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METHODOLOGY

Using median survival in meta-analysis 
of experimental time-to-event data
Theodore C. Hirst1,2*  , Emily S. Sena1 and Malcolm R. Macleod1 

Abstract 

Background:  Time-to-event data is frequently reported in both clinical and preclinical research spheres. Systematic 
review and meta-analysis is a tool that can help to identify pitfalls in preclinical research conduct and reporting that 
can help to improve translational efficacy. However, pooling of studies using hazard ratios (HRs) is cumbersome espe-
cially in preclinical meta-analyses including large numbers of small studies. Median survival is a much simpler metric 
although because of some limitations, which may not apply to preclinical data, it is generally not used in survival 
meta-analysis. We aimed to appraise its performance when compared with hazard ratio-based meta-analysis when 
pooling large numbers of small, imprecise studies.

Methods:  We simulated a survival dataset with features representative of a typical preclinical survival meta-analysis, 
including with influence of a treatment and a number of covariates. We calculated individual patient data-based 
hazard ratios and median survival ratios (MSRs), comparing the summary statistics directly and their performance at 
random-effects meta-analysis. Finally, we compared their sensitivity to detect associations between treatment and 
influential covariates at meta-regression.

Results:  There was an imperfect correlation between MSR and HR, although the opposing direction of treatment 
effects between summary statistics appeared not to be a major issue. Precision was more conservative for HR than 
MSR, meaning that estimates of heterogeneity were lower. There was a slight sensitivity advantage for MSR at meta-
analysis and meta-regression, although power was low in all circumstances.

Conclusions:  We believe we have validated MSR as a summary statistic for use in a meta-analysis of small, imprecise 
experimental survival studies—helping to increase confidence and efficiency in future reviews in this area. While 
assessment of study precision and therefore weighting is less reliable, MSR appears to perform favourably during 
meta-analysis. Sensitivity of meta-regression was low for this set of parameters, so pooling of treatments to increase 
sample size may be required to ensure confidence in preclinical survival meta-regressions.
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Introduction
Many types of biomedical research use time-to-event 
data—this is particularly prominent in cancer research 
which rightly attracts considerable focus given the signif-
icant economic and health burden that it inflicts on soci-
ety throughout the world [1, 2].

Meta-analysis is a tool to combine data from multiple 
studies in order to increase the precision of an estima-
tion of treatment effect. It is used commonly in clinical 
practice to combine data from large clinical trials and is 
as such heralded among the highest levels of evidence in 
medicine [3, 4]. It also allows for the assessment of heter-
ogeneity—that is, investigation of the source of variation 
of estimates given in individual studies. Preclinical stud-
ies are a pillar in the ‘bench to bedside’ process and are 
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vital in informing the development of novel treatments 
throughout medicine.

However, translation of treatments from the preclini-
cal to the clinical phase is known to be inefficient [5, 6]. 
Systematic review and meta-analysis is a tool to thor-
oughly summarise the literature pertaining to a par-
ticular area or treatment and identify pitfalls that might 
explain translational efficiency: typically, these include 
limitations in external or internal validity, and publica-
tion bias [7–9]. Investigation or explanation of hetero-
geneity is the key step in a meta-analysis of preclinical 
studies. This is frequently done using meta-regression, 
although this is likely limited by low sensitivity and there-
fore type II errors are an issue in result interpretation 
[10, 11]. Furthermore, collinearity is often present in pre-
clinical survival datasets, so multivariate meta-regression 
has a theoretical advantage in identifying and account-
ing for interactions between predictors. However, this 
is thought to come at the cost of further compromise in 
sensitivity. Publication bias is an issue almost universally 
encountered in preclinical meta-analyses—while tools to 
estimate its effect have been developed, they may under-
estimate its influence [12, 13].

Analysis of time-to-event data typically focuses on the 
generation and comparison of hazard functions—most 
commonly via log-rank or Cox proportional hazards 
methods [14]. The hazard function is the most popular 
assessment method for survival data because it is versa-
tile, allows for the inclusion of censored data (i.e. indi-
viduals for whom the event of interest does not happen 
during the study or those who drop out of the study early) 
and provides a single metric that represents the risk of 
event occurrence throughout the observation period [15, 
16]. Similarly, hazard ratios (HRs) are deemed the gold 
standard summary statistic for use in the meta-analysis 
of clinical trials [17]. However, the calculation and pool-
ing of precise HRs for meta-analysis is only possible by 
either obtaining individual patient data (IPD) or if meas-
ures relating to hazard function are reported directly in 
each included study. The former is impractical because 
of the time and resources required in obtaining and han-
dling individual patient data, and the second is unfeasi-
ble because relevant hazard data is only presented in a 
minority of clinical trial manuscripts [18].

