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Abstract

In this paper, we introduce and analyze a multi-step hybrid steepest-descent
extragradient algorithm and multi-step composite Mann-type viscosity iterative
algorithm for finding a solution of triple hierarchical variational inequalities defined
over the common set of solutions of mixed equilibrium problems, variational
inclusions, variational inequalities, and fixed point problems. Under appropriate
assumptions, we prove that the proposed algorithms converge strongly to a
common element of the fixed point set of a strict pseudocontractive mapping,

a solution set of finitely many generalized mixed equilibrium problems, a solution set
of finitely many variational inclusions, and a solution set of a general system of
variational inequalities. Such an element is a unique solution of a triple hierarchical
variational inequality problem. In addition, we also consider as an application the
proposed algorithm to solve a hierarchical variational inequality problem defined
over the set of common solutions of finitely many generalized mixed equilibrium
problems, finitely many variational inclusions, and a general system of variational
inequalities. The results obtained in this paper improve and extend the
corresponding results announced by many other authors.
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1 Introduction and formulations

Let C be a nonempty, closed, and convex subset of a real Hilbert space H and A: C - H
be a nonlinear mapping on C. The variational inequality problem (VIP) defined by C and
A isto find x € C such that

(Ax,y—x) >0, VyeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A). The theory of variational inequalities
is well established area in nonlinear analysis and optimization. For further details on this
topic, we refer to [1-5] and the references therein.
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It is well known that if A is a strongly monotone and Lipschitz-continuous mapping on
C, then VIP (1.1) has a unique solution. Several iterative methods have been proposed in
the literature to compute the approximate solutions of a VIP. Korpelevich?s extragradi-
ent method is one of them which was proposed by Korpelevich [6]. During the last two
decades, this method received much attention from many authors, who improved and
generalized it in various directions and ways; see, for example, [7-18] and the references
therein.

Let ¢ : C — R be a real-valued function, A : C — H be a nonlinear mapping and © :
C x C — R be a bifunction. The generalized mixed equilibrium problem (GMEP) is to
find x € C such that

Ox,y) + () —px) + (Ax,y —x) >0, VyeC. (1.2)

We denote the set of solutions of GMEP (1.2) by GMEP(®, ¢, A). The GMEP (1.2) is very
general in the sense that it includes many problems as special cases, namely, optimiza-
tion problems, variational inequalities, minimax problems, Nash equilibrium problems in
noncooperative games, efc. For different aspects and solution methods, we refer to [7, 9,
10, 14, 18—20] and the references therein.

If ¢ = 0, then GMEP (1.2) reduces to the generalized equilibrium problem (GEP) of find-
ing x € C such that

Ox,y) + (Ax,y-—x) >0, VyeC.

It was considered and studied in [21, 22] and further studied in [23]. The set of solutions
of GEP is denoted by GEP(®, A).

If A =0, then GMEP (1.2) reduces to the mixed equilibrium problem (MEP) which is to
find x € C such that

Oy +e(») -ex) >0, VyeC.

It was considered and studied in [24]. The set of solutions of MEP is denoted by
MEP(®, ¢).

If p =0, A =0, then GMEP reduces to the equilibrium problem (EP) which is to find
x € C such that

Ox,y) >0, VyeC.

The set of solutions of EP is denoted by EP(®). It is worth to mention that the EP is an
unified model of several problems, namely, variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems, Nash
equilibrium problems, etc.

The common assumptions on a bifunction ® : C x C — R are the following:

(A1) ®O(x,x)=0forallx € C;

(A2) © is monotone, i.e., O(x,y) + O(y,x) <0 for any x,y € C;

(A3) O is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O (tz + (1 - t)x,y) < O(x,y);

t—0*
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(A4) O(x,-) is convex and lower semicontinuous for each x € C.
We also consider the assumptions (B0) and (B1) or (B2) on the function ¢ : C — R:
(BO) ¢ is lower semicontinuous and convex.
(B1) For each x € H and r > 0, there exist a bounded subset D, C C and y, € C such
that, for any z € C \ D,

1
O(2,35) + 9 ) —9(2) + ~ (2 = 2,2 - %) < 0

or
(B2) Cisabounded set.
On the other hand, let B: C — H be a single-valued mapping and R be a multi-valued
mapping with D(R) = C. Consider the following variational inclusion: find x € C such that

0 € Bx + Rx. (1.3)

We denote by I(B,R) the solution set of the variational inclusion (1.3). In particular, if
B=R=0, then I(B,R) = C. If B= 0, then problem (1.3) becomes the inclusion prob-
lem introduced by Rockafellar [25]. It is well known that problem (1.3) provides a conve-
nient framework for the unified study of optimal solutions in many optimization related
areas including mathematical programming, complementarity problems, variational in-
equalities, optimal control, mathematical economics, equilibria and game theory, etc. Let
a set-valued mapping R : D(R) C H — 2/ be maximal monotone. We define the resolvent
operator Jp; : H — D(R) associated with R and A by

Jrn=I+AR), VxeH,

where A is a positive number.

Huang [26] studied problem (1.3) in the case where R is maximal monotone and B is
strongly monotone and Lipschitz continuous with D(R) = C = H. Subsequently, Zeng et al.
[27] further studied this problem in a more general setting than in [26]. Moreover, Zeng
et al. [27] obtained the same strong convergence result as in [26]. In addition, Zeng et al.
[27] also gave the geometric convergence rate estimate for approximate solutions. Also,
various types of iterative algorithms for solving variational inclusions have been further
studied and developed; for more details, we refer to [12, 28, 29] and the references therein.

Let Fy, F, : C — H be two mappings. Consider the general system of variational inequal-
ities (GSVI) of finding (x*,y*) € C x C such that

0, Vxe(C,
0 (1.4)

(ViF1y* +x* —y*, 0 — x*)
Vx e C,

>
(VaFox* +y* —x*,x—y*) >

where v; > 0 and v, > 0 are two constants. It was considered and studied in [11, 15-17,
30]. In particular, if F; = F, = A, then the GSVI (1.4) reduces to the problem of finding
(x*,9*) € C x C such that

>0, Vxe(,
- 1.
= (L5)

(MAY* +x* —y*, % — x*)
0, VxeC(C,

(VAX™ +y* —x*, 2 —y*)
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which is studied by Verma [31] and is called a new system of variational inequalities
(NSVI). Further, if x* = y* additionally, then the NSVI reduces to the classical VIP (1.1).
By considering G := Pc(I — viF1)Pc(I — voF>) and y* = Pc(I — vo Fp)x*, where Pc denotes the
metric projection of H onto C, Ceng et al. [16] transformed GSVI (1.4) into the following
fixed point equation:

Gx* = x*. (1.6)

A variational inequality problem defined over the set of fixed points of a mapping is
called a hierarchical variational inequality problem.

Let S and T be two nonexpansive mappings. Yao et al. [32] considered the following
hierarchical variational inequality problem (HVIP): find hierarchically a fixed point of T
which is a solution to the VIP for the monotone mapping I — S, namely, find x € Fix(T)
such that

(I-8)%p-%) >0, VpeFix(T). (1.7)

The solution set of HVIP (1.7) is denoted by A. It is easy to check that solving the HVIP
(1.7) is equivalent to solving the fixed point problem of the composite mapping Prix(1)S,
that is, find X € C such that X = Pgix)SX. Ceng et al. [33] introduced and analyzed an
iterative algorithm for solving HVIP (1.7). They also studied the strong convergence of the
sequences generated by their algorithm.

A variational inequality problem defined over the set of solutions of a hierarchical varia-
tional inequality problem is called a triple hierarchical variational inequality problem. For
further details of triple hierarchical variational inequalities, we refer to [10, 33—-36] and
the references therein. Very recently, Kong et al. [7] introduced and studied the following
triple hierarchical variational inequality problem (THVIP) (over the fixed point set of a
strictly pseudocontractive mapping) with a variational inequality constraint.

Problem 1.1 [7, Problem II] Let F: C — H be «-Lipschitzian and n-strongly monotone
on the nonempty, closed, and convex subset C of H, where « and 7 are positive constants.
Let A: C — H be amonotone and L-Lipschitzian mapping, V : C — H bea p-contraction
with coefficient p € [0,1), S: C — C be a nonexpansive mapping, and 7 : C — C be a
& -strictly pseudocontractive mapping with Fix(7) N VI(C,A) # . Let 0 < . < i—;’ and 0 <
y <t,wheret=1- \/I—,u(2n——;u<2) Then the objective is to find * € & such that

(WF -y V), x-x")>0, Vxe&, (1.8)

where & denotes the solution set of the hierarchical variational inequality problem (HVIP)
of finding z* € Fix(T) N VI(C, A) such that

((WF - y9)z*,z2-2") >0, VzeFix(T) N VI(C,A). (1.9)

They proposed an algorithm for solving Problem 1.1 and studied the convergence anal-
ysis for the sequences generated by the proposed algorithm.

In this paper, we introduce and study the following triple hierarchical variational in-
equality problem (THVIP) (defined over the fixed point set of a strictly pseudocontractive
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mapping) with constraints of finitely many GMEPs, finitely many variational inclusions,
and a general system of variational inequalities.
Throughout the paper, M and N are assumed to be positive integers.

Problem 1.2 Assume that

(i) foreachj=1,2, F;: C — H is ¢j-inverse-strongly monotone and F : H — H is
k-Lipschitzian and n-strongly monotone with positive constants «, 1 > 0 such that
O<y§rand0<,u<i—'27wheret:1— 1-—u(2n — ux?);

(ii) foreachk €{L1,2,...,M}, O : C x C — R is a bifunction satisfying conditions
(A1)-(A4) and ¢ : C - R U {+00} is a proper lower semicontinuous and convex
function with restriction (B1) or (B2);

(iii) for k € {1,2,...,M}andie{1,2,...,N}, R;: C — 2" is a maximal monotone
mapping, and Ay : H — H and B; : C — H are j,-inverse-strongly monotone and
n;-inverse-strongly monotone, respectively;

(iv) T:H — H is a &-strictly pseudocontractive mapping, S : H — H is a nonexpansive
mapping and V : H — H is a p-contraction with coefficient p € [0,1);

(v) VI(£2, uF —yS) # # where
2 := N, GMEP(Oy, o, Ar) N NY, 1(By, R;)) N GSVI(G) N Fix(T).

Then the objective is to find * € & such that

(WF -y V)x*,x-x*)>0, Vxe&, (1.10)

where & := VI(£2, uF — yS), that is, the solution set of the hierarchical variational inequal-
ity problem (HVIP) of finding z* € §2 such that

(WF -—yS)z*,z—2)>0, Vzeg. (1.11)

Motivated and inspired by the above facts, we introduce and analyze two iterative meth-
ods for solving Problem 1.2, that is, THVIP 1.2. By combining Korpelevich?s extragradient
method, the viscosity approximation method, the hybrid steepest-descent method, and
Mann?s iteration method, we first propose a multi-step hybrid steepest-descent extragra-
dient method. However, by combining Mann?s iteration method, Korpelevich?s extragra-
dient method, the viscosity approximation method, the hybrid steepest-descent method,
and the projection method, we propose a multi-step composite Mann-type viscosity it-
erative algorithm. We prove the strong convergence results for these methods. In par-
ticular, we prove that the proposed algorithms converge strongly to a common element
x* e 2= ﬂﬁl GMEP(Ox, ¢, Ax) N ﬂf\il I(B;, R;) NGSVI(G) NFix(T) which is a unique so-
lution of the THVIP 1.2. In addition, we also consider the application of the proposed algo-
rithm for solving a hierarchical variational inequality problem with constraints of finitely
many GMEDPs, finitely many variational inclusions and GSVI (1.4). The results obtained in
this paper improve and extend the corresponding results announced by many others.

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by (-,-) and || - ||, respectively. Let C be a nonempty, closed, and convex
subset of H. We write x,, — x to indicate that the sequence {x,} converges weakly to x
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and x, — x to indicate that the sequence {x,} converges strongly to x. Moreover, we use
wy(x,) to denote the weak w-limit set of the sequence {x,}, that is,

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {xn}}.

Definition 2.1 A mapping A : C — H is called
(i) monotone if

(Ax —Ay,x—y) >0, Vx,yeC;

(ii) n-strongly monotone if there exists a constant 1 > 0 such that
(Ax—Ay,x—y) = nllx-y|*>, Vx,yeC;

(ili) ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that
(Ax — Ay,x —y) > ¢||Ax - Ay|?>, Vx,yeC.

It is easy to see that the projection Pc is 1-inverse-strongly monotone. Inverse-strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields. It is obvious that if A is ¢ -inverse-strongly monotone,
then A is monotone and %—Lipschitz continuous. Moreover, we also have for all #,v € C
and A > 0,

| = 2A)u = (1 = 24| = || (u—v) - 2(Au - AV)|?
= |lu—v||* =20 (Au — Av,u — v) + A2 ||Au — Av|®
< llu—=v|* + AM(A = 22) | Au — Av|*. (2.1)
So, if A <2¢, then I — LA is a nonexpansive mapping from C to H.

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

ll = Pexl| = inf ||lx — y|| =: d(x, C).
yeC

Some important properties of projections are gathered in the following proposition.

Proposition 2.1 For givenx € H and z € C:
(i) z=Pcx & (x—2,y-2) <0,Vy e C;
(i) z=Pcx & lx -zl < |x = yI> - ly - 2% Vy € C;
(iii) (Pcx — Pcy,x —y) > |Pcx — Pcyl|?, Yy € H. Consequently, Pc is nonexpansive and

monotone.

Definition 2.2 A mapping T': H — H is said to be
(a) nonexpansive if

||Tx—T)’|| S”x_y”» Vx»yEH;
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(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if T is

1-inverse-strongly monotone (1-ism),
(x—y, Tx—Ty) > | Tx - Ty||*>, Vx,y€H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

1
T=-U+3S),
SU+9)
where S: H — H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if 7" is nonexpansive, then I — T is monotone.
Next we list some elementary conclusions for the MEP.

Proposition 2.2 [24] Assume that © : C x C — R satisfies (A1)-(A4) and let ¢ : C — R be
a proper lower semicontinuous and convex function. Assume that either (B1) or (B2) holds.
Forr >0 and x € H, define a mapping T . H - C as follows:

T (x) := {ze C:0(z,9) +9(y) - p(z) + %(y—z,z—x> >0,Vye C}

for all x € H. Then the following statements hold.:
(i) Foreachx e H, T,(@‘(’))(x) is nonempty and single-valued;
pLy g
(i) 7% is firmly nonexpansive, that is, for any x,y € H,

” Tﬁ(")"”)x _ Tr(@,w)yHZ < (Tﬁ(ﬁ"‘)x _ Tf@’“’)y,x _ y);
(iii) Fix(T'°*)) = MEP(®, ¢);
(iv) MEP(O, ¢) is closed and convex;

W) 1T % - T2 < =t (TCO% — TO%, T % — %) for all s,t > 0 and x € H.

Ceng et al. [16] transformed the GSVI (1.4) into a fixed point problem in the following

way.

Proposition 2.3 [16] For given x,y € C, (%,Y) is a solution of the GSVI (1.4) if and only if x
is a fixed point of the mapping G : C — C defined by

Gx = Pc(l - UlFl)Pc(I - Vng)x, VxeC,
where y = Pc(I — vy Fy)X.

In particular, if the mapping F; : C — H is {;-inverse-strongly monotone for j = 1,2, then
the mapping G is nonexpansive provided v; € (0,2¢;] for j = 1,2. We denote by GSVI(G)
the fixed point set of the mapping G.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1 Let X be a real inner product space. Then we have the following inequality:

I +y1% < llxll* + 2,2+ 9),  Va,y € X.
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Lemma 2.2 Let H be a real Hilbert space. Then the following hold:
@) llx=ylI* = x> = IylI* - 2(x - y,9) for all x,y € H.
(B) 1A+ 1y l12 = Al + pllyll? = Auslix — 12 for all x,y € H and 1, i € [0,1] with
A+u=1
(c) If {x,} is a sequence in H such that x,, — x, it follows that

lim sup ||x,, —y||2 = limsup ||x, — 2%+ |x —y||2, Vye H.
It is clear that, in a real Hilbert space H, T : C — C is & -strictly pseudocontractive if and
only if the following inequality holds:

1-

u%—iyx—y>snx—ﬂﬂ——EEHU—TM—wr—Tw2,

Vx,y € C.

This immediately implies that if 7" is a &-strictly pseudocontractive mapping, then / — T'

1-£
2

therein. It is well known that the class of strict pseudocontractions strictly includes the

is = -inverse-strongly monotone; for further details, we refer to [37] and the references
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma 2.3 [37, Proposition 2.1] Let C be a nonempty, closed, and convex subset of a real
Hilbert space H and T : C — C be a mapping.
(i) If T is a &-strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

1+&
-yl VxyeC.

x-Ty| < —
75— Tyl = 1

(i) If T is a &-strictly pseudocontractive mapping, then the mapping I — T is semiclosed
at 0, that is, if {x,} is a sequence in C such that x, — x and (I — T)x, — 0, then
(I-T)x=0.

(iti) If T is &-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is
closed and convex so that the projection Prixry is well defined.

Lemma 2.4 [11] Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C — C be a &-strictly pseudocontractive mapping. Let y and § be two nonnegative
real numbers such that (y + 8)& < y. Then

lyx =) +8(Tx-Ty)| < (v +8)llx-yl, Vx,yeC.

Lemma 2.5 (Demiclosedness principle [38]) Let C be a nonempty, closed, and convex sub-
set of a real Hilbert space H. Let S be a nonexpansive self-mapping on C with Fix(S) # 0.
Then I-S is demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some
x € C and the sequence {(I — S)x,} strongly converges to some y, it follows that (I — S)x = y.
Here I is the identity operator of H.

