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Abstract

Background: Meta-analyses of randomized controlled trials (RCTs) have been considered as the highest level of
evidence in the pyramid of the evidence-based medicine. However, the causal interpretation of such results is
seldom studied.

Methods: We systematically searched for methodologies pertaining to the implementation of a causally explicit
framework for meta-analysis of randomized controlled trials and discussed the interpretation and scientific
relevance of such causal estimands. We performed a systematic search in four databases to identify relevant
methodologies, supplemented with hand-search. We included methodologies that described causality under
counterfactuals and potential outcomes framework.

Results: We only identified three efforts explicitly describing a causal framework on meta-analysis of RCTs. Two
approaches required individual participant data, while for the last one, only summary data were required. All three
approaches presented a sufficient framework under which a meta-analytical estimate is identifiable and estimable.
However, several conceptual limitations remain, mainly in regard to the data generation process under which the
selected RCTs rise.

Conclusions: We undertook a review of methodologies on causal inference methods in meta-analyses. Although
all identified methodologies provide valid causal estimates, there are limitations in the assumptions regarding the
data generation process and sampling of the potential RCTs to be included in the meta-analysis which pose
challenges to the interpretation and scientific relevance of the identified causal effects. Despite both causal
inference and meta-analysis being extensively studied in the literature, limited effort exists of combining those two
frameworks.

Background
Evidence-based medicine is an approach to medical
practice defined as conscientious, explicit, and judicious
use of current best evidence in making decisions about
the care of individual patients in the light of their per-
sonal values and beliefs [1]. On a clinical research level
and for pertinent research questions, randomized

controlled trials (RCTs) undoubtedly offer the highest
level of evidence compared to other study designs. An
RCT’s primary objective is the minimization of biases,
such as selection or allocation biases, by randomizing
participants into the study groups in an unbiased fash-
ion. If randomization is successful, the characteristics of
the groups are expected to be equally allocated, there-
fore making the groups exchangeable. Under a complete
protocol adherence and no loss-to-follow-up, this prop-
erty of the RCTs essentially justifies the interpretation of
the studied associations as the best available proxy of
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causal relationships [2]. When a randomized design is
not feasible, data from observational study designs can
be used to emulate a randomized experiment based on
causal inference approach to obtain a valid causal esti-
mate [3, 4]. Under a causal inference framework, the
goal is to identify and compute that effect estimate that
has a causally relevant interpretation on the population
the trial samples from.
Meta-analysis is a quantitative procedure of assessing

and combining data from multiple studies. By combining
evidence from RCTs using meta-analytical approaches,
one can potentially achieve higher levels of evidence.
One caveat of this approach is that while each study’s es-
timate can potentially have a causal interpretation, their
aggregation may lose this capacity, mainly due to differ-
ences on inherent study characteristics including (but
not restricted to) differences in populations, in treat-
ments and/or on the definition of outcome across
studies.
In the present effort, we aim to identify and review

methodologies relevant to implementation of a causally
explicit framework for meta-analysis and discuss the in-
terpretation and scientific relevance of that causal esti-
mand. Therefore, in the first part, we focus on the
published methodologies that address the identification
and estimation of causal effects derived from meta-
analyses of RCTs along with the underlying assumptions.
In the second part, we go one step back in order to dis-
cuss the plausibility of the assumptions and issues con-
cerning on the generalizability and scientific relevance of
the derived estimands.

Methods
Definitions
We briefly present the causal inference framework
known as the Rubin causal model [3, 5]. Let Y denote
the outcome of interest and let T denote the treatment
in a randomized trial. For simplicity, let the treatment
take the values 1 for treated and 0 for untreated. Then,
Yi

1 denotes the potential outcome (counterfactual) of
unit i under treatment, while Yi

0 the potential outcome
of unit i under no treatment. The quantity Yi

1 – Yi
0 de-

notes the difference in potential outcomes for unit i, the
individual treatment effect (ITE). The quantities Yi

1 and
Yi

0 can never be simultaneously observed for the same
individual. The fact that for each i one of the Yi

1 and Yi
0

is always missing prohibits us from estimating the ITE.
This problem is known as the “fundamental problem of
causal inference” [5]. While ITEs are never observable
one can estimate the average treatment effect (ATE).
Under the assumptions presented in Table 1, one can
use the observed quantity E[Yi

1 | T = 1] – E[Yi
0 |T = 0]

as an estimator of the ATE = E[Yi
1] – E[Yi

0].

