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Abstract 

Background:  Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥ 10° with rotation. 
Approximately 2–3% of children in most populations are affected with AIS, and this condition is responsible for 
approximately $1.1 billion in surgical costs to the US healthcare system. Although a genetic factor for AIS has been 
demonstrated for decades, with multiple potentially contributory loci identified across populations, treatment options 
have remained limited to bracing and surgery.

Methods:  The databases MEDLINE (via PubMed), Embase, Google Scholar, and Ovid MEDLINE will be searched 
and limited to articles in English. We will conduct title and abstract, full-text, and data extraction screening through 
Covidence, followed by data transfer to a custom REDCap database. Quality assessment will be confirmed by multi‑
ple reviewers. Studies containing variant-level data (i.e., GWAS, exome sequencing) for AIS subjects and controls will 
be considered. Outcomes of interest will include presence/absence of AIS, scoliosis curve severity, scoliosis curve 
progression, and presence/absence of nucleotide-level variants. Analyses will include odds ratios and relative risk 
assessments, and subgroup analysis (i.e., males vs. females, age groups) may be applied. Quality assessment tools will 
include GRADE and Q-Genie for genetic studies.

Discussion:  In this systematic review, we seek to evaluate the quality of genetic evidence for AIS to better inform 
research efforts, to ultimately improve the quality of patient care and diagnosis.

Systematic review registration:  PROSPERO registration #​CRD42​02124​3253

Keywords:  Adolescent idiopathic scoliosis (AIS), Genetic studies, Genome-wide association, Exome sequencing, 
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Introduction/background
Adolescent idiopathic scoliosis (AIS) is the most com-
mon pediatric spinal deformity, affecting 2–3% of oth-
erwise healthy children, with a 9:1 ratio of affected 

females:males for severe curvatures [1, 2]. AIS is defined 
as a structural lateral spinal curvature of ≥10° and typi-
cally manifests during the pre-adolescent period of rapid 
growth velocity [3–5]. Radiographs of adolescents with a 
normal spine and with AIS, as measured by Cobb angle, 
are provided in Fig. 1. The high prevalence of AIS across 
populations, combined with potential morbidities related 
to functional deformity, social stigma, back pain, surgical 
interventions, and disease, have prompted costly school 
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screening programs for early detection of scoliosis. The 
true clinical dilemma is to determine which children are 
at risk for AIS, and once diagnosed, which children are at 
risk for significant curve progression. Treatment options 
for scoliosis have remained stagnant for decades, and 
spinal fusion surgery is often advised for severe progres-
sive curvatures with life-long implications. Together, the 
annual public health cost of pediatric screening, specialty 
referrals, bracing and surgery for AIS exceeds $3 bil-
lion USD annually, not accounting for adult morbidities, 
including chronic back pain, pulmonary and neurological 
complications, and secondary surgeries, thus contribut-
ing to the estimated $849 billion in annual costs for mus-
culoskeletal conditions [6–9].

Decades of research into AIS families and population 
studies have established the strong heritability of AIS 
with significant sibling recurrence-risk ratio for both 
mild and severe curvatures [10, 11]. While genetic herit-
ability is high, studies of AIS families and large cohorts 
have consistently demonstrated significant heterogeneity 
indicative of the complex genetic nature of this disorder 
[12, 13]. Whole exome sequencing (WES) and genome-
wide association studies (GWAS) have resulted in a large 
number of potential predisposition genetic variants, such 
as those in or near LBX1, BNC2, and GPR126, which 
have been replicated across multiple populations. How-
ever, these variants correspond to only a modest increase 

in risk for AIS. Additionally, the biological roles of the 
most promising genetic variants in relation to AIS are 
unknown; thus, they have not led to a mechanistic under-
standing of the pathology related to this disorder.