Lemma 2.6 Let A: C — H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition 2.1(i)) implies

ueVI(C,A) & u=Pc(u—-rAu), VYr>0.
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Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let A be a
number in (0,1] and let u > 0. Associated with a nonexpansive mapping 7 : C — H, we
define the mapping T* : C — H by

T x:= Tx - \uF(Tx), VxeC,

where F: H — H is an operator such that, for some positive constants «,n > 0, F is
k -Lipschitzian and n-strongly monotone on H; that is, F satisfies the conditions:

IFx - Fyll <«llc =yl and (Fx—Fy,x—y) = nlx-y|*

forallx,y € H.

Lemma 2.7 [39, Lemma 3.1] T? is a contraction provided 0 < j1 < i—g; that is,
| T - Ty < A= A0)lx -yl YmyeC,

where t =1— /1 - u(2n - uk?) € (0,1].

Remark 2.1
(i) Since F is k-Lipschitzian and n-strongly monotone on H, we get 0 < < . Hence,

2
whenever 0 < < K—Z, we have

0<(1-pun)?=1-2un+u’n’

<1-2pun + p’e?
2
<1-2un+ —Z;ucz =1,
K
which implies
0<1-v1-2un+pu?c2<1.
So,7=1-+/1-u2n-pux?) e (0,1].

(i) In Lemma 2.7, put F = %1 and @ = 2. Then we know that k =75 = %,
0<M:2<i—;’ =4, and

Lemma 2.8 [39] Let {s,} be a sequence of nonnegative numbers satisfying the conditions

Sn+l =< (1 - an)sn + anlgm Vn > L

where {a,} and {B,} are sequences of real numbers such that
(i) {on} C[0,1] and Y ;2 ay = 00, or equivalently,

o0

]_[(1 —ay) = Jim ﬁ(l —ag) =0;
k=1

n=1
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(i) limsup,_, o By <0, 0r Y ooy latnBul < 00.
Then lim,,_, o s, = 0.

Finally, recall that a set-valued mapping 7 : D(T) C H — 2" is called monotone if for all
x,y € D(T), f € Tx and g € Ty imply

f —gx-y =0.

A set-valued mapping 7 is called maximal monotone if T is monotone and (I + AT)D(T) =
H for each A > 0, where [ is the identity mapping of H. We denote by G(T') the graph of T'.
It is well known that a monotone mapping 7' is maximal if and only if, for (x,f) € H x H,
(f —g,x—y) > 0 for every (y,g) € G(T) implies f € Tx.
Next we provide an example to illustrate the concept of maximal monotone mapping.
Let A : C — H be a monotone, k-Lipschitz-continuous mapping and let Ncv be the
normal cone to C at v € C, that is,

NCV: {MGH: (V_p1u) ZO’VpG C}'
Define

~ Av+Ncv, ifveC,
Tv =
@, ifveC.

Then T is maximal monotone (see [25]) such that
0eTv « veVIGA). (2.2)

Let R: D(R) C H — 2! be a maximal monotone mapping. Let A, u > 0 be two positive
numbers.

Lemma 2.9 [40] We have the resolvent identity

n n
Jrax =Jrp <xx + (1 - X)]R')‘x)’ Vx e H.

Remark 2.2 For X, i > 0, we have the following relation:

1 1
Wrax = Jrudll < 1% =yl + |2 = ,U«|<X||]R,kx_y” + ﬁllx—/R,uyH), Vx,yeH. (23)

Indeed, whenever A > u, utilizing Lemma 2.9 we deduce that

n n
TR <xx + <1 - x)]R,M) —Jruy
n n
® 1-2 _
o

m
lloe =yl + (1 - x) Iz % =yl

rpx = Jruyll =

=

=<

>|=

A —pl
<llx-=yl+ TH/R,M—}’”‘



Ceng et al. Journal of Inequalities and Applications (2015) 2015:16 Page 11 of 62

Similarly, whenever A < u, we get

[A =l

rax = Jruyll < Il =yl + ll = Jruyll-

Combining the above two cases we conclude that (2.3) holds.

In terms of Huang [26] (see also [27]), we have the following property for the resolvent
operator Jr; : H — D(R).

Lemma 2.10 Jz; is single-valued and firmly nonexpansive, that is,

Urpx = Jrays % = 9) > Wrax = Jrpyll>,  Vax,y € H.
Consequently, Jr; is nonexpansive and monotone.

Lemma 2.11 [12] Let R be a maximal monotone mapping with D(R) = C. Then for any
given A >0, u € C is a solution of problem (1.5) if and only if u € C satisfies

u = Jg;(u — ABu).

Lemma2.12 [27] Let R be a maximal monotone mapping with D(R) = C and let B: C — H
be a strongly monotone, continuous, and single-valued mapping. Then for each z € H, the

equation z € (B + AR)x has a unique solution x; _for A > 0.

Lemma 2.13 [12] Let R be a maximal monotone mapping with D(R) = C and B: C — H
be a monotone, continuous, and single-valued mapping. Then (I + A(R + B))C = H for each
A > 0. In this case, R + B is maximal monotone.

3 Hybrid steepest-descent extragradient method and convergence results
In this section, we introduce and analyze a multi-step hybrid steepest-descent extragradi-
entalgorithm for finding a solution of THVIP 1.2. This algorithm is based on Korpelevich?s
extragradient method, the viscosity approximation method, the hybrid steepest-descent
method, and Mann?s iteration method. We prove the strong convergence of the proposed
algorithm to a unique solution of THVIP 1.2 under suitable conditions. In addition, we also
consider the application of the proposed algorithm for solving a hierarchical variational
inequality problem (HVIP).

In the rest of the paper, unless otherwise specified, we assume that M and N are positive

integers, and C is a nonempty, closed, and convex subset of a real Hilbert space H.

Assumption 3.1
(a) Foreach ke {1,2,...,M}, let & : C x C — R be a bifunction satisfying (A1)-(A4)
and ¢ : C — R U {+00} be a proper lower semicontinuous and convex function
with restriction (B1) or (B2).
(b) Foreachke{1,2,...,M}and eachie {1,2,...,N},let R; : C — 2/ be a maximal
monotone mapping, and Ax : H — H and B; : C — H be pu,-inverse-strongly

monotone and 7;-inverse-strongly monotone, respectively.
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(c) Let T:H — H be a &-strictly pseudocontractive mapping, S: H — H be a
nonexpansive mapping and V : H — H be a p-contraction with coefficient p € [0,1).
(d) Forj=1,2,let F;: C — H be ¢j-inverse-strongly monotone, and F : H — H be
K- Lipschitzian and n-strongly monotone with positive constants «, 7 > 0 such that
0</L< andO0<y <71,wheret=1- m
(e) 2:= ﬂk:1 GMEP(6, o1, Ax) N (Y, 1(B;, R;) N GSVI(G) NFix(T).
(f) The solution set & of HVIP (1.11) is nonempty.
(g) Let {a}, {An} C (0,11, {Bu}s {¥u}, {84} C [0,1], {Xi} C [ai, bi] C (0,21;), and
{rin} C lexrdi) € (0,21k), wherei € {1,2,...,N}and k € {1,2,...,M]}.

We propose the following multi-step hybrid steepest-descent extragradient algorithm
for finding a solution of THVIP 1.2.

Algorithm 3.1 For given arbitrarily xy € H, let {x,} be the sequence generated by

Uy = Tr]\(;/,\;[ oM — rauAa) T OM Lom- (I =y LiAma1) - rlonl (1 - 71,0A1) %,
Vi = JRaghen = )»N,nBN)]RN_l,AN_M (I = AN-11BN-1) - - - TRy (L = A B1) s, (3.1)
Yn = ,ann + VnGVn + (SnTGVn;
Xpe1 = Ay (0, Ve, + (1= a,)Sx,) + (L = Ayt F)y,, VYn>0,

where G := Pc(I — viF1)Pc(I — vy Fy) with v; € (0,2¢)) forj =1,2.

If V =0, then Algorithm 3.1 reduces to the following algorithm.

Algorithm 3.2 For given arbitrarily xo € H, let {x,} be the sequence generated by
Uy = fﬁf"m (I —rum, nAM)TrﬁNf o om-1)(f - Fr-inApo) - - - Tr(l(il'wl)(f — 1,A1)%y,
Vi = TR L = ANt BN Ry i1 L = AN-1,0BN-1) -+ - TRy iy (L = A1,nB1) iy (32)

Yn = ﬂnxn + VnGVn + 8nTGVn;
KXn+l = )‘n(l - Oln))/an + (I - )‘rl:uF)ym Vn > 0.

The following result provides the convergence of the sequences generated by the above
algorithm.

Theorem 3.1 In addition to Assumption 3.1, suppose that

() limysoo Ay =0, Y o0y Auty = 00 Lzmihm,,_>Oo xla 1- "‘;—;1| =0;
(ii) limsup,_, k" <00, lim, . 3 la,, |ai s 1= =0;
(111) hmn—>oo % =0 and hmn_mo % =0;
(iv) limy— oo % =0 and lim,_, 7”"";2(” 1l 0fori=1,2,...,N and
neth oy

k=1,2,...,M;
™) B+ Vu+6,=1(Yu+8,)6 <y, Yu=0), {B,} Cla,b] C(0,1), and
liminf,_ « 6, > 0;
Vi) |lx— Tx| > k[d(x, $2)1? (Vx € C) and lim,_, o (AY%/at,,) = O for some k0> 0.
Then the following conclusions hold.
(a) If{Sx,} is bounded, then {x,} converges strongly to a point x* € 2 which is a unique
solution of Problem 1.2 provided that ||y, — Tx,| = o(ay).
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(b) If {Sx,} is bounded, where {x,} is the sequence generated by (3.2), then {x,} converges
strongly to a unique solution x* € E of the following VIP provided that
lyn — Toxull = o(ay):
(Fx*,x —x*) >0, Vxe&.
Proof Put

AX = TIT = 1y AN T = 1y pAr) -+ T (1 = 1A,
forall k € {1,2,...,M}and n > 1,

Al = JRinin I = 2inB)IR; iy (L = XicinBic1) - - - TRy, (L = A B1)
forallie{1,2,...,N}, A% = I, and A% = I, where I is the identity mapping on H. Then we
have u,, = AMx, and v, = ANu,.

We divide the rest of the proof into several steps.
Step 1. We prove that {x,,} is bounded.

Indeed, take a fixed p € 2 arbitrarily. Utilizing (2.1) and Proposition 2.2(ii), we have

iyl = [T ) 43543, ~ TG g By) 414
=< ” (1 - rM,nBM)Ay_lxn - ([ - ernBM)Ay_IPH

S e

< [ A% - ALp|

= ll%n —plI-

Utilizing (2.1) and Lemma 2.10, we have

1 =PIl = Wk T = A AN ALt = T = v An) A3 p |
< | = AnwAn) AY 1y = (= An AN AN |

S O

< A%, - A%]

= [y~ pll, (3:3)
which together with the last inequality implies that

Ve =Pl < ll%0 - plI. (34)
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Since p = Gp = Pc(I — vF1)Pc(I — voF>)p, Fj is {j-inverse-strongly monotone for j = 1,2,
and 0 < v; < 2¢; for j = 1,2, we deduce that, for any #n > 0,

1Gv, - pl?
= | Pc(f = wE)Pe(I = vaFy)v,, — Pe(l = wF)Pe(I - vaBy)p)|
< T = wF)Pc(I = vaFo)v, — (I = F)Pe(I - voFy)p|?
= ||[Pc = vaF2)vy = Pc( = voFa)p] = vi[FiPc(I = voFo)vy, — FiPc(I = vaFa)p] | g

< | Pell ~ vaFa)v, ~ Pl - vaF)p|?
+ (v = 20) | ELPe(I = voFa)v, — ELPe(I = s Fy)p)|
< ||Pc(t = vaFo)v, = Pe(l - vaEa)p|®
< |t = v2Fo)vu (I~ vaE)p]
= | s = p) = va(Fav, ~ Eap) |
< 1vu = pII* + va(va = 28) || Fovy — Fypl|®

<Ilv. - pl* (3.5)

(This shows that G : C — C is a nonexpansive mapping.) Since (y, +3,)& < y, foralln >0
and T is & -strictly pseudocontractive, utilizing Lemma 2.4, we obtain from (3.1), (3.4), and

(3.5)

17 =PIl = | Bi%n + YuGVa + 8, TGV, — pl|
= || Bu(®n = ) + Yu(GV = p) + 8,(TGv,, - p) |
< Bullxn = pll + | Ya(Gvi = p) + 8,(TGv, - p) |
< Bullxw = Il + (vu + 32)1GVi — Pl
< Bullxn = pll + (vu + 3 llve Pl
< Bullxn = pll + (vu + 8,) %0 = Pl

=l — pll. (36)

Noticing the boundedness of {Sx,}, we get sup,_, [lySx, — wEp| < M for some M > 0.
Moreover, utilizing Lemma 2.7, we deduce from (3.1), (3.6), and 0 < y < 7 that, for all

n>0,
I%441 = Pl
o, V, + (1 - a,,)Sx,,) (I = Ay F)yy p”

(
=[xy (
< || Ay (on Vatw + (@ = ) Sxn) = AuiaEp | + || (I = AuptF)yu — (I = At F)p |

= ”)"ny
0 Vatn + (1= 0)S%) = dontFp + (I = hnftF)y = (I = Auit F)p |

= M|ty Vitw — wFp) + (1 = ) (v Sx — uEp) |

+ (= huuE)yy = (I = 2wt F)p|
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< M[anlly Vaew — nFpll + (1= ) |y Sxn — wEpll] + (1 = 1u7) Iy — 2l
< hulan (v 11 Vi = Vpll + lly Vo = Epll) + (1 = ) [y Sx, — i Epl|]
+ (1= 2, 7) 2 —
< hn[oaypllan = pll + aully Vo = wEpll + (1 = a,)M] + (1= 2,7) 13 = pll
< hu[otnypllan = pll + max{M, |ly Vi — uFp|l}] + (1 = A7) 120 —
< Ay l1%n = pll + Aymax{M, ||y Vo - uFpll} + (1 - 1,7) |, - pll

= (1= 2 = yP)) % = pll + 1y max{M, ||y Vo - nEpll}

llyVp - wkpl
= (1= Au(r —y0) s — pll + Au(z —Vp)maX{ ,
T-Yyp T-yp
ly Vo — ukpll
<maxj [lx, - pll, ) .
T-yp T-yp
By induction, we obtain
llyVp - ubpl
llxx = pll smax{nxo -pl, , , VYn>0.
T-yp T-Yyp

Thus, {x,} is bounded and so are the sequences {u,}, {v,} and {y,}.
Step 2. We prove that lim,,_, « W =0.
Indeed, utilizing (2.1) and (2.3), we obtain

Vi1 = vall
= | ANt = A |
= [ Trasin i T = AN 1 BN) ANttt = Tragns o 4 = AnnBN) A~ 1|
< H]RN,AN,M (I = A1 BN) AN 100 — TR = ANBN) AN 0 H
+ ||]RN,AN,M (I = AuBN) AN Tt — TR = AN BN) AN M, ”
< | (T = A BN) AN s = (I = Ay Bn) AN thn |

* || (1 - )\N’nBN)AJrY;llunﬂ - (I - )\.N,nBN)qu\[ilun || + |)\.N,n+1 - )\‘N,nl
1
* (ﬁ Rt T = AnanBN) A st = (= donaBa) At |
N+
1
)‘-N,n

< Voot =l (1B ANt | 4 50) + | A3 001 = 23,

. ||<1—AN,WBN>A5X;JMM—/RN,xN,nu-AN,HBNmf:-lunn)

< [Anps1 = Al (| BN AL T st | + M)

+

+ | AN=tma1 = ANt (| BNt ANt || + 1\7[) + | AN th1 = A |

< ANl — )\N,n|(||BNA2[:11M”+1 ” + M)

+ | AN-1,n41 — )\N—l,n|(||BN—1A]r>[:12u”+1 ” + M)

Page 15 of 62
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+eet |)\1,n+1 - )\1,n|(||BlA2+1un+1 “ + M) + ||A2+1un+1 - Agun ||

N
< Mo ) Wit = di] + ks =, (3.7)

where

1
sup{ ||/RN,AN,,4+1 (I = AvuBN) AN th1 — (I = A uBa) AY sy, ”
n>0 N,n+1
1 ~
0 = 2 Ba) At = T (U = 2onBi) A3 | } <M
N,n

for some M > 0 and supnzO{Zfil 1B: A, tn || + A7I} < M, for some M > 0. Utilizing

n+l
Proposition 2.2(ii), (v), we have

122141 — 1|

= [ Antinn = A3

= | TR — rpg 1 Ang) A s = TP = raguAng) A2 |

A

= H Tr}g/:[:fM (1 'y, n+1AM)An+1 Xn+l — T(OM (pM)(] ™ nAM)A,H.l Xn+l ||

+ || Tr(;zi/l"/’M)(] - rM,nAM) %1lxn+1 - T(OM M) (1 'y, nAM) xn ||

® AM-1 O M-1
<| T,M’ff”' (I = "yt Am) Ayl Xt — T,(M_A: (] = rpg 1 Ang) AYT %00 I

| TSN = ragur Ap) AN it = TR = gy Ap) AN |
+ ” (- rMnAM)A +1 xn+1 -~ rMnAM)A xn”

T (Ormm)

|7at,n41 = Tad,nl _ _
= # || TM,n+1 (1 - rM,n+1AM)A],\,/.I,.11xn+1 - (1 - rM,n+1AM)A],\,/.I,.11xn+1 ||

YM,n+1

AM—I

+ st = Pt [An AN | + | AN %1 — A |

1

(O, —
= |t ne1 = ot |:||AMA2/£11xn+l ” + ﬁ ” TrM/:[fM - rM,n+1AM)A2/i11xn+l
M+

U = i An) AN ||} [ AM - AN |

” T(Onrem)

< Mpns1 = Tanl |:HAMA % H + b (I = g Aa) AM T 0

M,n+1

-~ rM,nJrlAM)AIy\i_llan ||:| + ot [P = Tl |:||A1A2+1xn+l ”