In preclinical studies, there is no established gold 
standard summary statistic: calculation of hazard ratios 
is particularly challenging and at present there is no 
statistically validated alternative. The relevant informa-
tion for use of HRs is rarely included in manuscripts 
and contacting study authors for induvial animal infor-
mation cannot be relied on as response rates to direct 
communication can be inconsistent. Furthermore, 
preclinical meta-analyses typically consist of a large 

number of small studies which would compound the 
issues with IPD meta-analysis discussed above. While 
there are methods reported to estimate hazard func-
tions from Kaplan-Meier graphs [19], this process is 
cumbersome when compared with the collection of 
other outcome data, such as those relating to volume 
or functional performance scales. Other methods of HR 
estimation are reported but are generally laborious or 
require specific programming [20–22].

There are other metrics that can be used to summa-
rise survival data. The simplest, and most intuitive, is the 
median survival; this is frequently if not universally used 
when describing survival datasets, for example for clini-
cal trials. It is much simpler to generate accurately than 
the other methods and can easily be measured from a 
Kaplan-Meier chart of any study size. The significant lim-
itations, however, are the lack of an inherent measure of 
spread and a concern that median survival may not accu-
rately represent the entire observation period—for exam-
ple, a difference in long-term survivorship may not be 
accounted using this metric but would be detected with 
hazard-based analyses. Odds ratio or risk ratio-based 
summary statistics have the same problem [20].

Michiels et  al. [23] compared meta-analyses of clini-
cal trial data using IPD-derived HR, an odds ratio-based 
approach (comparable to the Kaplan-Meier HR estima-
tion tool described in [19]), and median survival ratio 
(MSR) as a summary statistic. They found comparable 
global estimates of effect for each method, and on this 
basis, we developed a technique for pooling survival 
data using median survival ratio, with the number of 
animals per experiment used for weighting in place of 
inverse variance [24]. It appears to have given sensical 
results in preclinical meta-analyses [25–27], especially 
when compared to prior metrics [28]. Michiels did, how-
ever, observe a proportion of MSRs favouring treatment/
control oppositely to their counterpart HRs, and on this 
basis, the authors advised against the use of MSR in clini-
cal meta-analysis.

It could be argued that these findings are not relevant 
to animal data—the authors pooled data from a small 
number of medium-sized clinical trials (n in the hun-
dreds), where a single MSR figure may be more, or less, 
representative of the dataset as a whole than for small 
animal studies. The weightings between studies were rel-
atively constant and study sizes ranged much less than for 
animal experiments encountered in prior glioma meta-
analyses (n = 3–30 per group). Heterogeneity in preclini-
cal meta-analyses is generally much higher than that seen 
in this meta-analysis. Crucially, the authors did not com-
pare performance on the investigation of heterogeneity. 
Thus, there is limited applicability of their conclusions 
to preclinical meta-analysis, where the focus falls on the 



Page 3 of 13Hirst et al. Syst Rev          (2021) 10:292 	

investigation of heterogeneity rather than the magnitude 
and precision of efficacy estimates.

In this study, we therefore aimed to assess MSR as a 
tangible, practicable summary statistic when compared 
with IPD-derived HR. Secondly, we aimed to compare the 
performance of each summary statistic at meta-analysis 
in terms of the detection of overall treatment effects, 
between-study heterogeneity and effects of covariates at 
both univariate and multivariate meta-regression. Finally, 
we aimed to assess the impact of a publication bias effect 
on these simulations. We chose to undertake a simula-
tion because of the significant noise, heterogeneity and 
difficulty of HR calculation in real animal datasets. Fur-
thermore, simulation studies allow for the control of the 
underlying data and a prior knowledge of key features—
thereby allowing for a more rigorous methodological 
assessment [29, 30].

Methods
Survival simulation
All simulations were undertaken in Stata 16 (Statacorp, 
USA) on a Microsoft Surface Pro 7 laptop. Code is pro-
vided in Supplementary Material 1.

We first planned to simulate a single large meta-anal-
ysis consisting of 1000 experiments. Experience of pre-
vious survival meta-analyses suggested a median n = 8 
per group, with a range around 3–30 [25]. We therefore 
created 16,000 individuals, assigning each randomly to 
one of 1000 studies. This was done using a beta function 
to give a positively skewed distribution of study sam-
ple sizes (as seen in prior survival meta-analyses). Indi-
viduals were divided into control and treatment groups 
alternately within each experiment to give roughly equal 
group sizes.