The use of genetic variants in the clinical realm as 
therapeutic targets has achieved some clinical utility, 
particularly in relation to breast and colon cancer, and, 
more recently, with the potential modulation of viruses 
such as COVID-19 [14, 15]. In relation to AIS, in 2010, 
a genetic screen of 53 single nucleotide polymorphisms 
(SNPs) for Caucasian children ages 9–13 years with mild 
scoliosis was designed to predict those most at-risk of 
severe curve progression [16]. The genetic screen mar-
keted as the ScoliScore (Transgenomics, Inc.) garnered 
mixed results upon validation, and it is unclear whether 
it offers any information for clinical decision-making 
beyond a patient’s natural history [17–20]. Nevertheless, 
genetic research related to AIS has continued to expand 
exponentially, with large population-based genome-wide 
association studies (GWAS) [21–27] and whole-exome 
sequencing (WES) [28–36] studies in both families and 
populations. These studies vary widely based on popula-
tion, methodology, number of subjects and controls, sta-
tistical analyses, and interpretation of results [5, 37–40]. 
A critical analysis of the existing information would be 
of great importance, not only to assist in research efforts 
related to AIS genetics, but also to aid in our ability to 

Fig. 1  Radiographs of children with a normal spine (left) and severe adolescent idiopathic scoliosis (AIS) (right), shown with Cobb angle 
measurements
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identify children for the onset of AIS, to prioritize those 
children at risk for AIS progression, and to develop tar-
geted therapeutic interventions for a personalized medi-
cine approach to this disorder [41]. This manuscript 
proposes a systematic review to assist in this effort.

Our primary objective within this systematic review is 
to identify specific risk single-nucleotide polymorphisms 
(SNPs) for AIS through methodologies that provide sig-
nificant variant level data (i.e., GWAS, next-generation 
DNA sequencing) on the diagnosis of AIS and, if diag-
nosed, the susceptibility to AIS curve progression.

Aims and objectives
Our overarching aim is to inform clinicians and research-
ers of the current state of adolescent idiopathic scolio-
sis (AIS) genetic data to better inform future research 
efforts, with the ultimate goal of helping to discover 
clinically actionable targets. We plan to follow a critical 
appraisal approach to accomplish each of the following 
aims:

1.	 To evaluate, summarize, and synthesize literature on 
the genetics of AIS, in order to provide recommenda-
tions for further genetic studies or further functional 
work, with emphasis on the development of potential 
diagnostics and prognostics;

2.	 To summarize overall study information (i.e., publi-
cation country of origin, ethnicities of study popula-
tions, area of PI expertise) from the current body of 
literature of AIS genetics; and

3.	 To determine the quality of current literature on AIS 
genetics, by GRADE [42–44] and Q-Genie [45] eval-
uation, including the level of evidence.

By doing this work, we expect to inform the field of the 
most well-replicated and robust genetic variants linked to 
AIS  risk to date. We expect to summarize overall study 
information to provide a snapshot of the field of AIS 
genetics, and in the process, we expect to identify high-
priority research areas where we have identified signifi-
cant gaps in the present literature. We plan to identify 
the pros and cons of specific methodologies and provide 
guidance for future studies. Lastly, we expect to provide 
relevant information for future prioritization of basic 
studies as well as translational research, in the hopes of 
developing future diagnostics and prognostics.

Methods/design
This systematic review protocol was designed in accord-
ance with the Preferred Reporting Items of Systematic 
Reviews and Meta-Analysis for Protocols (PRISMA-P) 
v2015 checklist (Supplemental File 1). The research group 

will follow current best practices from Cochrane guid-
ance and recommendations for systematic reviews [46]. 
We will follow the standards for best practices for trans-
parent, reproducible, and ethical reporting of systematic 
review guided by the PRISMA-P statement [47–49]. An 
overview of the methodology for this systematic review is 
provided in Fig. 2.

Eligibility criteria
The protocol has been registered in PROSPERO [50] 
(CRD42021243253). Included studies must focus on AIS 
and genetic testing. Studies to be included must report 
data at the nucleotide level, such as genome-wide asso-
ciation studies  (GWAS), targeted sequencing, whole 
genome sequencing, and whole exome sequencing. 
Candidate gene studies will be eligible, but must be a 
validation of a previous whole genome study (i.e., whole 
exome sequencing, GWAS). Studies will be excluded if 
they report linkage or other data not at the nucleotide 
level, report transcriptomic and proteomic data, or con-
tain incomplete datasets. Additionally, case-only studies 
or studies containing fewer than 100 subjects in the case 
cohort will be excluded. Conference abstracts, editorials, 
and reviews will also be excluded. Included studies will 
be limited to English language publications.