1 (©
+ el H Tr1 nl+1(ﬂl (I - rl,n+1A1)A2+1xn+l - (1 - rl,n+1A1)A2+1xn+1 ||
+

+ ||A2+1xn+1 - Agx,, ||
M

= MlZVk,nH = Tl + %6041 = %l (3.8)
k=1
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where M; > 0 is a constant such that, for each n > 0,

M
1 o _ _
Z[}}AkAﬁ&x”Hl || + }"— || Tr(,i):;(fk)(l - rk,n+1Ak)A];,+ixn+l - (1 - rk,n+1Ak)A;lf,+}xn+l ||]
k-1 k,n+1
< [Vh.
Furthermore, define y, = 8,x,, + (1 — 8,)w, for all n > 0. It follows that

Wyl — Wy
_ Ynit = Buni¥uir Yu = B
1P 1-Ba
V1 GV + 8,0 TGV ¥uGVy + 8, TGV,
) 1- B C 1-p
_ Vurt(GVui1 = GVy) + 8541 (TGVy1 — TGYy)
B 1-Bun

n+ n 5"‘*‘ 8"’
X (L _ V—)Gvn . (4 _ —)TGvn. (3.9)
1—ﬁn+1 1—,3,, l_ﬁnﬂ 1_1371

Since (y, + 8,)& < y, for all n > 0, utilizing Lemma 2.4, we have

” Vn+l(GVn+1 - GVn) + 8n+1(TGVn+1 - TGVn) H = (Vn+1 + 8n+1)” GVVHI - GVn ” (310)

Hence, it follows from (3.7)-(3.10) that

Wis1 — Wl
< ||yn+1(GVn+l - Gvn) + 8n+1(TGVn+1 - TGVn)||
B 1- :Bn+1
) 1)
+ ’L — Gl + ’—1 — 16,
l_ﬁnﬂ l_ﬂn l_lgnﬂ l_ﬂn
(Va1 + B41) Vn+l Vn
< IGVp1 = Gy + - GVl + I TGyl
1- /3n+1 s 8 1- IBVH—I 1- ,Bn ( ! g )
Vn+l Vn
= |GV — Gyl + - Gv, |l + I TGy
” n+l n” 1_[3n+1 1_‘3” (” n” ” n”)
VYn+1 Yn
< - - Gv,ll+ TG
< W =l + | T2 = 2 (1Gral +1 TG,
Y Vi Vi
~ 1
< Mo Nhimt = Aol + s — sl + ‘ Ze = (Gl + 1 TG,
i-1 1- ﬂn+1 1- ,Bn
N M
< MO Zp‘i,nﬂ - )"i,n| + MIZVk,VH—l - rk,nl + ||xn+l _xn”
i=1 k=1
Y+l Yn
| T Gl + TG (3.11)
’ 1- ﬁnﬂ 1- ﬁn ( ! ! )

In the meantime, simple calculation shows that

yn+1 _yn = ﬂ}’l(x}’l+1 _xn) + (1 - lgn)(WrHl - Wn) + (,BVH—I - ﬂn)(xnﬂ - Wn+1)~
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So, it follows from (3.11) that

1Yn+e1 = yull

< Bullxnwa —xull + @ = B)lIWis1 = Wall + 1Bt — Bulll %1 — W |l

N M
< Bullxpa —xull + 1 - ,Bn)|:MOZ|)¥i,n+l = Ail + MIZ|rk,n+1 = Tt | + 1 %a1 = Xl
i=1 k=1

Vil Y

+ ‘1 _Vgnﬂ 1 —nﬁn (||GV,,|| + ||TGVn||):| +1Bus1 = Bulll%ne1 = Wyl

N M
< s = Zall + Mo Y At = Aial + My Y _[Fiomer = Tl
i=1 k=1
— 1- + —
+ |Vn+1 J/n|( ,Bn) Vn|:3n+1 ﬁn| (”GVn” ¥ ||TGV,4||)
1- IBVH—l

+1Bus1 = Bulllxnsr — Wi |l

N M
=< ||xn+1 _xn” + MOZ|)"i,VI+1 - )\i,n| +M12|rk,n+l - rk,n|
i=1 k=1
1GVull + I TGV, GV, |l + | TGv,||
+ Vi1 — Vn|T + 1Bt = Bul| 1041 — Wi |l + 15

=< [%pe1 = %l

N M
+M; <Z|)"i,}’l+l — Aip| + Z|rk,n+1 — Tkl + [Vna1 = Vul + 1Bus1 — ,Bi’ll)r (3.12)
i=1

k=1

where sup,. o {[%411 = Wyl + ”GV””L% + A710 + Ml} < 1\712 for some Mg > 0.
On the other hand, define z, := o, Vx,, + (1 — «,,)Sx,, for all n > 0. Then as well known
Xps1 = Ay 2y + ([ = Ayt F)y, for all m > 0. Simple calculations show that

Zni1 = Zn = (0ni1 — @) (Va, = Sx) + @1 (Vitan — Vi)
+ (1= 001)(Sx11 — Sx),
Fns2 = X1 = A1 = An) (Y Zu = WEYn) + A1V (Zni1 — 2Zn)
+ (I = At F)Y i1 — (I = At L)Y

Since V is a p-contraction with coefficient p € [0,1) and S is a nonexpansive mapping, we
conclude that

1Znr1 — Zull < |01 — 0tnl [ VEy — Sxull + i |V — Vaull + (1 — ) 1S%00 — Skl
= |an+1 - an| ” Vxn - an” + an+1p”xn+1 _xn” + (1 - Oln+l)”xn+1 _xn”

= (1 —apa(l- ,0)) %041 = xnll + ltusn — anll Ve, — Sxull,
which, together with (3.12) and 0 < y < 7, implies that

”xn+2 — Xn+l ||

< |)¥n+1 - )\n| ”J/Zn - MFynll + )"n+1y ||Zn+1 - Zn”
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+ ” (I = 1t E)yns1 = (I = A1 hF)yy ”
< |)\n+1 - )\n| ||J/Zn - /’LFyrl” + )"rz+1y ||Zn+1 - Zn” + (1 - )\n+lf)”_yn+1 _yn”

< Anrt = Anllly 2w — nEyull + )Vn+1V[(1 oy (l— :0)) %01 = %4l
N

+ lotnr = ol | Vaty = Sx ] + (1 —)»n+1f)|:||xn+1 — %l + My (Zw,m — hin]
i=1

M
£ Y it = Tl + [Vt = Val + B —mﬂ

k=1
< (1 - )"n+1(f - )’) - )‘n+1an+1y(1 - 10)) ||xn+1 _xn” + |)"n+1 - )"n| ||)’Zn - /’LFyn”

N

+ |1 = ol | Vit = S| + M (ZMW — Xinl
i=1

M
) NPkt = Tl + V1 = vl + 1B —m)
k=1
N

M
< (1= My (L= p)) %1 — %4l + M3 { Z|)»i,n+1 = il + Zl"k,ml = Tkl
i-1 k=1

+ A1 = Al + 101 — @ul + | Busr = Bl + Vi1 — Vn|}’
where sup, . o{llYzn = wEyall + || Viy — Sx|| +M2} < Mj for some Ms > 0. Consequently,

%41 = Xl

a}’l
N M
Xy — X ~ Min — Nip— Tien — Vi
S(1_)\%0[;,1)/(1_10))” n n1||+M3 Z| in in 1|+Z|k,n k,n 1|
n i=1 n k=1 On
= Al o= utl  1Ba=Bual Iy —anl}
+ + + +
a}’l a}’l a}’l aVl
% — %u1 1 1
= (l — Aty (1 _p))A + (1 — Anoty (1 - p))”xn —xpall| — -
n-1 oy Oyl
N M
A pr,n — A1l . Z|’”k,n — k-1l . [An = Al
. oy Oy oy
i=1 k=1
ot = &t 1B = Buatl m—yn_n}
+ + +
oy, oy, oy,
[l — %1l M, 11 1
S(1—)»n01n7/(1—,0))L+)»n0!nJ/(1—,0)'4 — =
Oy )/(1—/)) )‘nan oy Oyl
N M
Xin — Nin- Yien — Vin— 1 .
+Z|t,n ;,nl|+z|k,n l;,n1|+_21_ n-1
" Anct; Py An0t;; o, An
1 oy — B- — V-
n 1- n-1 n |ﬁn ﬂn 1| i |yn Vn 1| ) (313)
Ay, o, An0t2 hnt2
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where sup, ., {1lx, —x,_1]| + A~/13} < M, for some M, > 0. From conditions (i)-(iv), it follows
that Y 2 e,y (1 - p) = 0o and

N M
: M, 1 1 1 [Aip = Aip-1l |7k = Tin-1l
L I NI
n—>00 )/(1 - :O) )‘nan oy Uy-1 i1 )»,,Oln P )»,,ot,,
i 1— An-1 1 1- Oyl 1Bn = Bu-al  1Yu = Vual -0
o? Ay Ay oy, Anot? Anoe

Thus, utilizing Lemma 2.8, we immediately conclude that

. [1%241 — %l
Iim — =

n— 00 oy

0.

So, from «,, — 0, it follows that
lim %41 — x4l = 0.
n— o0

Step 3. We prove that lim,,_, o ||x, — 4]l = 0, lim, 0 ||x, — V|l = 0, lim,,, 0 ||V, — GV, =
0, and lim,,_, o ||V, — TV,|| = 0.

Indeed, utilizing Lemmas 2.1 and 2.2(b), from (3.1), (3.4)-(3.5),and 0 < y < 7, we deduce
that

lyw - plII*
= || Bun + YuGVy + 8, TGV, — p|I*

2

puton =)+ 1= ) (T )

1_:3;4
GV, + 8, TGy, 2
= Bullan = plP + (1 - B, | L o220
l_ﬁn
WGV + 8, TGy, 2
- B.(1-B4) YT—M
W(Gv, — p) +8,(TGv,, — p) 2
= Pnll¥n — 2 1- n y(
Pulen = pI* + (1= ) —
2
yn_xn

- ,Bn(l - ﬁn)

1_:3;4
(va + 8% GV —pI> B

Sﬂn”xn_P”Z"'(l—ﬁn) ‘ ”yn_xn”2

1= Bn)? 1- By
B

= ,3n||xn —17||2 + (1 - ,Bn)HGVn —P||2 - 1 _nﬁ ”yn _anZ

2 2 B 2
=< Bullxn = pll +(1—l3n)||Vn—P|| _1—/3 lyn = %l

2 2 ﬁn 2
S,Bn”xn_p” +(1_ﬂn)||xn_p” - 1_[3 ”yn_xn”

2 IBVI 2

= ll%n —plI” = 1Yn = %ull%, (3.14)

1_/3;’1



Ceng et al. Journal of Inequalities and Applications (2015) 2015:16 Page 21 of 62

and hence

%1 — pII?
= [ Ay (@0 Vit + (1 = @,)Sx,) + (= nptF)y, - p||°
= | 2ony (@0 Vit + (1 = 0,)S5,) = At Ep + (I = Ayt E)yy — (I = 2yuiF)p|?
= || hon[ @y Vatn = 1Ep) + (1 = ) (v Sx — wEp) | + (I = doupt )y — (I = 2nuF)p|?
= | An[en(y Vau =y Vip) + (1 = ) (v S = ¥ Sp)]| + (I = AuptF)y = (I = At F)p
+ don[tuly Vo = wEp) + (1 - a)(y Sp — nEp) ] ||*
< || An[enly Vaew =y Vip) + (1 = ) (v S — ¥ Sp)]
+ (L= 2ulF)yn — (= utF)p|*
+ 2000 ((y Vo = WED), X1 = P) + 22n(1 = ,)((y Sp — WEP), X1 — P)
< [An]on(y Vitn = ¥ V) + (1 = ) (¥ Sx — v SP) |
| =AYy = (0 = 2 E)p ||
+ 2000 ((y Vo = WED), X1 — P) + 221 — 0,)((y Sp — WEP), i1 — )
< [Mn(etnyplln = pll + (= ety 2 — pl) + (1= 2,0 19 — 2]
+ 2000{(y Vi = WED), %1 — p) + 21 = ) hn((y Sp = WEP), %1 — p)
= [An(1 = a1 = )y 0 = pll + (1 = 2Dy — pI]”
+ 2000 ((y Vo = WED), Xipa1 — P) + 2201 — ,){(y Sp — WED), i1 — )
< [y 1% = pll + = 2 D)lly — pI ]
+ 200{ (¥ Vo = WED), %1 — p) + 22n(1 = 0) (v Sp = WEp), %1 — p)
- [m Ll - pl+ =200l —pn}2
+ 20n0tn((y Vo = WED), X1 = p) + 200n(1 = @,){(y Sp = 1WED), %11 = )
2

4
= hnlln = pll + (1= 2 0)llyn = pII?

+ 2)‘-;1“;1((7/ VP - MFP)’anrl —P> + 2)\n(1 - an)((VSP - :u“Fp)ranrl —P)

< b oy =l + ) 130 12 = 3 - 2
= Ans % p n n—P 1-8, In n

+ 2200n((y Vo = WED), %ni1 — P) + 22n(1 = 0,)( (¥ Sp — Ep), %ni1 — p)

2 -y? Bn(l = 1nT)
= (l_)\n )||xn—19||2— u”)’n _xn”z
T 1_:3;1

+ Z}Lnan((y Vp - MFP):anrl —P> + 2)\;’1(1 - an)((J/SP - /J“Fp)rxwrl —P)

ﬂn(l - )Lnf)
1- ,3;1

+ 2hn0nlly VP = wEp|[|%n1 — Il + 24nlly Sp — nEp|ll|1%ne1 = pl, (3.15)

2 2
=< ”xn —P” - ”yn _xn”
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which together with {8,} C [a, ] C (0,1), immediately yields

a(l —A,T)
li”nyn— I
—-a
Bl —1,7)
S %"yn_xnnz
_lgn

< lltn = pI* = a1 = PI* + 2Xn0tully Vo — wEp||[|%ne1 - pll
+20ully Sp = EP|[ %01 = Pl
=< llxn _xwrl“(”xn =Pl + [1%nn —P||)

+ 2hn0nlly VP — wEp|[|Xn1 — Il + 24nlly Sp — nEp|ll|%ne1 — p.-

Since A, = 0, a,, = 0, ||x,451 — %, || = 0, and {x,} is bounded, we have

lim ||y, — x| = 0. (3.16)
n— 00
Observe that
. 2
| Akx, - p|* = | Th L = 1A Ay 20 = TroR I = 1, AR |

<A Byt
= HAlr(t_lxn _PH2 + rk,n(rk,n - ZMk)HAkAﬁ_lxn —AkP“Z

< %0 = PI? + Fion(rion — 200) | Ax AN %, — Agp | (3.17)
and

| Aty =p|* = ki U = RinB) AL 1 = T, (= 2iBp|
< (= %inB) Aty — (I = 2iBi)p |
< | A5, = p||* + hinlhin — 200 || BiAT 1, - Bip|)?
< Nt =PI + 2i (i = 20 | Bi ALt — Bip |

< Won =PI + At = 200) | Bi Ay — Bp | (3.18)
forie{1,2,...,N}and k € {1,2,..., M}. Combining (3.14), (3.17), and (3.18), we get

/3
Iy = pI* < Balln =PI + A= B v = pII* - "y =l = xal?

< Ballxn = pII% + (1= B[V - pI?

< Bulln —pI? + (1= B) | Al - p|*

< Bulltn = pI* + U= B[Nt = PI* + At i — 205)| Bi AL 11 — Bip|) ]

< Bulln = I + (= B[ | A% = p||* + A (hin — 200) | Bi A 11— Bip ]
< Bulln =PI + (1= Ba) [0 =PI + 7o (rion — 2001 | Ak AX s — Arp |

+ )\i,n()"i,n - 27’1’)HBZ’A;1M”’ _Bipnz]
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= |lxy —P||2 +(1- ﬂn)[rk,n(rk,n - 244k) ”AkA]:,_lxn _AkP“2
+ NinNin — 213) || Bi AL My — BiPHZ],

which immediately leads to

1- ,Bn)[rk,n(zlu'k ~ Tkn) ”AkA];_lxn - AkP||2 + Xin(20; = Xin) ”Biqu_lun - BiPHZ]
< l%x = pI1* = llyn = pII?

< 1% = yull (1122 = 21l + 1y = p1I)-

Since [lx, — yull = 0, {B4} C [a,b] C (0,1), {Aiu} C laibi] C (0,2m:), {ren} C e di] C
(0,2¢), i €{1,2,...,N}, ke {1,2,...,M}, and {«x,}, {y,} are bounded sequences, we have

lim |AxAS "%, —Awp| =0 and  lim ||B;A T u, - Bip|| =0 (3.19)
n—00 n—00

forall k €{1,2,...,M}and i< {1,2,...,N}.

Furthermore, by Proposition 2.2(ii) and Lemma 2.2(a), we have
| A%~
= | T80 = renA) A = TSR = riaA)p |
< (U = renA) AR, — (I - riuAr)p, Alx, — p)
= (10 =k AL, — =g Ap| + | Al
U = AR Ay = (T = riuA)p — (MK = ) )
< (18, pl | A, — |48, = Al = (4285 5, - 4ap) ),
which implies that
| A%xn - |
< a5 - p|)” - | A5 %0 - Al = i (Ax Ay 2, - Awp) |
= | Ak = pl” = | A% - Ak = 7 | A - A |
+ 27k (AR, — Ay, Ak AN %, — Arp)
< a8 w0 =PI = A = Ak |+ 2rin | A5 — Al | | A - Av|
<l — pl® — || A%, — Ak, | + 27| AR, — Al ||| Ak AR, — Arp|- (320)
By Lemma 2.2(a) and Lemma 2.10, we obtain
| Ajen = p|
=

< (U = AinB) ATty — (I = 2y uBi)p, Al — p)

i 2
TR T = hiB) AL = Ty, = XinBO)D||

1 ) ’
= S (10 = 2uB) A 1 = U = 24, BIp|* + | At = p |
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7 = 2B A sy = (I = 2iBi)p — (Al - p) )

1 X i i X X

< S (1A = p [+ | At = | = | AT s = At = 2 (Bi A} 0~ Bip) )
1 . , , .