Following this, we created 10 more variables—to rep-
resent typical study design and quality features assessed 
in preclinical meta-analyses. We created 5 categorical 
variables (each consisting of 5 options), 3 binary variables 
and 2 continuous variables. We generated random values 
(uniformly distributed between 1 and 5 for categorical 
variables and 0 and 1 for binary variables, and with a nor-
mal distribution for continuous variables) and assigned 
these to each experiment group.

We then used the survsim function in Stata to generate 
survival data for each of the 16,000 individuals, relating 
to both event occurrence and time to event [29]. In this, 
we incorporated predictive values of treatment and asso-
ciated influence of 7 predictors on treatment outcome (4 
categorical, 2 binary, 1 continuous) into the model. The 
remaining 3 predictors were kept as controls—that is, 
with no influence on survival. The survival times were 
scaled to an arbitrary timeframe of 50 days at which the 
majority of individuals would have died. We used Cox 

regression to confirm the influence of treatment and of 
each variable on survivorship.

For each of the 1000 experiments, we used the stcox 
function to calculate log-HR (lnHR) and associated SE 
for each experiment, using a maximum likelihood, pro-
portional hazards-based iterative approach. Similarly, 
log-MSRs (lnMSR) were calculated for each experiment. 
Because this does not provide any inherent measure of 
variance, we estimated SE using 1/√n [24].

We pooled experiments using DerSimonian and Laird 
Random Effects meta-analysis [31], via the metareg com-
mand. We chose a random-effects model because of the 
innate heterogeneity of study design and conduct seen in 
the animal literature, as well as the large I2 values typi-
cally encountered in preclinical meta-analyses. Using 
the τ2 estimate, attained via a method of residual maxi-
mum likelihood, we were able to calculate both fixed and 
random-effects weighting for each summary statistic for 
each experiment.

Meta‑analysis and meta‑regression sensitivity assessment
Next, we looked to examine the performance of each 
summary statistic on application to meta-analysis. Points 
of interest were the sensitivity of each measure to detect 
a global efficacy estimate, between-study heterogeneity 
(as defined by τ2 and I2 measures), and most importantly 
for the detection of associations between treatment effect 
and each of the predictive variables at both univari-
ate and multivariate meta-regression. Furthermore, we 
looked to appraise the sensitivity across a range of meta-
analysis sizes comparable to those encountered in pre-
clinical meta-analyses.

In order to achieve this, we extended the first data-
set. Using the same parameters as above, we simulated 
100,000 experiments including 1.6m individuals. Each 
experiment was randomly assigned to meta-analysis 
groups of sizes 20, 50, 100, 200, 500 and 1000 studies. 
HR- and MSR-based summary statistics were calculated 
as described above.

We then performed a meta-analysis of each group 
(including between 20 and 1000 studies), applying a limit 
of 1000 such that there were 1000 meta-analyses of sizes 
20–100 experiments, 500 of size 200, 200 of size 500 and 
100 of size 1000. Ideally, we would have undertaken 1000 
of each group although this was impractical due to com-
puting limitations. After this, we counted the number of 
meta-analyses returning significant (α = 0.05) treatment 
effect for each (a global efficacy estimate greater than 0), 
as well as mean ± SD of I2 and efficacy estimate for each 
meta-analysis size using both summary statistics.

Finally, we compared the sensitivity of meta-regression 
to detect associations between predictive variables and 
treatment outcome. This was done for the full range of 
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meta-analysis sizes and for both summary statistics, 
using both univariate (α = 0.005 after Bonferroni correc-
tion) and multivariate (α = 0.05) strategies.

Publication bias assessment
Using the large dataset, we undertook a log-rank test (α 
= 0.05) to determine whether a significant treatment 
effect would be observed in each experiment. Following 
this, we created daughter datasets in which a set pro-
portion (0%, 25%, 50%, 75% and 100%) of the non-sig-
nificant studies were selected at random and discarded, 
thereby creating a series of large datasets with every 
parameter identical other than the influence of a file 
drawer effect.

Following this, we proceeded with meta-analysis in the 
same way as above but using only MSR data. At the meta-
regression stage, we chose to compare the performance 
of multivariate meta-regression only because of the find-
ings in earlier stages of the study.

Results
Survival simulation
Our simulation returned 1000 studies with median 8 ani-
mals per group, IQR 7–10, range 2–23 (see Supplemen-
tary Material 2). During the simulated follow-up period 
(arbitrarily scaled to 50 days), 15,804 (98.8%) deaths 

occurred, with 196 (1.2%) surviving the duration of the 
experiment. The overall median survival was 8.58 days.