Information sources
A comprehensive literature search will be designed and 
performed by a medical librarian (CP) for the concepts 
of AIS and genetic testing. Relevant publications will 
be identified by searching the following databases with 
a combination of standardized index terms and key-
words: Ovid MEDLINE ALL (1946 to present), Embase 
(via Elsevier, 1947 to present), MEDLINE (via Pubmed.​
gov), Web of Science Core Collection (via Thomson 
Reuters, including Science Citation Index Expanded 
1974 to present, and Social Sciences Citation Index 
1974 to present), and Google Scholar (where Publish 
or Perish software [51] allowed downloading of the first 
200 search results). Searches will be limited to Eng-
lish language studies. The preliminary search strate-
gies were conducted in April 2021 and identified 1297 
records. The search strategies were peer-reviewed by 
an external librarian using the Peer Review of Elec-
tronic Search Strategies checklist [52]. All results will 
be exported to and deduplicated in EndNote 20 (Clari-
vate). Covidence systematic review software (Veri-
tas Health Innovation) will be used for screening and 
full-text review. See Supplemental File 2 for a list of all 
database search strategies.

http://pubmed.gov
http://pubmed.gov


Page 4 of 8Terhune et al. Systematic Reviews          (2022) 11:118 

Study selection
Citations and abstracts will be uploaded into Covidence 
for study selection. The study selection process is organ-
ized into two levels. For level one screening, two authors 
(ET, PH, and/or NHM) will independently screen all 
titles and abstracts. Data will be compiled at which time 
consensus will be reached by discussion on any disagree-
ments for exclusion. For level two screening, full-text 
articles considered for inclusion will be independently 
reviewed by two authors. Consensus will be reached by 
discussion on any disagreements for inclusion. Stud-
ies will be excluded if the study cohort is an infantile 
population.

Inclusion and exclusion criteria
Full inclusion and exclusion criteria are provided in 
Supplemental File 3. In brief, the  inclusion criteria will 
encompass genetic studies investigating specific vari-
ants (i.e., GWAS, targeted sequencing, whole genome 
sequencing, whole exome sequencing). Exclusion criteria 

includes linkage studies and other genetic studies that 
do not provide variant-level resolution. Candidate stud-
ies that are not validating a previous whole-genome study 
will also be excluded. Review articles, articles not availa-
ble in English, studies without control populations, stud-
ies with case cohorts <100 subjects, systematic reviews, 
and meta-analyses will also be excluded. Lastly, articles 
published before 2011 will be excluded.

Data extraction and synthesis
The research group will first create an Excel spreadsheet 
to collect relevant information from the genetic studies, 
followed by the creation of a REDCap database (securely 
managed by the University of Colorado) after the most 
relevant study metrics have been determined. Key data 
for extraction will include, but will not be limited to, the 
number of case and control individuals, study inclusion 
and exclusion criteria, basic clinical and demographic 
information of cases and controls, genetic methodol-
ogy used, statistical methods used, significant genetic 

Fig. 2  Flow chart overview of study design
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variants identified and associated p values, the number of 
individuals in case and control groups with risk variants 
identified in the study. The study team will select the first 
round of studies to be extracted with the aid of the medi-
cal librarian. Team members will review and approve all 
studies to be included and excluded in the SR and will 
ensure that all methods are transparent, unbiased, and 
complete. Study team will meet weekly during the dura-
tion of the study.

Quality assessment
GRADE
The proposed review will use the Grading of Recom-
mendations Assessment, Development and Evalua-
tion (GRADE) guidelines to determine the quality and 
strength of recommendations [42–44]. Quality will be 
adjudicated as high (further research is very unlikely to 
change our confidence in the estimate of effect), moder-
ate (further research is likely to have an important impact 
on our confidence in the estimate of effect and may 
change the estimate), low (further research is very likely 
to have an important impact on our confidence in the 
estimate of effect and is likely to change the estimate), or 
very low (very uncertain about the estimate of effect).

Q‑Genie
We will also evaluate genetic association study quality 
using Q-Genie, an evaluation tool to rank genetic studies 
on 11 criteria based on previous study recommendations  
[45]. This tool includes ranking studies as “low,” “moder-
ate,” or “high” quality and assists in the selection of stud-
ies for inclusion. Risk-of-bias for individual studies will 
be assessed using both GRADE and Q-Genie.

Study outcomes
Main study outcomes will include presence/absence of 
AIS, scoliosis curve severity, scoliosis curve progres-
sion, and presence/absence of nucleotide-level variants. 
Analyses will include odds ratios and relative risk assess-
ments, and subgroup analysis (i.e., males vs. females, age 
groups) may be applied.