< 5 (It =1 + | A0 —p|P = | A5 = ALty = 2 (BiAE 1, - Bip) %)
1 , ) . ,

= 5 (= —plI? + | Al —p||* — | ATy — ALty = i (B AT 1, — Bip) |°),

which immediately leads to
P
=< “xn —P||2 - “Ail_lun - quun - A'i,n (BiAiq_lun —BiP) ”2
= o = plI® = || AT w, = Aku, | = 22, | BiAT w, - Bip|®
+ 2)»i,,,<A‘;,_1u,, - Ai,un,BiAi,_lun - B,'p)

< lxn —pl?* = | AT — Al H2 + 20| ALy — Al ||| BiAL - Bip|. (3.21)

Combining (3.14) and (3.21), we conclude that

Bn
1_:3n

2
”yn _xn”

Iy = pI* < Ballw =PI + A= B Iva = pII* -

< Bullxn = pl* + A= B)lIva - plI®

< Ballxn —pI? + (1= B) | At — |

< Bulln = pI* + A= B[l — pI> = | AL 10y — Al
+ 2| At — Ayt ||| BiA 1w~ Bip|]

< 1w = pI? = A= B) | ALy — Al |

+ 2Aip HA‘;IM,, - Ai,u,, H HBiAi,_lun —-Bip

which yields
(1 - ﬂn) H qu_lun - Ailun Hz
<% =PI = lyn = PI* + 2240 | Ay — Al ||| B AL i — Bip ||

< 160 = Yull (16 =PI+ 19 = PI) + 2050 || AL 11 = Ajya || B A 1 — Bip .

Since {,Bn} C [ﬂ: b] C (0’ 1)r {)"i,n} C [ﬂir bl] - (0: 2771'): i= 1r2! .. ~7N’ and {un}’ {xn}’ and {yn}
are bounded sequences, we deduce from (3.19) and ||x,, — ¥, || — O that

lim | A ', — Alu,| =0, Vie{l,2,...,N} (3.22)

n—00

Also, combining (3.3), (3.14), and (3.20), we deduce that

P 2

Iy = pI* < Balln =PI + A= B Iva = pII* - -5 IYn = %n

< Bullxn = plI* + @ = B) Ve — pII?
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< Bullxn _P”Z + (1= By)lluy _P||2

< Bulln —plI* + (1 = B)| A%, - p|

< Bulln —pl% + (1= B)[l1%: — pI1? = || A%, — Ak, |

+ 2rk || A’;_lxn - A’;xn || HAkAﬁ"lx,, —Akp”]
< Il = pI> = (1= B,) || A%, — Ak, |

+ 27k | AN, — AR || Ak AS %, — Arp

’

which yields

(1 - ,Bn) “ Aﬁ_lxn - Aﬁxn ”2
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< N = I = lyn =PI + 27k | AX 0, — AR | || Ak A% 5, - Arp |

< Nt = yull (1% = Il + Iy = pIl) + 2700 | AS o — AR ||| Ac AS %, — Arp|.

Since {B,} C [a,b] C (0,1), {riu} C lcxrdi] € (0,2uk) for k =1,2,...,M, and {x,}, {y,} are

bounded sequences, we deduce from (3.19) and ||x,, — y,|| — O that

lim | A% %, - Ak, | =0, Vke{l,2,...,M}

n—00

Hence, from (3.22) and (3.23), we get

%0 — tull = || AYn — A, |

n

< H Agx,, — Aix,, ” + H Ai,xy, - Aﬁxn ” +oeet H AM_lx,,

— 0 asn—> o0
and

litw = vall = | AQut — AN 1 |

< | Adun — Apu|| + | At — Ada]| + -+ + | AN s,

— 0 asn— o0,

respectively. Thus, from (3.24) and (3.25), we obtain

”xn - Vn” = ”xn - un” + ”Mrl - Vn”

— 0 asn— oo.

(3.23)
— A x|

(3.24)
— AN,

(3.25)

(3.26)

On the other hand, for simplicity, we write p = Pc(I — voF3)p, V,, = Pc(I — v2F3)v,, and

k, = Gv, = Pc(I — viF,)v, for all n > 1. Then

p=Gp=Pc(l—viF)p=Pc(I—viF)Pc(I-v2F)p.
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We now show that lim,,_, o, ||Gv, — v,|| = 0, that is, lim,_, ||k, — v,|| = 0. As a matter of
fact, for p € 2, it follows from (3.4), (3.5), and (3.14) that

B
l_ﬂn

Iys = PI? < Bullxa = pII* + (L= B)IGVs - plI* - - xalI?

< Bullxn —pII” + A= B GV, — pl?

= Bullxn — 11 + (L= Bo)llkn — pII?

< Bullxn = pI* + @ = B[ Vs = BI* + vi(vy — 280) | Fyv — Fipl?]

< Bullxn = pI* + A= B)[IVa = pI* + v2(va = 28) | Favss — Fop|)?
+v1(v1 = 20| Fyv — Fip?]

< Bullxn = pII* + @ = B[ 1% — pII* + va(v2 = 285) | Fovy — Fopl®
+ (v = 280) | Fy¥ — Fipl1?]

= [l = plI* + (1= Bu)[v2(v2 = 285) | Fovy — Fop®

+ (v = 20) 17, - FipI1%], (3:27)
which immediately yields

(1= B)[v2(282 = V)IFvy = Fopll® + vi(2¢1 = vi) | Fivs — Fip11?]
<% = pII* = lyn - pII?

= “xn _yn”(”xn —P|| + “yn _p”)'

Since ||, — y4ll = 0, {B4} C [a,b] C (0,1), v; € (0,2¢;),j =1,2, and {x,}, {y,} are bounded
sequences, we have

lim |Eyvy —Fopll=0 and  lim ||E;¥, — Fip|| = 0. (3.28)

Also, in terms of the firm nonexpansivity of Pc and the ¢;-inverse-strong monotonicity of
F; for j = 1,2, we obtain from v; € (0,2¢;), j = 1,2, and (3.5)

I = BI? = | Pcll = vaFa)v, - Pell - v Ea)p |
<= voFy)vy — (I = vaFy)p, v, — p)
- %[H (I~ v2Fy)vy — (= vaF)p|” + 19 - BII?
~ [T = v2B2)v — T =~ vaFy)p — s - )]
< 2 (v =l + 172~ 1P
— | W =) = o (Fav = Fop) - (0 - P)|*]
= E[nvn —pIP + 19 =PI = | = 70) ~ 0 -]

+205((vy = V) = (p = D), Fav — Fap) = v3 | Favyy — Fopl|*]
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and
“kn —19||2 = ”PC(I - UlFl)f/n —PC(]_ V1F1)1~9H2
< (I = viF)Vy — [ = viF)p, kn — p)
1 o ~
= S0 =wE7s = U= mE)B|* + kI

— | = wF)P = (I = nF)p - (ke - )| ]

IA

Tp o . - ~
S L1 =B + 1k =PI = [ k) + 0= D)

+ 20(Fi7 = Fip, (7 = ki) + (0 = D)) = v | Fu9 = Fip1?]

1

< o[ =pI + Iy =pI? = |G = k) + (=P

+ 2\)1<F11~/n — Flﬁ, (f/n - kn) + (p —p))].
Thus, we have

19 = BI% < v = pIP* = |0 = ) = (0 - P)|*

+ 2V2<(Vn ~Vn) = (p D) F2vu - F2P> - V% | Favy — F2P||2 (3.29)
and

Ik = plI> < v = plI> = |G = k) + (0 - D)
+ 201 | Fyv = Fipll | (7 = k) + (p = P) |- (3.30)

Consequently, from (3.4), (3.27), and (3.29), it follows that

lyn = PI* < Bulltn —pI? + A= B9 = BI* + vi(v1 — 28) | Fi¥s — Fip 1]
< Bullsn = pI® + A= B 17w - BII?
< Bulltw —pI* + (1= B)[Iva —pI? = |~ ¥) - 0~ D)
+205((vis = 7) = (p = P), Faviu = Eap) = v3 | Fav,, — Fop|*]
< Bulltn = pI? + @ = B) 120 =PI = | (v = 7) = (0 - D) |*
+203 | (v = ) = (0 = D) | [ Favs = Fopl]
< % =PI = (= B) |V = 7) ~ 0= D) |

+2v, ||(Vn —V) = (p _13)“ |E2v — Fopll,
which hence leads to
(L= Ba) | (v =) = (0 - D)

= ”xn —P||2 - ”yn —P||2 + 2‘)2 ||(Vn - 1771) - (P—i’)“ ||F2Vn _FZPH

< 1% = yull (1% = pIl + Iy = p) + 202 | (Vi = ¥) = (p = D) ||| Favi = Fopl.
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Since |[|x, _yn” — 0, {Bs} C [a,b] C (0,1), vy € (0’252)» and (%}, {yn}: {va}s {i}n} are
bounded sequences, we obtain from (3.28)

lim [|(v,, = ¥) = (p - p)| = 0. (331)
Furthermore, from (3.4), (3.27), and (3.30), it follows that

lyn = pI* < Bulls — pII* + AL = B llkn — pII?
< Bullw —pI* + (= B [I1va — pI? = |G~ k) + 0 - D)
+ 20| — Epll|| 5 — ki) + (0~ )]
< Bullw =1 + = B)[Il5n — p1* = | Gu — k) + (0~ )|
+ 21| Fiy = Fipll |0 — k) + (0 = P) ]
= ltn = pI> = (L= B)| (5 — k) + 0~ D)
+ 201 | Fy¥ = Fipll || — k) + (0 = P)

’

which hence yields

(1= 8| G- k) + 0 -D)|°
< 1%, = pII* = llyn = pII* + 201l Fs¥, — Eipll| (5 — k) + (0 ) |

< 1% = yull (12 = Pl + 19 = pII) + 20111 F1¥ = Bl | (7 = k) + (0 = D) |-

Since ||xn —ynll — 0, {,Bn} - [ﬂ;b] C (O¢ 1): V1 € (0124‘1)! and {xn}’ {yn}7 {kn}r {fjn} are
bounded sequences, we obtain from (3.28)

lim |7 ~ k) + (o - p)| = 0. (332)
Note that
Vi = knll < ||(Vn_17n)_(p_i))|| + ”(in_kn)"'(p_ﬁ)”

Hence, from (3.31) and (3.32), we get

lim ||v, — Gv,|| = lim ||v, — k| = 0. (3.33)
n—0oQ Hn—0Q
Also, observe that

Yn—%Xu = yn(GVn _xn) + (Sn(TGVn _xn)r Vn>0.

Hence, we obtain

3ull TGV, = vl < 8,1 TGV — Xull + 8nll = Vil
= ”yn —%n = Yn(GVy — %) ” + 8 1% — vl

S Yn = %ull + Yull GV = Xull + 8nll% = Vil
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S Yn = %ull + YullGVi = Vil + Vullvie = 2|l + Sl — viall
= ¥n = xull + YullGVvy = v ll + ()’n +8) 1% — Vil

< yn = %ull + 11GVS = Vull + [0 = Vall.
So, from liminf,_, ., 8, > 0, (3.16), (3.26), and (3.33), it follows that
nlLrI;o ITGv, —v,| = 0. (3.34)
In addition, noticing that

1TV = vull < 1 Tvy = TGVl + 1 TGVy = vall

S W= Gvull + I TGy, — vyl
we know from (3.33) and (3.34) that
lim | Tv, —v,| = 0. (3.35)
n— o0

Step 4. We prove that w,,(x,) C £2.

Indeed, since H is reflexive and {x,} is bounded, there exists at least a weak convergence
subsequence of {x,}. Hence it is well known that w,,(x,) # ¥. Now, take an arbitrary w €
wy (). Then there exists a subsequence {x,,} of {x,} such that x,, = w. From (3.22)-(3.24)
and (3.26) we have u,,, = w, v,, = w, Aty — W, and Aﬁtx,,l. — w,wherem € {1,2,...,N}
and k € {1,2,...,M}. Utilizing Lemma 2.3(ii), we deduce from v,, = w and (3.35) that
w € Fix(T). In the meantime, utilizing Lemma 2.5, we obtain from v,, — w and (3.33)
w € GSVI(G). Next, we prove that w € ﬂ]y\n[zl I(B,y, R,;). As a matter of fact, since B,, is
nm-inverse-strongly monotone, B,, is a monotone and Lipschitz continuous mapping. It
follows from Lemma 2.13 that R,,, + B,, is maximal monotone. Let (v,g) € G(R,, + B,,), that
is, g — B,V € R,,v. Again, since A% u,, = Jr, 500 (L= A uBr) APy, n>1,me (1,2,...,N},

}"WI,VI

we have
AT = DB ATty € (I AyuRon) Ay,

that is,

1
(A;n_lu” - A:lnun - )\m,anAnm_lun) € RmA:lnun.

m,n

In terms of the monotonicity of R,,, we get

1
<v— Ay, g — Byv— .

m,n

(A7 — Ay — Am,anA;”-lun)> >0,
and hence

(v—Au,,g)

> <V - AVuy, By + (A — Ay — )Lm,,,BmAZq‘lun)>

m,n
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1
= <V ~ AUy, By = By Aty + By Aty — By ATy, + T(Af-lun - A;”un)>

m,n

1
> (v— ALt By Aty — By A wy) + <v - A"y, -~ (AT uy, — A;"un)>.
nm,n

In particular,
(v - A:Zu,,i,g) > (v - A:,”iu,,i,BmATiuni - BmAnmi’lunl)

1
+ <v - Ay, —— (A;’;’luni - AZ”H,-)>'

)\m,ni

Since || A" u, — A7 ', || — 0 (due to (3.22)) and ||B,, A7 u,, — B,y A7 1w, || — 0 (due to the
Lipschitz continuity of B,,), we conclude from A}u,, — w and {%;,} C [a;,b:] C (0,2n;)
that

lim (v — AJu,,g) = (v—w,g) > 0.

i—00

It follows from the maximal monotonicity of B,, + R,, that 0 € (R, + B,,)w, that is, w €
1(B,, R,,). Therefore, w € ﬂi\nle I(B,;, R,,). Next we prove that w € ﬂkle GMEP(Ox, @i, Ax).
Since Akx, = ORI — ry  A) AR %, n> 1, k € (1,2,..., M}, we have

Tk,n

Ok (Akxmy) + 0c(0) — o (Alx) + (Ar AL %0,y — Alix)

1
+ —(y - Aﬁxn, A/;x,, - Aﬁ_lx,,> > 0.
Tk,n

By (A2), we have
1
) (A) (A By B A= 47 2 04, ).
ol
Letz, =ty+ (1 —t)wforall £ € (0,1] and y € C. This implies that z; € C. Then we have

(Zf - AﬁxmAth>
2 () 20 - A Az~ B e )
An = Ay

> + @k(zt, Aﬁx,,)
Tk,

k
- <Zt - Anx,,,

= o (Alxn) = gu(ze) + (2 — Al Arze — A Ak,
Akx, — A’;lx,,>

k k k-1 k
+ (zt — A X, Ak ALxy — Ak A x,,) - <zt — A X, "
k.n

+ Oz, Afxy). (3.36)

By (3.23), we have ||Ax A’;x,, —AkA’y‘,‘lx,, || = 0 as n — oo. Furthermore, by the monotonic-
ity of Ak, we obtain (z; — A’n‘xn,Akzt - AkAﬁx,,) > 0. Then, by (A4), we obtain

(2t = w, Arzs) = ox(W) — oi(z:) + Oz, ). (3.37)
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Utilizing (A1), (A4), and (3.37), we have

0 = Owl(zs,2) + i(ze) — or(2r)
<tO(z,y) + (1 - 1)Or(ze, w) + tor(y) + (1 — )or (W) — o (2¢)
< t[Ok(z9) + ) — or(2) | + A= ) (2, — w, Axzy)

=t O(z9) + 0k () — prlz) | + (1= Dty — w, Aszy),
and hence
0 < Oz, ) + o () — pilze) + A= E)(y = w, Agz).
Letting £ — 0, we have, for eachy € C,
0 < Ocw,y) + o) — (W) + (y — w, Agw).

This implies that w € GMEP(Oy, ¢k, Ax), and hence, w € ﬂﬁl GMEP(Oy, ¢x, Ar). Thus,
we 2 =\ Fix(T,) N ﬂ’,}’il GMEP(Oy, i, Ax) N ﬂzﬂ I(B,;, R,). Consequently, w €
ML, GMEP(Oy, 1, Ax) N (_ 1By, R,n) N GSVI(G) N Fix(T) =: £2. This shows that
wy(x,) C 2.

Step 5. We prove that w,(x,) C Z.

Indeed, take an arbitrary w € w,,(x,). Then there exists a subsequence {x,,} of {x,} such
that x,,, — w. Utilizing (3.15), we obtain for all p € £2,

2
l%141 = Pl

7:2_]/2 Bn(1—A,7)
<|1-A, % = pII> = ="y — %?
T 1-8,

+ 225,00 ( (¥ VI = WED), %1 — ) + 22n(1 = ,)((¥ Sp — LED), X1 — D)

< Nn = PII* + 22000((y V = WF)p, %1 = p) + 220(1 = ) (v Sp — WED), %1 — ),
which implies that

((WF =y S)p,xn — p)
= ((MF -y S)p, %y —xn+1> + ((MF =Y S)PsXnnt —P)

% = pII* = %1 = pII?
2n(l—a)

< |(F -y Sp|llxn — xnall +

Ay

- ((yV = uF)p, %541 - p)

1-q

%6 — %1 1 (1l =Pl + s —P||)

< | (WF =y S)p|I1xn = xuia | +

2h5(1 = o)
o
+ 1o [V = uE)p|Ixn - p. (3:38)
—a,
Since o, — 0, ||x; — %,41]| = 0, and
lim (19 = X |l - lim [ = Xl ) %n -0,

n—00 )\n n—00 oy )\n
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from (3.38), we conclude that

((WF =y S)p,w = p) = lim ((WF — y S)p, %, - p)

<lim sup((MF —YS)b%n —P)

n— 00
<0, Vpeg, (3.39)
that is,
(WF =y S)p,w—-p)<0, Vpeg. (3.40)

In addition, observe that

un=t & pn>=1-,/1-pu(2n-puk?)