Cox regression of the individual data (via stcox com-
mand) suggested a significant treatment effect (HR 1.50 
± 0.024, Z = 24.8, p < 0.001), with a corresponding 
median survival ratio (MSR) of 1.27 (Fig. 1). Furthermore, 
the influence of all 7 variables intended to impact on sur-
vival was demonstrable on a multivariate Cox regression. 
Kaplan-Meier curves visualising survival stratified by 
each categorical variable group are shown in Fig. 1.

The stcox function successfully generated HR esti-
mates for all 1000 experiments in the first simulation, 
with a median of 1.52 (IQR 1.02–2.62), although a small 
percentage returned extreme HRs favouring either 
treatment (11/1000, 1.1%) or control (1/1000, 0.1%) 
with correspondingly large standard error (see Sup-
plementary Material 3 for examples). These were not 
excluded as their weighting would be diminished at 
meta-analysis. The median MSR for the dataset was 1.25 
(IQR 0.97–1.70)—there were no extreme outliers, range 
0.423–6.27. On log-transforming each statistic prior to 
application to meta-analysis, there was a modest cor-
relation between lnHR and lnMSR (r = 0.37, Fig.  2A). 
The same direction of treatment effect was suggested 
by both summary statistics in 840/1000 (84%) of 
instances; opposite treatment effects were suggested in 

Fig. 1  Survival curves for simulated data. Kaplan-Meier plots for simulated individuals categorised by treatment group (trt), categorical variables 
(Var1-5) and binary variables (Bin1-2)
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the remaining 160 (16%). Typically, in these instances, 
the efficacy estimates were modest for both measures 
and differing polarities could be accounted for by non-
significant treatment effect or crossing Kaplan-Meier 
curves (see Supplementary Material 4).

The measure of error used for lnHR was the stand-
ard error generated from the stcox estimation. As MSR 
measurement does not inherently produce a measure 
of error, this is estimated using the number of ani-
mals in the experiment as a surrogate. The total num-
ber of individuals in the experiment is used in place 
of inverse variance as a meta-analysis weighting fac-
tor, so SE for lnMSR is thus estimated using 1/√n. 
There was a linear correlation between se_lnHR and 
se_lnMSR although standard errors were larger and 
of greater range for HR data (Fig.  2B). Correspond-
ingly, there was a correlation in fixed-effects weight-
ing with weighting values being larger for MSR data 
than for HR, and absolute values much higher for MSR 
data than HR (Fig.  2C). Consequently, the τ2 estimate 
for the MSR-based meta-analysis was 0.111, compared 
with 0.0626 for the HR approach—meaning that ran-
dom-effects weighting was more consistent in the MSR 
meta-analysis (Fig. 2D).

Meta-analysis of HR data suggested a significant treat-
ment effect with pooled HR of 1.50 (95% CI 1.44–1.56; 
t = 19.3, p < 0.001). Similarly, there was pooled MSR of 
1.29 (95% CI 1.26–1.32; t = 19.0, p < 0.001). The I2 values 

were high for MSR data (63.7%) and low for HR data 
(23.5%). On univariate meta-regression, a significant pre-
dictive effect of 6 variables was identified using HR (Var1, 
Var2, Var3, Bin1, Bin2) and of 5 using MSR (Var1, Var2, 
Var3, Bin1, Bin2, Cont1). Similarly, multivariate meta-
regression of these 1000 studies revealed the predictive 
value of 5 variables for both HR and MSR (Var1, Var2, 
Var3, Bin1, Bin2).

To summarise, we have found strong correlations 
between the HR and MSR summary statistics as well as 
their performance in a single large meta-analysis.

Meta‑analysis and meta‑regression power assessment
The simulation was repeated for 100,000 experi-
ments containing 1.6m individuals in order to allow for 
an assessment of the sensitivity of each approach by 
repeated meta-analyses. This was done using the same 
parameters as the first simulation, except for the number 
of individuals and experiments. The median study group 
size was 8 (IQR 7–10). Death occurred for 98.7% of indi-
viduals during the experiment and the overall median 
survival was 8.39 days.

