algebra Appl. 101, 1-8 (1988)
4. Fiedler, M, Johnson, CR, Markham, TL, Neumann, M: A trace inequality for M-matrix and the symmetrizability of a real matrix by a positive diagonal matrix. Linear Algebra Appl. 71, 81-94 (1985)
5. Chen, SC: A lower bound for the minimum eigenvalue of the Hadamard product of matrices. Linear Algebra Appl. 378, 159-166 (2004)
6. Song, YZ: On an inequality for the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 305, 99-105 (2000)
7. Yong, XR: Proof of a conjecture of Fiedler and Markham. Linear Algebra Appl. 320, 167-171 (2000)
8. Li, HB, Huang, TZ, Shen, SQ, Li, H: Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 420, 235-247 (2007)
9. Zhou, DM, Chen, GL, Wu, GX, Zhang, XY: Some inequalities for the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 16 (2013)
10. Cheng, GH, Tan, Q, Wang, ZD: Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse. J. Inequal. Appl. 2013, 65 (2013)
11. Li, YT, Wang, F, Li, CQ, Zhao, JX: Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 480 (2013)
12. Yong, XR, Wang, Z: On a conjecture of Fiedler and Markham. Linear Algebra Appl. 288, 259-267 (1999)
13. Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1985)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: © 2015 Chen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