& J1-u(2n-pe?)=1-uny

& 1-2un+pPc* =1-2un + p*n?

& K2

& k=7 (3.41)

and

((WF =y S)x— (WF - yS)y,x—y) = p(Fx - Fy,x —y) — y (Sx - Sy,x - y)
> unlx-yI* - yllx -yl

=(un-y)lx-yl* VxyeH.

Since 0 < y < 7 and « > 7, we know that un > 7 > y and hence the mapping uF — yS is
monotone. Moreover, it is clear that the mapping uF — ¥ S is (uk + y)-Lipschitzian. So, by
Minty?s lemma B8], we know that (3.40) is equivalent to the VIP

(WF =y S)yw,p-w)>=0, Vpeg. (3.42)

This shows that w € VI(§2, uF — yS) =: &. Thus, we derive w,(x,) C & according to the
arbitrariness of w.

Step 6. We prove that lim,_,  [l%, — x*|| = 0 provided ||y, — Tx,|| = o(c,), where {x*} =
VI(E,uF -yV).

Indeed, it is clear that uF — yV is (un — yp)-strongly monotone and (uk + yp)-
Lipschitzian. Then it is well known that VI(&Z, uF — y V) is a singleton and hence we write
VI(E, uF —yV) = {x*}, that is, VI(VI(2, uF — yS), uF -y V) = {x*}.

Utilizing (3.6) and (3.15) with p = x*, we get

o

< [rn(@nyp |0 =] + A= @)y [ —a|) + (1 = 2007) |30 — ¥ [ ]
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+ 220t (v VA" — EX*), i1 — &%) + 2(1 — ) hn( (v S* — Fx*), 2001 — &%)
< [y (1= 0@ = p)) [ = 2° + (L= 20 [0 =2 ]°
+ 200t (y V™ — WFX®), 20001 — 2%) + 2(1 = o)A (7 S6™ — FX*), X041 — %)
= [(1=Aur =) = 2ty (1= ) |00 = 5[ I* + 20s00a{(y V = E)", 01 — )
+2(1 = ) hn((y'S = WE)X*, i1 — &¥)
< (1= 2T = ) = Aty (L= ) 300 =2 |* + 200y V = wEI*, 2001 — 2°)
+2(1 = o) h((y S™ — WFX*), X0 — 57
< (1= 2y (1= 0)) [0 = 2| + 20n00u{(y V = uF)x*, 3,1 — )

+2(1 = ) hn((y'S = WE)X*, a1 — 7). (3.43)
Now let us show that

lim sup((y V — uF)x*, %, — x*) <0. (3.44)

n—o0

In fact, we may assume, without loss of generality, that there exists a subsequence {x,,} of
{xx} such that x,, —~ x and

limsup((y V — uF)x*, %, — x*)

n—00

= ‘lim((yV = WE)x", %, —x*) = ((yV — uF)x*, % —x*). (3.45)
j—>o0

In terms of the fact that w,(x,) C &, we get x € &. Since VI(E, uF — y V) = {x*}, it is easy
to see from (3.45) that

limsup((y V ~ wE)", 2, —5°) = {(y V — wE)", 3 2"} <,

n—o0

that is, (3.44) holds.
In addition, from x* € & and condition (vi) we obtain

(S = wF)a" 01 — 2)
= (S = WE)x", %11 = P + ('S = WE)x", Poitys — %)
<((yS = WF)x*, %1 = Po%uia)
< | (vS - uF)x* | d(%s1, 22)

1 1/6
< | (vS-uP)x*| (; %1 — Txn+1||) . (3.46)
Utilizing Lemma 2.3(i) we have

”xn+l - Txn+1 ”

= ||xn+1 - Txn” + ” Txn - Txn+l||
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1+¢
= E %6 = Xpaa Il + %01 = T ||
1+¢
= E”xn = X1l + ”}‘ny(anvxn +(1 _an)an) + (I = Ayt F)y, — Txy ”
1+¢
= E %0 = %1l + 190 = Toull + Xy ”V(Oln Vo, + (1 - an)an) — WEyy ”
1+& ~
= E %6 = xusa | + 1Yn = Txull + X, Ms, (3.47)

where sup, . lya,(Va, — Sx,) + ySx, — uFy,ll < Ms for some Ms > 0. Hence, for a big
enough constant /_q >0, from (3.46), we have

((yS = uF)x*, 541 — x¥)

. 1 1/6
<||(vS - uF)x*| (E (B ||)

CTi(1+¢ o\
= (S = wE) | 2 ( T 10 = 5wl + o = Tl 4 2ns
- 1/6
S kl()‘n + ||xn _xn+1” + ”yn - Txn”)
T n — n+ n— T n 1/9
_ e (1 , = 1”; llyn — T |I> ’ (3.48)

Combining (3.43) and (3.48), we get

—
< (1= 2ty (L= ) 60 = |* + 2000{ (¥ V = )", 201 — 5°)

+2(1 = ) hn{(y'S — WF)x*, %001 — &)

= (1= 2ty (1= 0)) [0 = 2| + Anctuy (1 = p) - [((VV — WE)x*, 041 — %)

2
y(1-p)

+ 1- Ol,,)((]/S - /vLF)x*:erl —x*) :|
Oy

2 2 *
< (L= ety (L= ) [n = 2| + Anoay (1= p) - A=) [((VV — WE)X*, %41 — %)
_ e _ _T 1/0
n le(l n ”xn xn+1|| + ”yn xn”) ] (3'49)
oy An
1/6
Since Y ) Anat, = 00, limsup,,_, o i—z < 00, ||%; — %41l = o(ey,), and '\;—n — 0, we conclude

from (3.44) and the assumption ||y, — Tx,l|| = o(a,) that Y02 Ao,y (1 - p) = 00,

lim

n—00 An n— 00

”xn - xn+1|| + ||yn - Txn” . <”xn _xn+1|| ”yn - Tan > oy
= lim + — =

ay ay An

and

18
[((J/ V= WE)x*, %1 — ")+ kg —— (1

o7

1/6
Xy — X + - Tx
" ” n n+1|| ”yn n”) ]SO'

lim
n—>o00 y(1-p) An
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Therefore, applying Lemma 2.8 to (3.49) we infer that lim,,_, » ||x, — *|| = 0. The proof of
part (a) is complete.

It is easy to see that part (b) now becomes a straightforward consequence of part (a)
since, if V = 0, THVIP (1.10) reduces to the VIP in part (b). This completes the proof. [J

Remark 3.1 It is clear that the iterative scheme (3.1) is different from the one considered
in [7, 32]. We extend the three-step iterative scheme in [7, Algorithm I] to the four-step
iterative scheme for THVIP (1.10) by combining Korpelevich?s extragradient method, the
viscosity approximation method, the hybrid steepest-descent method [41] and Mann?s it-
eration method. It is worth pointing out that under the lack of assumptions similar to
those in [32, Theorem 3.2], for example, {x,} is bounded and Fix(T) N intC # @, the se-
quence {x,} generated by (3.1) converges strongly to a point x* € ﬂﬁl GMEP(Oy, ¢x, Ax) N
ﬂf\il I(B;,R;) N GSVI(G) N Fix(T) =: £2, which is a unique solution x* € Z of THVIP
(1.10) (over the fixed point set of a strictly pseudocontractive mapping 7'), that is, ((uF —
yV)x*,p—x*) > 0, Vp € E. We note that the nonexpansive mapping 7 in [32] is extended
to a strictly pseudocontractive mapping 7 in (3.1).

Remark 3.2 Theorem 3.1 improves and extends Theorems 3.1 and 3.2 in [32] and Theo-
rem 14 in [7] in the following aspects:
(a) THVIP (1.10) with the unique solution x* € §2 satisfying

X" = Pt GMEP(©00.A0N MY, 18, R)NGSVI(G) Fix(T) (I-(uF -yS))x*

is more general than the problem of finding a point x € C satisfying ¥ = Prix(1)S¥ in
[32] and than the problem of finding a point x* € Fix(7) N VI(C, A) satisfying

x* = Prixcrynvicc,a) — (WF — y S))x* in [7, Theorem 14]. It is worth to point out that S
is nonexpansive if and only if the complement I — S is %—inverse—strongly monotone;
see [15].

(b) The four-step iterative scheme (3.1) for THVIP (1.10) is more flexible and subtle than
the three-step iterative scheme considered in [7, Algorithm I] and than the two-step
iterative scheme studied in [32] because it can be used to solve several kinds of
problems, for example, THVIP, HVIP, and the problem of finding a common point
of four sets: ﬂﬁl GMEP(Oy, ¢k, Ax), ﬂf\il I(B;, R;), GSVI(G), and Fix(T). In
addition, Theorem 3.1 drops the crucial requirements in [32, Theorem 3.2] that
lim,_, o ‘;—: =0, lim,_, % =0, Fix(T) NintC # @, and {«,,} is bounded, and also
removes the crucial ones in [7, Theorem 14] that Y7 &, < 00, lim,,— oo (/A2) = 0,
and [|%,41 — %l + %4 — zu || = 0(22). In the meantime, Problem 1.1 (that is, Problem II
in [7]) is extended and generalized to the setting of GSVI (1.4), finitely many
GMEDPs, and finitely many variational inclusions in Problem 1.2.

(c) The technique used in Theorem 3.1 is different from the one used in
[32, Theorems 3.1 and 3.2] and in [7, Theorem 14] because we used the properties
of strictly pseudocontractive mappings (see Lemmas 2.3 and 2.4), the properties of
resolvent operators and maximal monotone mappings (see Proposition 2.2,

Remark 2.2 and Lemmas 2.9-2.13), the fixed point equation

x* = Pc(I — viF1)Pc(I — voFp)x* equivalent to GSVI (1.4) (see Proposition 2.3), and
contractive coefficient estimates for contractions associated with nonexpansive
mappings (see Lemma 2.7).
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(d) Compared with the restrictions on the parameter sequences in [32, Theorem 3.2]
and [7, Theorem 14], respectively, the hypotheses (iii)-(iv) in Theorem 3.1 are
additionally added because Theorem 3.1 involves a quite complex problem, that is,
THVIP (1.10) (over the fixed point set Fix(T') of a strictly pseudocontractive
mapping 7T') with constraints of several problems: GSVI (1.4), finitely many GMEPs,
and finitely many variational inclusions.

We prove the strong convergence of the proposed algorithm to a unique solution of
THVI Problem 1.2.

Theorem 3.2 In addition to Assumption 3.1, suppose that
(i) limy—oo Ay =0, limy, oy =0 and Yy 2o Autty = 00;

(il) Bu+¥u+8n=1Land (yy+8,)5 < yuforalln>0;

(iii) liminf,_ o 8, >0 and {B,} C [a,b] C (0,1);

(iv) limy—oo(An/e?) =0 and ||x — Tx|| > k-d(x,2),Vx e C, for some k.
If {Sx,} is bounded, then

(a) wwlx,) C 2 provided ||x, — xy41]| = 0 (1 — 00);

(b) wwlxn) C & provided ||x, = %5111l = 0(A,);

(c) {x,} converges strongly to a unique solution of Problem 1.2 provided

16 = %net ll + 1% — T4l = 0()\,,(15).

Proof Since the solution set = of the HVIP (1.11) is nonempty, it is well known that §2 # .
As in the proof of Theorem 3.1, put

AL = TR = iy AT = 1y 1 pAga) -+ T = 1Ay

forallk €{1,2,...,M}and n > 1,
A = TRy T = XinB)R, 131, I = AicinBic1) TRy, U= AruBi)

forallie{1,2,...,N}, A2 =1, and A? = I, where I is the identity mapping on H. Then we
have u,, = AMx, and v, = ANu,.

The rest of the proof is divided into several steps.

Step 1. As in the proof (Step 1) of Theorem 3.1, {x,} is bounded.

Step 2. We prove that w,,(x,) C §2 provided ||x;,, — x,.,1]/] = 0 (1 — 00).

Indeed, we first show that lim,,_, o, ||, — || = 0, lim,_ o [|%; — V|l = 0, lim,,_, o ||V, —
Gv,|| =0, and lim,,_, o ||V, — TV,|| = 0.

As a matter of fact, utilizing Lemmas 2.1 and 2.2(b), from (3.1), (3.4), (3.5),and 0 < y < 7,
we deduce

Iy - pII?
= | Buxu + Yu Gy + 8, TG, —P||2

= Bullxn —P||2 + (1 -8

2

YuGV, + 8, TGV,
1- :3;4 P
YuGV, + 8, TGv,,
1- ﬁn

Bnl%n —P) +(1- ,Bn)<

2
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YuGV, + 8, TGV, 2

—,3;1(1—/3”) —Xn
l_ﬂn
w(GVy — p) + 8,(TGv, — p) > n— Xn g
= Bullen=pIP + (1= )| P R
(yn + 8n)2||GVn —P||2 B
< B, llx, — pl? + (1 - _ a2
< Bullxn —plI” + (1 = B) (1= B, 1-8, Y% = %l
B

zﬂn”xn —P||2 + (1_ﬂn)||GVn_p”2_ l—ﬁ ”J/n_xn”2

2 2 IBVI 2
Sﬂn”xn_pn +(1_/3n)||vn_p” _l—ﬂ ”yn_an

2 2 ﬁn 2
fﬂnnxn_p” +(1_ﬂn)||xn_p” _1—,3 ”yn_xn”
~a—pl? - L 1y — %%, (3.50)

l_ﬂn

and hence
%1 — pII?

= [ (ot Vit + (1= c0)S6,) + (I = AusaF)y = p||*
= || 2ony (@n Vit + (1 = 0,)S%,) = At Ep + (I = Ayt E)yy — (I = 2yuiF)p|?
= [[nfonly Ve — 1Ep) + (1= ) (v S = Ep)] + (I = dytt Yy = (L = utFp
= || nfon(y Vaew =y V) + (1 = ) (¥ S — ¥ Sp)| + (I = AuptF)yu — (I = At F)p
+ hnletn(y Vo = 1Ep) + (1 - o) (v Sp — uEp)] ||
< [ Aafen(y Vatu =y V) + (1= ) (y S = ¥Sp)] + (L = At F)yn = (= At F)p |
+ 2000 ((y Vo = WED), X1 — P) + 221 — ,){(y Sp — WEP), X1 — P)
< [l etny Vitw = y Vi) + (1 = ) (S = ySp) | + | = ntt )y = (I = 2wt F)p|| ]
+ 20n0tn((y Vo = WED), %11 — P) + 20n(L = ){(y Sp — WEp), %11 — )
< [Mn(etnyplln = pll + (U = ety 2 = pl) + (1= 2D 19 — Il
+ 20n((y Vo = WED), Xpi1 — ) + 2(1 = ) n{(y Sp — WEP), X1 — )
= [(1 = 0u(1 = )y 12 = pll + (1 = 2 D)y — pI]*
+ 2hn0u( (¥ VI = WEP), X1 — p) + 220(1 = )((y Sp — WEP), X1 — )
< [y I = pll + @ = 2Dl - o]
+ 2000 ((y Vo = WED), X1 — P) + 221 — ,){(y Sp — WEP), i1 — )
- [m L=l + (= 20l —pn}2
+ 2000 ((y Vo = WED), %inir — P) + 221 — ) ((y Sp — WEP), Xpi1 — )
< }LHVTZ % = pII* + @ = 4, D)llyn - pII°

+ 220n((y VI = WEP), %na1 — P) + 221 = 0,){ (¥ Sp — WED), %ni1 — D)
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v 2 2 B 2
f)\n_”xn —19|| +(1_)‘nT) ||xn —19|| _—”yn_xn”
T 1-8,

+ 2200n((y VI = WEP), %na1 — p) + 2201 = 0,){ (¥ Sp — Ep), %ns1 — p)

2 -2 Bl = A7)
:(1—)\" _L_V )”xn_p”2_¥”yn_xn”2

1- By
+ 2050 ((y Vo = WED), Kips1 — P) + 22n(1 — 0,)((y Sp — WEP), X1 — )
< s - pl* - ﬁ”(%gf)nyn ~
+ 2000 ||y VD — WEp |1 %01 = Pl + 22411y Sp — wEp %01 = Pl (3.51)

which together with {8,} C [a,b] C (0,1) yields

a(l—A,T)
=l
Bn(l = A,7)
=< 7"3’}1 _xn”2
1_ﬂn

< 1% = pI* = [%ns1 = pI* + 2000 lly Vo = uEp|l |01 - p|
+200lly Sp — | 1% — I
< 1 = %t | (1% =PIl + %001 = 1) + 22nclly Vo = 1Ep| %1 - pl

+ 20|l Sp — nEpIl % — plI.-
Since a,, — 0, A,, = 0, ||%,.1 — %,]| = 0, and {x,} is bounded, we have
lim [y, — %, = 0. (352)
n—00
Observe that

| Ak, - p[|* = | TS = ripdi) AS 5, = TS = ripi)p
< | U = rpA) A, — (1 - Vk,nAk)P||2
< | A5 = p||* + 1w — 200 || A AK s - Arp |

_ 2
< Nt =PI + rign(rin — 2000) | Ac A, — Agp | (3.53)
and

| AL it = || = Tros I = 2iB) AL 1t = T (I = 2inBo)p ||

< (= hinB) ALy = (I = 0iuB)p |

< | Ay = p|* + AinCi — 200) | Bi ATy~ Bip|*
< lltty =PI + A (hin — 21) | BiAE i, - Bip )

|2

< % =PI + Ai(Aip — 20,) || B: AL sy — Bip| (3.54)
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forie{1,2,...,N}and k € {1,2,..., M}. Combining (3.50), (3.53), and (3.11), we get

Bn
1_/3n

2
”yn _xn”

1 =PI < Balltn = pI? + (= Bu)lv — pII> -
< Bullxn —pl* + A= B)lIva - pII®
< Bulln —pI? + (1= B) | Al — p|*
< Bulltn =PI + (1= B[t — PI> + hia (i — 20| B AL — Bip|| ]
< Bullww —pI? + (= B[ | A% = p||* + Ain(hin — 200) | Bi A 11~ Bip ]
< Bulltn = P17 + (L= Ba)[I16n =PI + P (rion — 2002) | A AK L — Agp

+ hinhin — 200 || BiAT s, - Bip|)?]
= (10 =PI + (U= ) [Pk (rion = 2100 | Ax A5, = Arp

+ hign (i — 205) || Bi AL 1ty — Bipnz],
which immediately leads to

(1= B)[rin 2otk = rin) [ Ak AN %, = Aap|” + 2in @i = 2i0) || BiA - Bip|)?]
< ll%n = pI* = lyn —pI?