Cox regression again suggested a significant influence 
of treatment, with HR 1.46 ± 0.0237, Z = 234 and p < 
0.001. Median survival was 9.42 days in the treatment 
group and 7.55 in the control, giving a MSR of 1.25. Simi-
larly, Cox regression suggested a comparable influence of 
each predictive variable on survival outcome to those in 

Fig. 2  Head-to-head comparison of HR- and MSR-based summary statistics. Scatter plots comparing efficacy estimates (A), standard errors (B), 
fixed-effects weightings (C) and random-effects weighting as calculated in DerSimonian and Laird meta-analysis (D)
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the first dataset and no influence of the control variables 
(see Supplementary Material 5).

The iteration failed to converge in 34 instances 
(0.034%) of HR estimation and so these experiments were 
excluded from the remainder of the simulation. These 
experiments mostly had exceptionally small sample sizes 
(see Supplementary Material 6 for examples). Whenever 
a meta-analysis had a study excluded, it was still treated 
as if it were its original size (that is, of size 20 experi-
ments instead of 19 or 100 instead of 99). There were no 
instances where a single meta-analysis had 2 experiments 
excluded.

HR- and MSR-based summary statistics performed 
similarly at random-effects meta-analysis. Their ability to 
detect a treatment effect was comparable, with sensitivity 
around 70% of meta-analysis of 20 experiments for each 
summary statistic and close to 100% for those including 
50 or more experiments (Fig. 3A). I2 values were consist-
ently low for HR-based meta-analyses, with few values 
returned over 25% (Fig.  3B), in keeping with the more 

conservative SE estimations discussed above. Conversely, 
I2 was consistently between 60 and 65% throughout the 
range of meta-analysis sizes for MSR data (Fig. 3C). The I2 
was higher for MSR-based approaches in every instance 
than HR. There was a fairly consistent global efficacy esti-
mation across both datasets, with variance of estimates 
slightly lower for the MSR meta-analyses (Fig. 3D, E).

We compared the ability of meta-regression to detect 
the predictive value of covariates on treatment outcome 
for both MSR- and HR-based meta-analysis, at both uni-
variate and multivariate stages. At every stage, alpha was 
set to 0.005 for univariate meta-regressions to account 
for multiple testing, and 0.05 for multivariate meta-
regressions. For univariate meta-regression, sensitivity 
was overall relatively low. The power to detect even the 
stronger associations (for example, with Var1 and Bin1) 
was below 50% in meta-analyses of 100 studies or less for 
each dataset. However, sensitivity increased to over 80% 
for strong associations at 200 studies and moderate asso-
ciations (e.g. Var2, Var3, Bin2) at 1000 studies. There was 

Fig. 3  Comparison of performance of HR- and MSR-based summary statistics at meta-analysis. Plots showing sensitivity of meta-analyses of size 
20–1000 studies to detect treatment effect (A; α = 0.05); I2 across the range of meta-analysis sizes for HR (B) and MSR (C); and global efficacy 
estimates for HR (D) and MSR (E). Plots represent the mean ± SD 
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no major advantage of one summary statistic over the 
other in terms of sensitivity, although MSR-based meta-
analysis slightly outperformed HR-based meta-analysis in 
every case. The type I error rate was maintained around 
0.05 for each of the control variables throughout the 
range of meta-analysis sizes (Var5, Bin3, Cont2; Fig. 4A).

Finally, we undertook the same assessment but using 
multivariate meta-regression. Again, sensitivity was rela-
tively low but not dissimilar to that found at univariate 
meta-regression. Power was limited to below 50% (α 0.05) 
for even strong associations when meta-analysis size was 
100 or less, but a power of 80% or more was seen for 
strong and moderate associations for larger meta-analy-
ses in the same manner as the univariate meta-regression 
(Fig. 4B). With α set as above, multivariate meta-regres-
sion appeared to confer a sensitivity advantage over uni-
variate meta-regression (see Supplementary Material 7). 
Indeed, if α is increased to 0.05 for both strategies, there 
were no appreciable differences in sensitivity between to 
two techniques for MSR data (data not shown).

This section shows that, on repeated meta-analysis and 
meta-regression, the power for MSR to detect associa-
tions is equivalent if not superior to HR for small studies.

Publication bias inclusion
We recreated the large dataset (n = 1.6m individuals, 
100,000 experiments) but introduced a file drawer effect 
to simulate publication biases of varying strengths by 
randomly discarding 0%, 25%, 50%, 75% and 100% of 
experiments for which there was no apparent treatment 
effect on log-rank testing. Of the 100,000 experiments, 
only 17,076 (17.1%) returned a significant log-rank test 
statistic. Thus, the sample size reduced for each dataset 
as the influence of the file drawer effect increased. That 
being said, meta-analyses were only included in the anal-
ysis if their size was at least 90% of that intended (18 for 
group size 20, 900 for group size 1000, etc.).