Expected results
We expect a significant degree of heterogeneity across 
the genetic and statistical methodologies used, sample 
and control groups, thresholds of significance, results, 
and interpretation of results across studies. We expect 
several findings, particularly those that have been rep-
licated across multiple studies and populations, to be 
regarded as high quality by our evaluation.

We expect the results generated by GWAS and next-
generation or targeted sequencing methodologies to pro-
duce largely different results. GWAS tends to find SNPs 

that are common within the general population (have a 
high minor allele frequency), whereas next-generation 
sequencing methodologies may apply bioinformatic fil-
ters that contain only rare or uncommon variants [53]. 
Additionally, some next-generation sequencing method-
ologies only look at particular areas of the genome (i.e., 
exome sequencing analyzes coding regions only). Thus, 
we expect different sequencing methodologies to pro-
duce a different collection of causal variants for AIS.

We also expect a high degree of overall genetic het-
erogeneity for AIS, with the possibility of specific SNPs 
showing association with specific ethnic populations or 
subtypes of AIS [38]. Overall, we expect studies to sup-
port a significant genetic contribution to AIS etiology [5, 
38, 39, 54–60].

Lastly, we expect certain study populations to be well-
represented in the literature of the genetics of AIS, while 
we expect other ethnic groups (i.e., populations of Afri-
can descent) to be understudied. Identifying understud-
ied populations and other gaps in the current literature 
will assist us in making recommendations for areas of 
high-priority research. We anticipate that the outcomes 
of this systemic review will indicate that several variants 
implicated by GWAS and replicated across multiple eth-
nic groups, including LBX1 [22, 23, 26, 27, 31, 61–73] and 
GPR126 [24, 27, 73–78], will statistically associate with 
an increased risk of AIS development. Furthermore, we 
anticipate that rare or uncommon variants within extra-
cellular matrix genes [29, 32, 34, 79–81] will collectively 
increase the risk of AIS. Once the systematic review is 
complete, results will be disseminated through both sci-
entific, peer-reviewed journal article(s) and national con-
ference presentations. Any amendments made to this 
protocol when conducting the study will be amended in 
PROSPERO and reported in the final manuscript.

Discussion
This review builds upon current literature to critically 
assess genetic variants associated with AIS risk. A recent 
systematic review, using eight studies from 1950 to 2017 
that met inclusion criteria, found moderate evidence 
that did not clarify a single-gene basis of AIS [82]. The 
mixed results of their study led the authors to recom-
mend that AIS researchers consider etiological factors 
beyond genetics alone. Three of the eight included stud-
ies supported a single-gene hypothesis for AIS etiology, 
albeit within specific populations. Additional systematic 
reviews of AIS have evaluated the quality of evidence 
between AIS etiology and specific variants, including 
those in or near LBX1 [64–66, 69, 72, 83], ESR1/2 [84–
86], and VDR [87, 88]. Our systematic review will build 
upon this work by evaluating evidence for specific SNPs 
in relationship to AIS etiology, rather than collective 
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evidence for a single-gene hypothesis. Based on our pre-
liminary search strategies, we also expect to evaluate a 
much larger pool of research articles (>500 articles vs. 36 
articles [82]).

Potential challenges
We anticipate several potential challenges with this study. 
First, as we are including several sequencing methodolo-
gies in this study, we anticipate a lack of common data 
elements across studies that may prove challenging for 
extraction. Second, we anticipate that some included 
studies will have missing data. AIS is a common disorder 
and, without proper verification by radiograph or physi-
cal exam, individuals with mild scoliosis can be mistak-
enly counted as controls.

Potential limitations
Potential limitations of this study include a lack of thor-
ough reporting within studies (for example, inclusion/
exclusion criteria, bioinformatic and statistical analyses, 
control databases used, lack of appropriate matching 
of cases and controls). A second limitation is an under-
representation of non-Caucasian study subjects within 
sample populations. We also anticipate a potential lack 
of methodological rigor in included studies, particularly 
inappropriate biostatistical methodologies or inappropri-
ate sample populations.

Study implications
This study will inform best practices for future genetic 
studies of AIS and help researchers to prioritize specific 
genetic loci that may warrant further research. Addition-
ally, this study will provide a foundation for the creation 
of clinical genetic diagnostics to help inform a child’s risk 
of AIS development or severe curvature progression, a 
matter of great importance in pediatric orthopedics.
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