< 1% = yull (I12s = 21l + 1y = p1I)-

Since [lx, — yull = 0, {B4} C [a,b] C (0,1), {Ain} C laibi] C (0,2m:), {riu} C e di] C
(0,2¢), i €{1,2,...,N}, ke {1,2,...,M}, and {x,}, {y,} are bounded sequences, we have

lim |AxAS %, —Awp| =0 and  lim ||B;A T u, - Bip|| =0 (3.55)
n—00 n—00

forall k € {1,2,...,M}and i€ {1,2,...,N}.

Furthermore, by Proposition 2.2(ii) and Lemma 2.2(a), we have
| a%x, -
= | T — rph) A, = TO( = A 0p |
< (U = renA) AL, — (I = riuAr)p, Alx, - p)
= %(H (I = renA) ARy — (= riuAi)p|* + || Ak - p|)?
~ |t = renA) A, — (I = i Ar)p — (A — p) ||2)

1
< S (185 % =" + [ A, = = | A3 20— Al = i (A A0 = Au) ),

which implies that

|45, ~pl’

< Al o= p|)” = [ AN = Al = (A o = Aup) |
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= [k = p|” — A5 = AP = 1 | Ak Al - Awp |
+ 27k (AR 20 — At Ak AN %, — Arp)

= I L e
+ 271 | A s — AN | | Ak Ay s = Asp |

< lln = pII* = | AK - Ak, |

+ 2 || A = A | | Ak AR 5 — Arp|. (3.56)
By Lemma 2.2(a) and Lemma 2.10, we obtain

| Ajn - p|°
= R I = 2B AT = TR, (I = 2iB)p |

< ((I = AiB) Aty = (I = 1iuBOp, Al it — p)
1 , |
= S (10 = 240B) At = (= 3B | + | At =

(= B AT sy = (I = 2B = (Al - p)|)

1 . ; . ; ;

= 145 =+ | At = p I = [ 45 = At = i (Bi 10 = Bip) )
1 4 , , ,

< o (i =p I + | At = p|” = | A5t = At = 2 (B s = Bp) )
1 ; . , ,

< 5 (I =p I + | At = p[|* = [ A 0 = At = (B} 1 = Bip) ),

which immediately leads to

| A~
< ltn =PI = | Ayt = At = 2 (Bi A} st~ Bip) |
= Il =PI = | A5 0y = Afpan|* = 22, | B A st = Bip|
+ 20 ALy — ALy, Bi A uy, — Bip)
< = pI? = | AT 0, — Al ])®

+ 2 | ALty — Aljus|| | Bi AL i — Bip|. (3.57)
Combining (3.50) and (3.57), we have

B
l_ﬂn
=< Bullxn —P||2 + (1= B)llva —P||2

< Bulln —pI? + (1= B) | bt — p|*
< Bullxn —P||2 +(1- ﬂn)[”xn —P||2 - ”Ai_lun - Ai,un ”2
+ 2 | Aty — Aljus|| | Bi AL 1 = Bip ]

192 = PI* < Bullxn = pII* + (1= Bo)llve —pII* - 1y — %1l
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< [l%n —P||2 -(1-8) ”qu_lun - Ai,un ”2

+ 20 | AL iy — Al ||| BiAY 1y — Bip

which yields
(1 - ﬂn)HAi,_lun - Ai,un Hz
< 1% = pI* = lyn = PI* + 200 ]| AY thy — Apyta ||| BiAL 10 — Bip |

< 1% = Yl (1196 =PI + 190 = PN + 20| AL 11 — Alyus|| | Bi AL 1 = Bip |

Since {IBVI} C [ﬂ, b] C (011)) {)"i,n} - [ﬂj, bl] C (0,2771‘)7 i=12,...,N, and {un}r {xn}, and {yn}
are bounded sequences, we deduce from (3.55) and ||x, — y,|| — O that

lim | A ', — Alu,| =0, Vie{l,2,...,N} (3.58)

n—00

Also, combining (3.3), (3.57), and (3.20), we deduce that

Bn
”yn _xn”Z
l_ﬁn

1y = P1? < Bullxn =PI + (1= Ba)llvs - pII* -

< Bulldn = pII* + A= Bo)lve —pII?

< Bulldn = plI* + A = Bl — pII?

< Ballxn —pII? + (1= B2) | Ak, - p|°

< Bulln = plI* + (1 = B[l — pI* — | A5, — A, |
+ 21 || A5 00 = Al ||| Ak A3 0~ Arp | ]

< o~ pI? = (A= )| AK T, — Ak, |

+ 2Tk, || A’;_lxn — A’;xn || HAkAﬁ"lxn —Axp

which yields

(1-84) “ Aﬁ_lxn - Al:,xn ”2
= ”xn —P||2 - ”yn —P||2 + 2Vk,n H Aﬁ_lxn - Aﬁxn ” HAkAﬁ_lxn —AkP”

< N = yull (1% = 1l + Iy = 1) + 2700 | AS 0 — A ||| Ak AS % — Arp| .-

Since {8,} C [a,b] C (0,1), {rrn} C lcx di] € (0,2uk) for k =1,2,...,M, and {x,}, {y,} are
bounded sequences, we deduce from (3.55) and ||x;, — y,|| — O that

lim | A, — Afx, | =0, Vke{L2,...,M}. (3.59)
Hn—0Q
Hence, from (3.58) and (3.16), we get

%0 =t = || A — A |
< [ A%, — Al | + [ Aly — A2, 4 - + | AM N, — AV |

-0 asn—> (3.60)
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and

Ity = vl = ”Agun — Agun “
< || Adun = A | + | At = At | + -+ + || AN s — A |

—0 asu—> oo, (3.61)
respectively. Thus, from (3.60) and (3.18), we obtain

1 = Vil < N0 = || + |12ty = Vil

—0 asn— . (3.62)

On the other hand, for simplicity, we write p = Pc(I — voF)p, v, = Pc(I — voFy)vy,, and
k, = Gv, = Pc(I — viF,)v, for all n > 1. Then

p=Gp=Pc(I-viF)p=Pc(I-vF)Pc(I - v F)p.

We now show that lim,,_, », ||Gv,, — v,|| = 0, that is, lim,,_, o ||k, — V|| = 0.
As a matter of fact, for p € £2, it follows from (3.4), (3.5), and (3.50) that

Bn
1_/3;1

”yn —P||2 = ﬁn”xn _PHZ + (1 _ﬂn)”GVn —P||2 - ”yn _xn”2

< Bullxu = pII* + A =BGV, - plI?

= Bullxn —plI* + (1= B)llku — plI?

< Bullxn = pII* + A= B[94 = BI* + vi(v1 — 200) | Frvw — Fipl|]

< Bulln = pI* + A= B)[[Ivs = pII* + va2(vy = 282) | Fov, — Fopl®
+ (v = 280) | Fy — Fipl1?]

< Bullxn = pII* + A= B[ llxn = pII* + va(va = 20) | Favy — Fop|?
+ (v = 20| Fyv — Fip)?]

= |lxn = pII> + (1= Bu)[va(v2 — 282) | Favy — Fopl)?

+v1(v = 20)IFiv, - Fipl1%], (3.63)
which immediately yields

(1= Bu)[v2(282 = V) IF2vy — Fapll® + vi(241 — v1) | Fivn — Fip )]
< llxn = pI* = llyn = pII?

= “xn _yn”(”xn —P|| + “yn _p”)'

Since ||lx, — yull = 0, {84} C [a,b] C (0,1), v; € (0,2¢), j = 1,2, and {«,}, {y,} are bounded
sequences, we have

lim |Fov, - Fopll =0 and  lim ||Ei7, — Fipll = 0. (3.64)
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Also, in terms of the firm nonexpansivity of Pc and the ¢j-inverse-strong monotonicity of
F; for j = 1,2, we obtain from v; € (0,2¢;), j = 1,2, and (3.5)

190 = BII? = | Pc( = v2F2)vs — Pe(l = vaFy)p |
< (= voFy)vy — (I = vaFy)p, v, — p)
- %[H (I~ v2Fy)vy — (= vaF2)p|” + 19 - BII?
~ [T = 2By — I~ vaFy)p — (s - )]
< 5 [ =PI #1051 =~ | = 30) = vaEav ~ Eap) ~ (0~ D))
= Sl p1? 1901 = |0 =)~ =)
+205((Vss = V) = (p = P), Fav = Fop) = v | Favs = Fop|?]

and

llky = pII* = | Pl = viF)7, — Pell - wE)p|

IA

(( = viF)¥y = (I = viF)p, ks — p)
= S mE)s ~ GBI + Ik~ pI?
~ |4 = viE)u ~ U = viF)p - (ke - )]
< S [0 =PI + Iy =PI = |G =) + (o~ D)
+ 20 (Ei7y — Fipy G — k) + (9 = B)) — VI iy — Eip?]
< S [ =l + 1w =1 = [ G~ ) + (=)
+ 20 (Fiiy — Fupy (7 — k) + (0 - D))

Thus, we have

19 = BI* < v =PI = |0 = 7) = (0 - D) |*

+205((Vy = V) = (p = P), Favyy — Fyp) = v3||Fov, — Fop? (3.65)

and

Ik = 1% < 1V =PI = | G = k) + (0 - )
+ 201 [|Fy9 = Fipll | 0 — k) + (= D) |- (3.66)

Consequently, from (3.4), (3.63), and (3.65) it follows that

lyn = pI* < Bulldn = plI* + A = B[ 17 = BN + vi(v1 = 280) | Fy¥ — Fipl|?]

< Bullxn = plI* + @ = BV - PII?
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< Bullww —pI* + (= B [I1va ~pI? = | =) - (0 - D)
+205((vi = 7) = (p = P), Faviu = Eap) = v3 | Fav,, — Fop|?]

< Bulltn = pI? + = Ba) 120 =PI = | (v = 7) = (0 - D) |*
+ 20| (v = V) = (p = P) | I Favi = Fopll]

< = pI? = A= )| = 9) ~ (0 - D)

+25 | (v = V) = (p = P) | IF2vs = Fopll,

which hence leads to

1= B) | v =) - (0 -P)|
< xn =PI = lyn = pI* + 202 || (vis = V) = (0 = D) ||| Favi — Fopl
< 1% = 3l (160 =PIl + 19 = I) + 202 ]| (v = 9) = (© = D) || IIFavs — Fopl.

Since |lx, — yull = 0, {Bu} C [a,b] C (0,1), va € (0,282), and {x,}, {yu}, {vu}, {V} are
bounded sequences, we obtain from (3.64)

nli>nolo||(vn - 17;1) - (P _ﬁ)“ =0. (367)
Furthermore, from (3.4), (3.63), and (3.66), it follows that

lyn = P12 < Bulltn = pI? + (A= B2) 1K — I
< Bulltw — I + (1= B)[I1va — pI? = |G~ k) + (0 - D)
+ 2011 Fy7 = Fp I | — ki) + (0 = D)
< Bullw — I + (1= B)[I1xn — pI* ~ | G — k) + 0~ )|
+ 20| F¥ = FipI | — ki) + (0 = B)|]
= ltn = pI> = (1= B)| 5 — k) + 0~ )|

+ 20llF1y = Bl | (9 = ki) + (0 = D)

’

which hence yields

(1= B G — k) + (- B
< l%n = pI* = lyn = pI* + 20111F1¥ — EipIl | (7 — k) + (0 = D) ||

< 1% = Yl (112 =PIl + 1 = 1) + 201 | Fy¥ = Fipll | (7 = ki) + (p = B) |-

Since ||, — yull = 0, {B4} C [a,b] C (0,1), v; € (0,281), and {x,}, ¥}, {kn}, (P} are
bounded sequences, we obtain from (3.64)

Tim |7 ~ ko) + (2 = p)| = 0. (3.68)
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Note that

Vi = kall < ||(Vn_17n)_(p_i))|| + ”(in_kn)"'(p_ﬁ)”

Hence, from (3.67) and (3.68), we get

lim ||v, — Gv,|| = lim ||v, — k| = 0. (3.69)
n—00 n—00

Also, observe that
Yn —%Xp = y}’l(GV}’I _xn) + 5n(TGVn _xn)r Vn = 0.
Hence, we find

Sull TGV = vull < 8ull TGV = X4l + Sl — Vil
= |y = %0 = V(G = %) | + 8l = Vil
< Yn = Znll + Yull GV = |l + Sl = Vil
S NYn = Zull + VullGVi = Vull + Yullvie — %l + 8ull — vl
= lyn = xull + Vull GVl = Vil + (Y + 8) 1% = vl

=< ”yn _xn” + ”GVn _Vn” + ”xn _Vn”-
So, from liminf,_, « 8, > 0, (3.52), (3.62), and (3.69), it follows that
lim || TGv, — vul| = 0. (3.70)
n—00
In addition, noticing that

1TV, = vull < 1 Tvy = TGVl + | TGVy = vill

< |ve = Gvull + TGV = vall,
we know from (3.69) and (3.70) that
lim ||Tv, —v,| = 0. (3.71)

Secondly, we show that w,(x,,) C £2.

In fact, since H is reflexive and {x,} is bounded, there exists at least a weak convergence
subsequence of {x,}. Hence, it is well known that w,,(x,) # ¥. Now, take an arbitrary w €
wy(%,). Then there exists a subsequence {x,,} of {x,} such that x,, — w. From (3.58)-(3.60)
and (3.62), we have u,,, — w, v,, = w, Ajtiy, — W, and Aﬁixm — w,wherem € {1,2,...,N}
and k € {1,2,...,M}. Utilizing Lemma 2.3(ii), we deduce from v,; — w and (3.71) that
w € Fix(T). In the meantime, utilizing Lemma 2.5, we obtain from v,, — w and (3.69)
w € GSVI(G).

Next, we prove that w € ﬂlrzzl I(B,, R,,). As a matter of fact, since B,, is 1,,-inverse-
strongly monotone, B,, is a monotone and Lipschitz continuous mapping. It follows from
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Lemma 2.13 that R, + B, is maximal monotone. Let (v,g) € G(R,, + B,,), thatis, g— B,,v €
Ry,v. Again, since Al'uy, = Jg, 5, = dmnB) Ay, n>1,m € (1,2,...,N}, we have

APy = DBy ATty € (I Ay Ron) Ay,

that is,

1
—— (At = ALty = MonnBin A ) € Rip A1y,

m,n

In terms of the monotonicity of R,,;, we get

1
<V — Ayt g — By — T (A;”’lun - ATy, - Am,anAflu,,)> >0,

m,n

and hence,

(v - A;”un,g>

> <V - A”u, By + (AT — Alu, — )\m,,,BmAnmlun)>

mn

m,n

1
= <v - AUy, By — By Aty + By Al 1y, —BmA;”_lu,, + A—(AZ’_lun — A:,”u,,)>
m m m-1 m 1 m-1 m
> (v— AUy, By A uy, — By A u,,) +{v— AT u,, A—(A” Uy, — A, u,,) .
m,n

In particular,
(v— A, g) = (v— Attty By Attt — B A thy)

1
+ <V = Attty —— (A, — A;’Zum)>.

)\m,ni

Since || A" u, — A7 u,|| — 0 (due to (3.58)) and || B, A”u,, — B,y A7 11, || — 0 (due to the
Lipschitz continuity of B,,), we conclude from A}u,, — w and {%;,} C [a;,b:] C (0,2n;)
that

lim (v — Ay, g) = (v—w,g) = 0.