Unsurprisingly, the sensitivity of meta-analysis to 
detect treatment effect increased with increasing file 
drawer effect (Fig.  5A) despite a dramatic reduction in 
sample size. Because global efficacy estimates appeared 
not to vary greatly between different meta-analysis 
sizes, we compared global efficacy estimates and I2 for 
meta-analyses of size 1000 only as these returned esti-
mates with the greatest precision. There was a dramatic 
increase in the perceived global efficacy estimates as pub-
lication bias influence increased, with median survival 

ratios of 2.01 (lnMSR = 0.702) observed in studies in 
which all non-significant experiments were discarded 
and 1.47 (lnMSR = 0.387) with a file drawer effect of 75% 
(Fig. 5B). There was no clear association between the file 
drawer effect and between-study heterogeneity (Fig. 5C).

We compared the performance of multivariate meta-
regression of MSR data compromised by varying file 
drawer effects. While there was no major correlation 
between file drawer influence and meta-regression sensi-
tivity, there was a trend for more biased datasets to sug-
gest slightly higher power for detection of associations of 
any strength, without a clear increase in the type I error 
rate (Fig. 6).

This section gives an estimation of the true influence of 
publication bias, which cannot be accurately measured 
from real data (as the problem is missing/irretrievable 
data).

Discussion
In this study, we have explored the use of the median 
survival ratio as a convenient alternative to hazard ratio 
using a preclinical meta-analysis simulation. We believe 
that, for meta-analyses including large numbers of small, 
imprecise studies, we have validated MSR use as a sum-
mary statistic. We have undertaken multiple meta-analy-
ses and provided a power assessment of meta-regression 
at both univariate and multivariate phases and believe 
that this is informative for future preclinical survival 
meta-analyses.

Survival simulation
Our study used a series of survival data, all generated 
with the same parameters—that is, with the same influ-
ence of treatment and other variables. We chose the 
treatment effect deliberately to give a MSR in the range of 
1.25–1.3, as this is what we have encountered in previous 
meta-analyses of animal glioblastoma studies [25–27]. 
A useful exercise might be to appraise the comparative 
performance of HR vs MSR across a range of treatment 
effect sizes. However, we directed our attention toward 
the meta-regression phase of analysis as this is where the 
focus lies in preclinical meta-analysis. We included 10 
variables into the survival model, with 7 having predic-
tive effects on treatment outcome. We achieved this by 
including the variables a separate hazards in the survsim 
command, so as to ensure an interaction between each 
variable and the treatment variable, as simply including 

Fig. 4  Grouped plots showing sensitivity of meta-regression to detect the influence of each variable at univariate (A; α = 0.005) and multivariate (B; 
α = 0.05) stages. Each plot shows the proportion of significant associations (α as specified above) versus the meta-analysis size. Blue plots denote 
HR-based meta-regression, red denotes MSR-based meta-regression; Var1-5 represent the categorical variables, Bin1-2 represent the binary variables 
and Cont1-2 represent the continuous variables

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Comparison of MSR-based meta-analyses in the context of varying degrees of file drawer effect. Plots showing the sensitivity of 
meta-analyses of size 20–1000 studies to detect treatment effect (A; α = 0.05); global efficacy estimates (B) and I2 (C) across the range of 
meta-analysis sizes. Plots represent the mean ± SD 

Fig. 6  Grouped plots showing the sensitivity of MSR meta-regression to detect the influence of each variable at multivariate stage (α = 0.05) across 
a range of file drawer effects. Each plot shows the proportion of significant associations versus meta-analysis size. Var1-5 represent the categorical 
variables, Bin1-2 represent the binary variables and Cont1-2 represent the continuous variables
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10 variables as covariates along with the treatment varia-
ble does not generate this interaction [29]. We confirmed 
this interaction by demonstrating significant propor-
tional hazards on Cox regression of raw survival data, 
as well as by the demonstration of associations in meta-
regressions. We hoped to input a range of realistic associ-
ations while keeping the survival data tangible, although 
we acknowledge that the outcome of power analysis is 
directly affected by the magnitude of associations gener-
ated at this stage. Our ‘strong’ associations, for example 
with the first binary variable, were associated with a 12% 
difference in MSR which probably underestimates those 
seen in real datasets.