I—> 00

It follows from the maximal monotonicity of B,, + R,, that 0 € (R, + B,,)w, that is, w €
1(B,, R,). Therefore, w € ﬂﬁﬂ I(B,;, R,,). Next we prove that w € ﬂkle GMEP(Ox, @i, Ax).
Since AXx,, = T,(,S)nk"pk)(l — rinAr) A, n > 1, k€ {1,2,..., M}, we have

Oc(Al) + 010) — ou (M) + (A 2y - Al

1
+ —(y - A’;xn, A’;xn - Aﬁ_lxn> > 0.
Tkn

By (A2), we have

1
oe(y) - gok(A];x,,) + (AkA];_lx,,,y— Aﬁx,,) + e <y— A];x,,, Aﬁx,, - A’;_lxn> > Ok(y, Aﬁx,,).
i
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Letz, =ty + (1 —t)wforall £ € (0,1] and y € C. This implies that z, € C. Then we have

(Zt - Aﬁxn’Ath>
z (pk(Aﬁx”) - (pk(zt) + <Zt - A];x,,,Akzt> — (Zt — A];;xnxAkAl,;_lxn>

Akx, — ARy
k n n k
- <Zt — A%y, — " z + O (22, Apxn)
k,n

= o (ASxn) = @ic(ze) + (7 — Aln, Arzy — A Ak,

Ay, — A1y
+(ze — Al A A, — A AN ) — <zt - Akx,, M>

Tkn

+ Oz, Afxy). (3.72)

By (3.59), we have [|A; A x, — Ay A*"Lx, || — 0 as n — oo. Furthermore, by the monotonic-
ity of Ay, we obtain (z; — A’;xn,Akzt - AkA’;xn) > 0. Then, by (A4), we get

(ze = w, Akze) = o (W) — @ic(20) + Ox(ze, w). (3.73)
Utilizing (A1), (A4), and (3.73), we obtain

0 = Oklzs,2¢) + (Pk(zt) - Sl’k(zt)
< tOr(ze,y) + 1 = 1) Op(zs, w) + tor(y) + (1 = )r(w) — or(z:)
< t{Or(z1,9) + o) — pic(ze) | + (1 = £)(z — w, Axze)

= t[Ok(z1,y) + 0k () — pr(z0) | + (L= ey — w, Aezy),

and hence

0 < Oz, y) + or(y) — orlze) + (1 - £)(y — w, Azy).

Letting ¢ — 0, we have, for each y € C,

0 < Or(w,) + ok (y) — (W) + {y — w, Agw).

This implies that w € GMEP(O, ¢k, Ax), and hence, w € ﬂﬁl GMEP(Oy, ¢r, Ax). Thus,
we 2 = (2, Fix(T,) N (L, GMEP(Oy, ¢k, Ar) N ﬂzﬂ I(B,;, R,,). Consequently, w €
N, GMEP(O, 9, Ar) N (-, 1By, R,) N GSVI(G) N Fix(T) =: £2. This shows that
wy(x,) C £2.

Step 3. We prove that w,(x,) C & provided ||x, — %41 ]| = 0(Ay).

Indeed, we first note that 0 < y <t and un > v < k > n by (3.41). It is clear that

((WF = yS)x = (WF = yS)y,x—y) = (un - )llx =yl Vx,yeC.

Hence, it follows from 0 < y < 7 < un that uF — yS is monotone. Moreover, it is also
obvious that uF — yS is (uk + y)-Lipschitzian.
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Now, take an arbitrary w € w,/(x,). Then there exists a subsequence {x,,} of {x,} such
that x,, — w. Utilizing (3.51), we obtain, for each fixed p € £2,

2
l%441 = Pl

t2-y? Bn(1 = 2nT)
5(1_)‘% T )”xn_p”z_%”yn_xn”z
~— Mn

+ Z}Lnan((y Vp - MFP):anrl —P> + 2)\;’1(1 - an)((VSP - /J“Fp)rxwrl —P)

< llotn = pII* + 2200((y V = wWF)p, X1 — p)

+2hn(1 = ,)((¥ Sp — WFp), Xni1 — )y

which implies that

((WF =y S)p,xn — p)
= ((MF =Y S)p%n —xn+1> + ((MF =Y S)Ps%Xnnt —P)

%, = pII* = 1%01 — pII?
2h,(1 - )

= H (WF - VS)P” %0 — % |l +

Oy

1-q

+

<()/V - ,u'F)p:anrl —P>

% — X1l (1% =PIl + %001 — PII)
205(1 = ay)

< | (WF =y S)p|I1xn = %uia | +

[o9%
+

[V = uF)p|| %51 - plI. (3.74)
l-«

Since «,, — 0 and ||x;,, — 41| = 0(A,,), from (3.74), we conclude that

((WF =y S)p,w—p) = lim ((LF —y S)p, %, — p)

<limsup((uF -y S)p, %, — p)

<0, Vpef,
that is,
(WF-ySp,w-p)<0, Vpeg. (3.75)

Since wF — ¥ S is monotone and (ux + y)-Lipschitzian, by Minty?s lemma B8], we know
that (3.75) is equivalent to the VIP

((/,LF— yS)w,p— w) >0, Vpef.
This shows that w € VI(£2, uF — yS) =: £, and hence, 2 C &.

Step 4. We prove that {x,} converges strongly to a unique solution of Problem 1.2 pro-
vided ||%, — X1 | + 1%, — Tl = 0()»,1013).
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Indeed, it is easy from (3.51) to see that, for each fixed p € £2,

a(l-x,7) lyn _xn”2 < Bn(1—1,7T) lyn _xnllz
l-a o? T 1-8, o?

”xn _xn+1||
< T(Hxn =pll + %0 - pll)

n

A
+ 2a—n ly Ve — nEplll|%na - pll
n

A
+ 2a—z lySp = nEpllll%ne = pll,

n

which, together with [|x,, — x,1]| = o(e2) and A, = o(2), implies that

li ”yn_xn”
m —— =

n—00 oy

0. (3.76)
In the meantime, it is clear that

(WF =y V)x = (WE =y V)y,x—y) = (un - yp)llx—yl?, Vx,y€C.

Hence, it follows from 0 < y <t < un and p <1 that uF — yV is (un — yp)-strongly
monotone. Moreover, it is also obvious that uF — yV is (uk + yp)-Lipschitzian. So, we

can write VI(uF — yV, &) = {x*}. We now take a subsequence {x,,} of {x,} satisfying

limsup((y V = uF)x*, 6, —x%) = lim ((y V — wF)x™, x,, — ). (3.77)
1— 00

n—00

Without loss of generality, we may further assume that x,, — x; then X € & as we just
proved. Since x* is a solution of the THVIP (1.10), we get

lim sup((yV — uF)x*, %, —x*) = <(yV — uF)x*, % —x*) <0. (3.78)

n—00

From (3.1), (3.6), and (3.51) with p = x*, it follows that

o
< A1 = an0 = )y [ =" + (1 = 2y7) 3 — 2" [ ]
+ 2000t (y Vi = WEX®), 20001 = 2%) + 200 (1 = o) (7 S™ — EX*), X011 — 5%
< 21 = 0@ = D) [l = "] + (1 = 2 o = * |
+ 2000t ((y V™ = WEX™), 20001 = &%) + 200 (1 = o) (7 S™ = EX*), K041 — 57
= [1= (T =) = Atn (1= )y [0 =" | ] + 20w (y VA" — F*), 201 — 57)
+ 22 (1 = ) ((y Sx™ — WEX*), X1 — x*)
< [1= 2n (1= )y ][0 =% | + 20 (y Va* — WF*), 2001 — 57)
)

+ 22 (1 — ) ((y Sa™ — WEX*), %001 — &
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= [1 - Aty (1- p))/] ”xn —x ”2
2
+ Anety(1 = p)y - a [((V Vi — WFx*), %041 — %)

1-q,
+

Ay

((ny* - /LFx*),x,Hl —x*):|.
So, it follows from x* € = and condition (iv) that

2
>k
a1 =]

= [1 — Aty (1 - /0))/] ”xn - ”2

+ Ay, (L—p)y - a _zp)y |:(()/ V™ — l’LFx*)’xnﬂ _x*)
1-o, e
+ IS = uF)| (: [E Txn+1||)i|- (3.79)
Up k

In addition, utilizing Lemma 2.3(i), we have

” Txn+1 — Xn+l ”

< s = Toull + 11 Txy = T ||

1+&
=75 : 1% = X Il + | Ay (ctn Viow + (1= 00,)S%) + (I = Ayt F)y — Tt
1+&
= 1-¢ £ 1% — Xpir | + 1y — Tyl + Ay ||7/(0:,,Vx,, +(1- a,,)an) — Fy, ||
1+§
= T =l + =5l + = Tl + (Vs = S + S5, = |
1+& ~
1% £ % — st | + 119 = %nll + 1% — T || + XM,

where sup,.q lya,(Vx, — Sx,) + ySx, — uFy,ll < A~/Io for some AN/IO > 0. Hence, for a big
enough constant k; > 0, from (3.79), we have

w2

=< [1 - )\nan(l - ,0))/] “xn - x* ”2

+ Anttu(1 = p)y [((V Vi — WEx"), %41 — %)

(1-p)y
l-«
ko,

=< [1 - knan(l - ,O)V] ”xn - x* “2

+

n * 1 +§ 1
IS - nF)x*| g o =+l =l + W = T+ 2nMo

+ Ao, (1—p)y - [((y Vx* — /LFx*),xml —x*)

2
1-p)y

n

ki
+ a_()\n + 1% = Xpar | + 1Y = Xull + [l — Txn”) . (3.80)
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Since Y 070k, = 00, limy, s o 2—3 =0, %, — xpe1ll + %y — Txy|l = o(a,), we deduce from
(3.76) and (3.78) that > - auAs(1 — p)y = 00 and

lim sup

oo (1 _ ,O)J/ [((y Vx* _ H,Fx*),erl _x*>

ki
+ a_()‘-n 1% — Zar | + 1Y = Xull + 11260 — Txn”) <0.
n

Applying Lemma 2.8 to (3.80), we conclude that x,, — x* as  — oo. This completes the

proof. d

Remark 3.3 Itis obvious that iterative scheme (3.1) is different from the iterative schemes

considered in [7, 32]. We extended the three-step iterative scheme in [7, Algorithm I]

to our four-step iterative scheme (3.1) for the THVIP (1.10) by combining Korpelevich?s
extragradient method, the viscosity approximation method, the hybrid steepest-descent

method [41], and Mann?s iteration method. It is worth pointing out that under the lack
of assumptions similar to those in [32, Theorem 3.2], for example, {x,} is bounded and
Fix(T) () intC # @, the sequence {x,} generated by (3.1) converges strongly to a point x* €

ﬂﬁl GMEP(Oy, o, Ax) N ﬂf\il I(B;, R)NGSVI(G)NFix(T) =: £2, which is a unique solution
x* € 8 of THVIP (1.10) (over the fixed point set of a strictly pseudocontractive mapping
T), thatis, (WF —yV)x*,p—x*) >0,Vpe E.

Remark 3.4 Theorem 3.2 improves and extends [32, Theorems 3.1 and 3.2] and [7, The-
orem 14] in the following aspects:
(a) THVIP (1.10), with the unique solution x* € §2 satisfying

* *
¥ =P (L, GMEP(@r.0r. 40NN, 1(B;,RINGSVI(G)NFix(T) (1 = (uF - VS))" )

is more general than the problem of finding a point ¥ € C satisfying X = Ppix(r)S¥ in
[32] and than the problem of finding a point x* € Fix(T) N VI(C, A) satisfying

x* = Prixcrynvic,a)d — (WF — y 8))x* in [7, Theorem 14]. It is worth pointing out that S
is nonexpansive if and only if the complement I — S is %-inverse-strongly monotone.

(b) Four-step iterative scheme (3.1) for THVIP (1.10) is flexible, and subtle than those
considered in [7, Algorithm I] and [32] because it can be used to solve several kinds
of problems, for example, the THVIP, the HVIP and the problem of finding a
common point of four sets: ﬂﬁl GMEP(Oy, ¢k, Ak), ﬂf\il I(B;, R;), GSVI(G), and
Fix(T). In addition, Theorem 3.2 drops the crucial requirements in
[32, Theorem 3.2] that lim,,_, o ‘Z—Z =0, lim,_ % =0, Fix(T) NintC # @, and {x,,} is
bounded, and also it removes the crucial ones in [7, Theorem 14] that ) - a, < 00,
lim,,—, o (@4/A2) = 0. In the meantime, Problem 1.1 (that is, [7, Problem II]) is
extended and generalized to the setting of the GSVI (1.4), finitely many GMEPs, and
finitely many variational inclusions in our Problem 1.2.

(c) The argument and technique in Theorem 3.2 are different from [32, Theorems 3.1
and 3.2] and [7, Theorem 14] because we make use of the properties of strictly
pseudocontractive mappings (see Lemmas 2.3 and 2.4), the properties of resolvent
operators and maximal monotone mappings (see Proposition 2.2, Remark 2.2, and
Lemmas 2.9-2.13), the fixed point equation x* = Pc(I — viF)Pc(I — voFp)x*
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equivalent to the GSVI (1.4) (see Proposition 2.3) and the contractive coefficient
estimates for the contractions associated with nonexpansive mappings
(see Lemma 2.7).

(d) Compared with the requirement [|x,, — %,41]| + |6, — 2, || = 0(A2) in [7, Theorem 14],
the one [, — %41l + %, — Tx,|| = 0(h,@?) in conclusion (c) of Theorem 3.2 is
additionally added because Theorem 3.2 involves a quite complex problem, that is,
the THVIP (1.10) (over the fixed point set Fix(T') of a strictly pseudocontractive
mapping T') with constraints of several problems: GSVI (1.4), finitely many GMEPs,

and finitely many variational inclusions.

4 Composite Mann-type viscosity approximation method and convergence
results
In this section, we introduce and analyze a multi-step composite Mann-type viscosity it-
erative algorithm for finding a solution of the THVIP (1.10) (over the fixed point set of a
strictly pseudocontractive mapping) with constraints of several problems: finitely many
GMEPs, finitely many variational inclusions and GSVI (1.4) in a real Hilbert space. This
algorithm is based on Mann?s iteration method, Korpelevich?s extragradient method, the
viscosity approximation method, the hybrid steepest-descent method, and the projection
method. We prove the strong convergence of the proposed algorithm to a unique solution
of THVIP (1.10) under suitable conditions. In addition, we also consider the application
of the proposed algorithm to solving a hierarchical VIP with the same constraints.

Algorithm 4.1 Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
For each k € {1,2,...,M}, let O : C x C — R be a bifunction satisfying (A1)-(A4) and
¢k : C = R U {+00} be a proper lower semicontinuous convex function with restriction
(Bl) or (B2). Foreach k € {1,2,...,M},i € {1,2,...,N},let R; : C — 2 be a maximal mono-
tone mapping, and Ay : H — H and B;: C — H be puj-inverse-strongly monotone and
n;-inverse-strongly monotone, respectively. Let T : C — C be a &-strictly pseudocontrac-
tive mapping, S : C — C be a nonexpansive mapping and V : C — H be a p-contraction
with coefficient p € [0,1). Let F; : C — H be ¢j-inverse-strongly monotone for j = 1,2, and
F : C — H be k-Lipschitzian and n-strongly monotone with positive constants «,n > 0
such that 0 < u < i—g and0<y <twheret=1- m Assume that the solu-
tion set & of HVIP (1.11) is nonempty, where 2 := (y~, GMEP(Oy, ¢k, Ax) N[\, 1B, R) N
GSVI(G) N Fix(T). Let {Au}, {on}, {on} C (0,11, {Bu}i {vu}s {80} C [0,1], {Xin} C [, bi] C
(0,2n;), and {rx,} C [cxrdi] C (0,2uk), where i € {1,2,...,N} and k € {1,2,...,M]}. For
given arbitrarily xy € H, let {x,} be the sequence generated by

Uy = ToM([  ppg A TEEMIM ([ 0 Apg ) - TP (1 = 1y, Ay,

‘M,n M-1,n 1n
Vi = TR (L = ANt BN) Ry inoy (L = AN-1,nBN-1) TRy (L = A1,uB1) iy
zy = (1= 0y,)x, + 0,Gv,, (4.1)

Yn = ,ann + YnZn + (Sn Tzn;
Xl = PC[)"ny(an Vxn + (1 - aﬂ)an) + (1 - )Vn/'LF)ynL Vn > 0:

where G := Pc(I — v F1)Pc(I — voFy) with v; € (0,2¢)) forj =1,2.

Theorem 4.1 In addition to assumptions of Algorithm 4.1, suppose that
(i) limy—oo Ay =0, limy, oy =0 and Yy - Autty = 00;
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(i) Bu+yn+du=1and (y,+38,)§ <yuforalln=>0;

(iii) liminf,_ 4 8, >0, liminf, . o, > 0 and {B,} C [a,b] C (0,1);

(iv) lim,—oo(AY?/0r,) = 0 and ||x — Tx| > kld(x, £2)]°, Vx € C, for some k,0 > 0.
If {Sx,} is bounded, then

(a) ww(xy,) C 2 provided ||x,, — %411l = 0 (1 — 00);

(b) @u(x) C & provided |[%, - %rea | + % — yall = 0(A);

(c) {x,} converges strongly to a unique solution of Problem 1.2 provided

%n = st |l + 1% = Yull + 120 — 20|l = o(Ly).

Proof Since the solution set = of the HVIP (1.11) is nonempty, as is well known, £2 # (.
As in the proof of Theorem 3.1, we put

AL = T = gy AT = 1y 1 pAga) -+ T = 1Ay
forallk € {1,2,...,M}and n > 1,
Ai,l :]Ri:)\i,n (1 - )‘i,nBi)]Ri—lv}‘i—l,n (1 - )\i—l,nBi—l) o ']Rl,)\l,n (I - )"l,nBl)

forallie {1,2,...,N}, A% = I, and A% = I, where [ is the identity mapping on H. Then we
have u,, = AMx, and v, = ANu,.

We divide the rest of the proof into several steps.