A significant limitation in this survival simulation is 
the lack of collinearity. We have raised concerns of col-
linearity in prior survival meta-analyses (for example 
certain immune conditions being required for differ-
ent tumour paradigms or different delivery methods for 
different drugs) which can return false results via con-
founding effects. We had hoped to document the type 
I error rate by including variables with no influence on 
survival or treatment outcome, but were unable to effec-
tively introduce collinearity into this simulation. We have 
recommended multivariate approaches for preclinical 
glioblastoma meta-analyses on this basis and our power 
studies are favourable in this regard. Secondly, our sim-
ulation does not account for ‘unknown unknowns’, or 
factors of influence which cannot be measured. This is 
a significant issue in preclinical meta-analysis and only 
acts to create additional heterogeneity that cannot be 
explained. Because this simulation is not affected by this 
effect, our estimations for power in meta-analysis and 
meta-regression may be less for real data. It is impossi-
ble to quantify the effect of unknown unknowns on real 
meta-analyses, so attempts to introduce this effect in 
survival simulation with appropriate magnitude will be 
precarious.

We chose to limit the study to a length where the 
majority of individuals had died, as this is often the case 
in experimental studies (for control data at least). Short-
ening the timeframe to, say, 30 days where around 25% 
of individuals survive might be more realistic as con-
tinuing experiments beyond the point of equipoise is 
generally considered unethical. A truncation like this is 
unlikely to affect MSR (as median survival would still be 
observed in the majority of experiments), but HR assess-
ment could change: a shortened timeframe would give 
fewer timepoints for comparison, fewer events and more 
censored data and differences in long-term survivorship 
could be overlooked [16, 20]. HR estimates would there-
fore be less precise, compromising meta-analysis and 
meta-regression sensitivity—thus further favouring the 
use of MSR.

Validity of summary statistics
The HR-based strategy appeared to be computation-
ally more challenging than for MSR, and as an iterative 
technique, there were a subset (around 1%) of studies 
for which estimations were either outliers or an estimate 
could not be given. Both of these issues are presum-
ably a consequence of the small sample sizes and could 
generate problems for meta-analysis, skewing results. 
That being said, this problem was not limited to stud-
ies of particularly small sample size. Extreme efficacy 
estimates—which appear to be a product of the HR esti-
mation process rather than the grouping of individuals 
into studies as the variance was similarly high and cor-
responding MSRs within expected range—may skew 
meta-analysis unduly with the introduction of type I 
errors during meta-regression. However, in this simula-
tion, the variance of these HRs is correspondingly large 
and these studies are weighted lightly, especially given 
the small τ2 values associated with HR meta-analyses. 
Experiments for which iteration fails to converge on a 
HR estimate must be omitted from meta-analysis—con-
ferring an arguably avoidable risk of bias. One advantage 
of hazard-based survival analysis is the inclusion of cen-
sored data, but this is rarely used in experimental studies 
because of the controlled nature of their circumstances.

Median survival ratios were computationally more 
straightforward to calculate and are much simpler to 
estimate from Kaplan-Meier charts than HRs. They have 
appeared to produce more consistent efficacy estimates 
and we did not observe extreme or missing results. The 
fundamental limitation of this metric is the lack of a meas-
ure of spread—the substitute measure of precision (via 
study size) has likely led to underestimations of efficacy 
estimate variance, meaning that heterogeneity is overes-
timated. This is reflected in the very high I2 values seen 
in MSR-based meta-analyses. Random-effects weighting 
has therefore tended more toward a straight average as τ2 
is high, meaning that meta-analysis moves more toward 
an unweighted average. This is advantageous in quelling 
doubt around the validity of precision estimation, but 
does put meta-regression at risk of inflated influence from 
individual outlying, imprecise studies.

Outliers excluded, HR and MSR gave analogous results 
in the majority of instances. There were 16% of stud-
ies for which the polarity of HR and MSR were oppo-
site, which is comparable with the observations made by 
Michiels et al. [23]. However, in this simulation, efficacy 
estimates were small in every case; for these 160 experi-
ments, none was associated with a significant treatment 
effect of Cox regression or log-rank testing (α = 0.05). 
As such, the issue of differing efficacy estimate polarities 
does not appear to be a major issue in the meta-analysis 
of very small studies.
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Performance at meta‑analysis
Despite more conservative estimates of efficacy and pre-
cision in the HR dataset, and clear differences in hetero-
geneity estimation, we were surprised with the similarity 
in meta-analysis and meta-regression power between 
the two summary statistics. As expected, the power to 
detect a treatment effect was high throughout the range 
of meta-analysis sizes, except for those combining only 
20 experiments.