Step 1. As in the proof of Theorem 3.1, {x,} is bounded. So are the sequences {u,}, {v,.},

{yu}, and {z,}.
Step 2. We prove that w,,(x,) C §2 provided |x;,, — x,,,1]] = 0 (n — 00).
As in the proof of Step 2 in Theorem 3.2, we have

_ 2 i 2
(1- lgn)an[rk,n(zﬂk —Tkn) ”AkAl;; lxn _AkP” + )\i,n(zrli - )Li,n) ”BiA; lun _Bip” ]
<l —pI> = lyn - pI?
< 1% = yull (1% = Il + lyn — p1I).
Since liminf, . 0, > 0, [|%, — yull = O, {B,} C [a,b] C (0,1), {Xi,} C [ai,bi] C (0,2m,),

{rin) Clewdi) € (0,2u4), i€ {1,2,...,N}, ke {1,2,...,M}, and {x,}, {y,} are bounded se-

quences, we have
lim ”AkA’;’lx,, —Aka =0 and lim ||BiAi,’1u,, —Bip|| =0 (4.2)
n—00 n—oo

forall k € {1,2,...,M}and i€ {1,2,...,N}.
As in the proof of Step 2 in Theorem 3.2, we have

(1= B)ou|| G = k) + (0= 5|
< %0 =PI = 13 = pII* + 201 |7 = Eipll|| G — ko) + (0 = B) |

< 1% = yull (Il = 1l + 1lyn = p1I) + 20111 F19 = Fipll | (7 — ki) + (p = D) |-
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Since liminf, o 0, > 0, [lx, — y4|| = 0, {B,} C [a,b] C (0,1), v1 € (0,2¢1), and {x,}, {y.},
{k,}, {v,} are bounded sequences, we obtain from (3.22)

lim ”(17,, -k,)+ @ —[9)” =0. (4.3)

n—00

Note that
1vn = Kall < |V = 9) = 0 = D) + [ s = k) + (2 = D)
Hence from (3.67) and (4.3), we get
im (v, — G, [l = lim [Jv, — k[l = 0. (4.4)
Also, observe that z, — x, = 0,(Gv,, — x,,) and
In = %n = Vn(Zn = %n) + 84(T2y —%4), V1 =0.
Hence we find that
20 = %ull < 1GVH = %nll < GV = Vil + Vi — %l
and

8ull Tz = zn |l < 8ull Tzi = Xl + Sl — 2|
= |90 = 20 = Vuzn = %) | + 8l — 2
SNy = xull + Yullzn = xull + Sullxn — znll
= yn = xull + (Y + 8u) 1% — 2l

= Y0 = Zull + %0 = zull.
So, from liminf, .+ &, > 0, (3.52), (3.62), and (4.4) it follows that
lim ||x, —z,]|=0 and lim |7z, -z,| =0. (4.5)

Secondly, let us show that w,,(x,) C £2.

In fact, since H is reflexive and {x,} is bounded, there exists at least a weak conver-
gence subsequence of {x,}. Hence it is well known that w,(x,) # . Now, take an arbi-
trary w € w,(%,). Then there exists a subsequence {x,,} of {x,} such that x,, = w. From
(3.58)-(3.60), (3.62), and (4.5), we have that u,, = w, v,, = w, z,, = w, Ajun, — wand
A’;ixni — w, where m € {1,2,...,N} and k € {1,2,..., M}. Utilizing Lemma 2.3(ii), we de-
duce from z,, — w and (4.5) that w € Fix(T). In the meantime, utilizing Lemma 2.5, we
obtain from v,, = w and (4.4) w € GSVI(G).

As in the proof of Step 2 in Theorem 3.2, w € ﬂfnle I(B,ys, Ryn).

Step 3. We prove that w,,(x,,) C & provided ||x, — %41 + |2, — yull = 0(Ay).
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Indeed, as in the proof of Step 3 in Theorem 3.2, wehave 0 <y <tand un >t &« > 1.
It is clear that

((WE —yS)x— (WE - yS)y,x—y) > (un —y)lx—yl>, Vx,yeC.

Hence, it follows from 0 <y <t < un that uF — y§S is monotone. Moreover, it is also
obvious that uF — yS is (u« + y)-Lipschitzian. Noticing

Xpe1 = Powy, —wy, + )L,,y(oe,, Vx, + (1 - otn)Sx,,) + (I = Xt F)ys
we obtain

Xn —Xn+l = Whn _PCWn + O(n)‘n(l'LF - Vv)xn + )‘n(l - (X,,,)(,LLF - yS)xn

+ (I - )‘nMF)xn - (I - )\nﬂF)yw (46)
Set
Xn — Xn+l
n= ’ v > 0. 4.7
¢ (1 —ay) " ®7)

It can easily be seen from (3.31) that

w,, — Pcw, oy
= ———————— F—-ySx, F—yV)x,
=5 i) +(uF -y S)x +1_an(u yV)x
I—)\.n F n— 1_)\-;1 F n
( WE)x, — ( wEYyn: 4.8)
}‘n(l_an)
This yields, for all p € £2 (noticing x,, = Pcw,,_1),
(€ns Xy — p)
(W, — Pw,, P )+ {(F - yS) )
= Wn— Wy, Wp-1 — + - Xnr»Xn —
l—a,) c CWp-1—P 22 Y p
oy
- ((WF =y V), % = p)
1-o,
(= A uE)xy — (I = Ay ftF )y 2y —
+kn(1—an)<( 1E)%y = (I = A tF)yus % — )
1 1
= m (wy — Pcwy,, Pcw,, — p) + m (wy, — Pcwy, Pcw,_1 — Pcwy,)
+((WF =y S)p, %0 — p) + ((WF = ¥ S)xn — (WF — ¥ S)p, %n — p)
Oy
1 ((WF = y V)%, % — p)
—— ([ = Ayt F)xyy — (I — Ayt F) Yy X0 — p). 4.9
+An(1—an)(( WF)xn = (I = A bF )y %0 — p) (4.9)

In (4.9), the first term is nonnegative due to Proposition 2.1(i), and the fourth term is also
nonnegative due to the monotonicity of uF — yS. We, therefore, deduce from (4.9) that
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(noticing again x,,,; = Pcwy,)

(enrxn_p>
> 1 ( Pcw,, P Pcwy) +((WF =y S) )
Y \Wu— Wy, Wy-1 — Wy) + - A T
= l—a,) C CcWn-1—Lc HE =YO)PyXn — P
oy 1
F - Vm n 71_)\nFn_1_)\nan_
+1_an((ﬂ yV)ay,x p>+}»n(1—an)<( wF)x, —( WE) Y, %0 — )
(0%
= (W, — Pcwy, e,) + ((MF_ YS)p, %n —P) + 1 _na <(/’LF— Y V)%, % —[9)
1
—— (I = AyuF)xy, — (I = Ay k F) Yy, % — p). 4.10
+kn(1—an)<( WE)%y — (I = A tF)yu, % — ) (4.10)
Note that
”(1_ AnfbF)xy — (I_A'HMF)yn ” < (1= 2,7 l%n = Iull- (4.11)

Hence, it follows from ||x,, — y,|| = o(),) that

li N = AppF)xy — (I — )\n/'LF)yn”
m =

n—00 An

0. (4.12)

Also, since e, — 0 (due to ||x,41 — %, || = 0(A,)), &y — 0 and {x,,} is bounded by Step 1 which
implies that {w,} is bounded, we obtain from (4.10)

lim sup((uF - yS)p, %y, —p) <0, Vpef2. (4.13)
n—0oQ
This suffices to guarantee that w,(x,) C &; namely, every weak limit point of {x,} solves
the HVIP (1.11). As a matter of fact, if x,,, = ¥ € w,(x,) for some subsequence {x,,} of {x,},
then we deduce from (3.60) that, for all p € £2,

((WF = yS)p,& — p) = im ((UF — y S)p, %, - p) < lim sup((uF — ¥ S)p, %, — p) <0,

n—00

that is,
(WF-yS)p,p-%)>0, Vpes. (4.14)

In addition, note that w,,(x,) C §2 by Step 2. Since uF — y S is monotone and Lipschitz con-
tinuous and £2 is nonempty, closed, and convex, by Minty?s lemma B8] the last inequality
is equivalent to (1.11). Consequently, we get x € =

Step 4. We prove that {x,} converges strongly to a unique solution of Problem 1.2 pro-
vided [lx, = xpi1 [l + 16 = Yol + 160 = Zull = 0(A).

Indeed, it is clear that

(WE =y V)x = (WE =y V)y,x—y) = (un-yp)lx-yl>, Vx,yeC.

Hence, it follows from 0 <y <7 < un and p <1 that uF — yV is (un — yp)-strongly
monotone. Moreover, it is also obvious that uF — yV is (uk + yp)-Lipschitzian. So, we
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can write VI(uF — yV, &) = {x*}. We now take a subsequence {x,,} of {x,} satisfying

lim sup((y V — uF)x*, %, — x*) = lim ((y V — uF)x*, %y, — x*) (4.15)

n—00

Without loss of generality, we may further assume that x,, — ¥; then X € & as we just
proved. Since x* is a solution of the THVIP (1.10), we get

lim sup((y\/ — uF)x*, x, — x*) = <(yV — uF)x*,x —x*) <0. (4.16)

n—00

From (4.1) and (3.50), it follows that (noticing that x,,,; = Pcw, and 0 <y < 1)

-t

= (Wn — &, %041 — &%) + (PcWy, — Wy, Pcwy, — &%)

< (Wn =", %001 — &%)

= (I = Mt F)yp = (I = oyt F)x* 201 = 2°) + Gty (Vi — ViE*, 21 — &7)
+ dn(1 = o)y (Saen — Sx*, %1 — &%) + €uhn{(y V = WF)x", 20001 — %)
+ (1= an)((yS = WF)x", 2001 — x¥)

< (U= 20) g = 2" 0n =" + (@udenyo + 2n (1 = )y ) |20 = % | 2001 = 2
+ ouhn((Y V = WE)a* 001 — &) + Ma(1 = a)((v'S = WE)X™, X041 — %)

< )= s =] # 2 a0 ) =t =]
+ (V= WF) 21 = 27} + A (L= )((v S = wE)x", 21 = 7)

= (1= At = ) = nota(L = p)y) |20 = 2" 01 — 2|

+ ouhn((Y V = WE)&* 001 — &%) + Aa(1 = a)((v'S — WE)X™, %041 — %)
1
< (1= A= 007) (=5 + v =)

+ (Y V = WE)* %001 — &%) + Ma(1— a)((v'S — WE)&™, %1 — 7).
It turns out that

2
ey
< 1- an)hny(l B /0)
T l+aghy(1l-p)
2
+ —_—
1+ a,h,y (1= p)

w12
=

[%M((VV - MF)x*)erl _x*>

+ )Ln(l - Oln)(()/S - MF)x*’xnﬂ - x*>]

= [1 - Oln)\ny(l - IO)] ||xr1 - ”2
2

+ ———————— @ {(y V = uF)x*, %41 — x*
1+05n)hn)/(1—/0)[ n n<(y 12 ) n+l )

+ (1= an)((yS = WF)x™, %001 — %% (4.17)
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However, from x* € Z and condition (iv) we obtain

(S = WF)x*, 211 - 2*)
= ((VS - /’LF)x*rer—l - P.an+l) + ((VS - /’LF)x*:PerHl - x*)
= H()/S - MF)x* H ||xn+1 - P.an+1||

< (S - uP)" |dsn, 2)

1 1/60
<|(yS—uF)x*| (E %1 = Then ||) : (4.18)

Since (y, + 8,)& < yy, utilizing Lemmas 2.3(i) and 2.4, we get

”(Sn(Txn _xn)” _ ”(Sn(Txn - TZ,,, + TZ,,, _xn)”

An An
”Txn - Tan ”(Sn(TZn _xn)”
= +
- An An
1+ 5 ”xn - Zrt” ||5,,(TZ,, - xn)”
= +
- l_é )\n )\n
_ 1+ E ”xn - Zn” ”yn —Xn — Vn(zn _xn)”
1-¢ Ay An
< 1+ & lxn—zall N1y = Xull + Vullzn — %4l
“1-¢& A, Au
1 — —
B Y e e
1-¢ An An

Thatis, [|8,(Tx, —x,)|l = o(A,). Taking into account liminf,_, o 8, > 0, we have |lx,, — Tx,| =
o(),). Furthermore, utilizing Lemma 2.3(i), we have

” Txn+1 — Xn+l ”

= ||xn+1 - Tan + ”Txn - Txn+1”

1+§&
< E 16 = %per ]l + ||)¥ny(an Vx, + (1 - an)an) + (1 - )‘n//LF)yn - Tx, ”
1+§
= E ”xn - xn+1|| + ”yn - Txn” + )‘n ”V(‘Jlnvxn + (1 - an)an) - /’LFyn ”
1+§
< g o =t 1 =l + e = Tl + 2 et (Vat = ) + ¥ S — iuFy |
1+& ~
=< 1_ ¢ ”xn _xn+1” + ”yn _xn” + ”xn - Txn” + AnMo,

1-§

where sup,.q lya,(Va, — Sx,) + ySx, — uFyull < M, for some M, > 0. Hence, for a big
enough constant /_q >0, from (4.18), we have

(7S - WP 21 — ")

1 1/6
= “(VS - wE)x* “ (z %41 — Txnﬂ”)
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1 - 1/6
= H(VS_ WF)x* “ I:z (f ¢ = nsa |l + 170 — Xnll + 10 — Toxn |l + }\nMO>j|

- 1/6
< ki (o + 1% = R |+ 19 = 2l + 110 = Tx])

= Xy — + — |l + 11960 = T\
< kl)”},,/e (1 + (196, = el ”_yn}L all + 112, n”) ) (4.19)
n

Combining (4.17)-(4.19), we get

Jsenaa ="

< [1-ahny (1= p)]an = | * + [ndonl (v V = WF)x*, 211 = )

1+a,r,y(1-p)
+ )"n(l - Oln)((VS - /'LF)x*:er—l - x*>]

2 20,hp
<|l-a,r,y(1- X, x| 4 — V — uE)x*, %01 — x*
= [ oy ny( ,0)] || n || 1+an)»n)/(1—,0) [(()’ 122 ) n+l >
Kl (1 o 0= w1+ Dy = ) + s = To| )“9}
oy An

2
I+ adyy@d—-p))y(1-p)

= [1- awhuy 0= p)][an =" * + tuhny (1 - p)

X |:<(VV - ,LLF).’C*,an _x*)

7 1/6

+ kl}M}q/Q 1+ e — Xps1 ll + 1y = xull + 166 — Toxy ||

oy )"n ‘

. 00 . )»1/6

Since )~ ok, = 00, lim,,_, o0 o= =0, %0 = Xnaall + Iyn = xull + %0 — Toull = o(r,), we

deduce from (4.16) that Y ° 0 a,A, ¥ (1 — p) = 00 and
2

limsu (yV = uF)x*, %01 — %
roel (L4 @k (L= p))y (1— p) [< Y =)

7 0
LKl (0 W= a4 Dy = sl + s = T Y -0
oy )Ln

Applying Lemma 2.8 to (4.19), we conclude that x,, — x* as » — oo. This completes the

proof. O

Remark 4.1 Itis obvious that iterative scheme (4.1) is different from the iterative schemes
in [7, 32] The three-step iterative scheme in [7, Algorithm I] is extended to the five-step
iterative scheme (4.1) for the THVIP (1.10) by combining Mann?s iteration method, Kor-
pelevich?s extragradient method, the viscosity approximation method, the hybrid steepest-
descent method [41], and the projection method. It is worth pointing out that under the
lack of the assumptions similar to those in [32, Theorem 3.2], for example, {x,} is bounded
and Fix(T) N intC # @, the sequence {x,} generated by (3.1) converges strongly to a point
x* € ML, GMEP(Oy, o, A) NY, 1(B;, R) NGSVI(G) NFix(T) =: £2, which is a unique so-
lution x* € & of the THVIP (1.10) (over the fixed point set of a strictly pseudocontractive
mapping T), thatis, (WF -y V)x*,p—x*) >0,Vpe &.



Ceng et al. Journal of Inequalities and Applications (2015) 2015:16

Remark 4.2 Theorem 4.1 improves and extends [32, Theorems 3.1 and 3.2] and [7, The-
orem 14] in the following aspects:

(@)

(b)

(©)

THVIP (1.10) with the unique solution x* € 2 satisfying

x" =P ML, GMEP(O.0r, AN, 1(B;,R)NGSVIG)NFix(T) (1 — (uF - VS))’C*

is more general than the problem of finding a point ¥ € C satisfying X = Prix(r)S¥ in
[32] and the problem of finding a point x* € Fix(T') N VI(C, A) satisfying

x* = Prixcrynviic,a)d — (WE — y §))x* in [7, Theorem 14].

The five-step iterative scheme (4.1) for THVIP (1.10) is flexible and more
advantageous than the three-step iterative scheme in [7, Algorithm I] and the
two-step iterative scheme in [32, Theorems 3.1 and 3.2] because it can be used to
solve several kinds of problems, for example, the THVIP, the HVIP, and the problem
of finding a common point of four sets: ﬂﬁl GMEP(Ox, ¢k, Ax), ﬂﬁl I(B;, R;),
GSVI(G), and Fix(T). In addition, Theorem 4.1 drops the crucial requirements in
[32, Theorem 3.2] that lim,,_, o, ;’;—Z =0, lim,_ % =0, Fix(T) NintC # @, and {x,,} is
bounded, and also it removes the crucial ones [7, Theorem 14] that ) - &, < 00,
1im, - oo (@n/A2) = 0, and %41 — % + [, = 2]l = 0(32).

The argument and techniques in Theorem 4.1 are different from the ones in [32,
Theorems 3.1 and 3.2] and in [7, Theorem 14] because we make use of the
properties of strictly pseudocontractive mappings (see Lemmas 2.3 and 2.4), the
properties of resolvent operators and maximal monotone mappings (see
Proposition 2.2, Remark 2.2, and Lemmas 2.9-2.13), the fixed point equation

x* = Pc(I — viF)Pc(I — voF5)x* equivalent to the GSVI (1.4) (see Proposition 2.3),
and the contractive coefficient estimates for the contractions associated with
nonexpansive mappings (see Lemma 2.7).

Compared with the requirement [|x, — 41|l + [, — 24|l = 0(A2) in [7, Theorem 14],
the one ||, — %l + %0 — Yull + |24 — 24|l = 0(A,,) in conclusion (c) of Theorem 4.1
is additionally added because Theorem 4.1 involves a quite complex problem, that
is, the THVIP 1.10 (over the fixed point set Fix(T) of a strictly pseudocontractive
mapping 7T') with constraints of several problems: GSVI (1.4), finitely many GMEPs

and finitely many variational inclusions.
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