Meta-regression was limited in sensitivity, in keep-
ing with prior concerns [10, 11]. We did not expect to 
observe comparable performance between HR and MSR 
at both univariate and multivariate stages, especially 
given the large discrepancy in heterogeneity estimation. 
MSR had a slight advantage across all variables which 
may reflect the greater observed heterogeneity when 
using this technique. Regardless, this did not appear 
to come at the cost of an increase in type I error rates. 
Multivariate meta-regression in preclinical meta-analy-
ses is often limited as studies are excluded due to collin-
earity, resulting in a compromise in sensitivity that is not 
accounted in this simulation.

We have demonstrated, for both summary statistics, 
that with this level of variable influence, meta-regression 
is of little use for meta-analyses smaller than 100 experi-
ments; indeed, for confidence in the detection of mod-
erate and strong associations, a number closer to 500 is 
likely to be needed. In the preclinical literature, single 
treatments are seldomly reported in 500 instances. As 
such, to reliably use meta-regression as a tool to investi-
gate study design and quality features for time-to-event 
data, we believe that the pooling of multiple treatments 
is required to ensure the appropriate level of power. This 
would require a multivariate approach, because differ-
ent treatments of course have differing efficacies and a 
univariate approach may be unreliable in the context of 
these unaccounted confounding effects. Network meta-
analysis has proven useful when comparing multiple 
treatments and its application to survival data may be 
useful in this regard [32].

Publication bias assessment
Using this set of parameters, we observed a 17% power 
of studies to detect treatment effect, which is similar to 
an estimate made previously from real data [25]. Intro-
ducing a file drawer effect appears to have, as expected, 
generate greater perceived efficacy estimates and resulted 
in a higher proportion of small meta-analyses detecting 
treatment effect.

Meta-analyses of the most biased datasets returned 
perceived efficacy much higher than the original dataset, 
in keeping with publication bias phenomena observed in 
preclinical and clinical meta-analyses. While techniques 

have been described to accommodate for this or even to 
estimate its influence, they are known to be insensitive. 
Indeed, applying Trim and Fill analysis to a single meta-
analysis of size 1000 experiments in the context of a 100% 
file drawer effect suggested a reduction of lnMSR from 
0.690 to 0.502 only—far short of the mean treatment effect 
of 0.246 observed in a meta-analysis of unbiased data.

We thought including more experiments favouring 
positive treatment effect might lead to a reduced hetero-
geneity estimate as studies suggested efficacy more con-
sistently, although this was not the case and I2 remained 
fairly consistent across the range of file drawer effects. 
Our strategy was designed to exclude non-significant 
study results but did not filter for those favouring a 
positive treatment effect; that is, our biased datasets did 
include some studies that suggested a significant negative 
treatment effect. However, this was the case for only 988 
experiments (0.9% of the entire dataset; 5.8% of the sig-
nificant log-rank tests)—so we believe that this would not 
fundamentally change the findings of this analysis.

Meta-regression of biased datasets appeared to show a 
slight sensitivity advantage over those without publica-
tion bias in some circumstances—although this was not 
a sustained, clear correlation. This association may be 
explained by the fact that subtle influences of predictive 
variables are easier to detect when there is less noise in 
the range of treatment effects. However, a relatively con-
stant I2 would refute this. A second explanation could be 
that this apparent increased sensitivity could represent a 
type I error. There appeared to be no clear trend for an 
increased type I error rate in control variables, although 
in some instances significant associations were seen as 
frequently as 10%. If meta-regression sensitivity is inap-
propriately increased in biased meta-analyses, the data 
from this study suggests that the problem is marginal and 
would not radically affect the findings.

Conclusions
In this simulation, we believe we have demonstrated 
that, for meta-analyses of small experimental studies, 
median survival ratio is at least equivalent in sensitiv-
ity and reliability to hazard ratio-based techniques, 
while being simpler to calculate and with more consist-
ent summary statistic calculation process and output. 
As such, its use in preclinical meta-analyses is advis-
able and practical. Although concerns around the use 
of study size as a measure of precision remain valid, 
we have not observed any detrimental consequences—
conversely, it appears to result in an increase in meta-
regression sensitivity. Similarly, median survival ratios 
can suggest the opposite direction of treatment effect 
to hazard ratio in larger trials, but this does not appear 
to be a major issue in the meta-analysis of small, 
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imprecise studies. We have provided an estimation 
of meta-regression sensitivity in a single set of condi-
tions which suggests that large meta-analyses are likely 
required in order to appropriately manage the risk of 
type II error. Finally, we have shown that multivariate 
approaches are superior in terms of sensitivity and that 
their performance is not fundamentally compromised 
by severe publication bias.
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