If these assumptions hold, one can make valid causal
inferences. The positivity and ignorability assumptions
are often considered together and are referenced as the
strong ignorability assumption.

Search algorithm, inclusion, and exclusion criteria
We performed a systematic search in four databases
(Wed of Science, PubMed, Arxiv, and Google Scholar)
using the search algorithm: “(causal* OR causat*) AND
(meta–analysis OR metaanalysis OR “meta analysis” OR
multilevel OR multilevel OR “multi level” OR hierarch-
ical OR meta–synthesis OR “meta synthesis” OR meta-
synthesis)” from inception to April 2020 to identify
relevant methodologies. The search was supplemented
with manual searches and reference screening of all rele-
vant studies. We focused on identifying studies that pre-
sented a causally explicit framework under a meta-
analysis model for randomized controlled trials. We in-
cluded methodologies that described causality under
counterfactuals and potential outcomes frameworks.
Studies that claim causality using only the Bradford–Hill
criteria were excluded. We also excluded studies on
Granger causality, which is more pertinent to prediction
than causation. Studies that describe causal inference ap-
proaches which are not pertinent to evidence synthesis
and application studies were excluded.

Table 1 Core assumptions for identifiability in causal inference

Stable unit treatment value assumption (SUTVA): The stable unit
treatment value assumption states that there is no interference among
units, that is, the treatment status of a unit does not affect the potential
outcomes of other units and it also requires that there is only a single
version of the treatment (no hidden variations in treatment; no multiple
versions of treatment). Possible violations of the SUTVA include settings
where units interact (e.g., schools, group interventions) or different
treatment dosages exist or different modes of administration operate
which can affect the potential outcomes.

Consistency: An individual’s potential outcome under the observed
exposure history is precisely the observed outcome: If T = t, then Yi

t = Yi

Positivity: The probability of being assigned to each of the
treatment levels is greater than zero for each level of a variable X:
Pr(T = t|X = x) > 0

Assignment mechanism–ignorability: Also known as exchangeability,
or unconfoundedness, this assumption states that treatment assignment
is independent of the potential outcomes; this roughly translates to no
unmeasured confounders and no informative censoring. Ignorability can
be either unconditional or conditional.

• Unconditional ignorability: In RCTs, where the treatment is
randomly assigned, the potential outcomes will be independent of
the treatment assignment. Formally, this is defined as (Yi

1,Yi
0) ⊥ T. This

stems from the main property of randomization, i.e., any measured or
unmeasured confounder will be equally distributed across groups.

• Conditional ignorability: In non-randomized settings, confounders
are not bound to be equally distributed across treatment groups, and
thus unconditional ignorability cannot hold. However, given a set of
covariates X and assuming that no unmeasured confounder exist,
conditional ignorability can be defined as (Yi

1,Yi
0) ⊥ T | Xi.
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Results
Systematic methodology review
The search algorithm yielded a total of 17,280 titles.
After initial screening, a total of 256 articles were
screened in full-text for eligibility. Finally, only three dis-
tinct methodologies from four publications [6–9] de-
scribing for a causal inference framework in a meta-
analysis setting were included in this review (Fig. 1).
Two methodologies were based on a meta-analysis set-
ting using individual participant data and the last one on
a network meta-analysis setting using summary data.
Below, we provide a brief description of those
methodologies.

Causal inference for meta-analysis using IPD data from
independent RCTs
Sobel et al. [6] described a framework where causal
estimates can be derived from a meta-analysis of
RCTs when individual participant data (IPD) are
available. The authors focus their work on identifying
and accounting for possible sources of heterogeneity
across trials. They restrict their focus on four possible
sources of heterogeneity across trials: response incon-
sistency, non-equivalent treatments, non-ignorable

treatment assignment, and variability in the compos-
ition of units in different studies or settings. Identifia-
bility conditions taken into account in Sobel et al.
approach are presented in Table 2.

Notation
Let t denote the treatment with t ∈ T = (1,…, L) where
T is a finite set of treatments. Then, Ts denotes the set
of treatments in study s. Let s denote the trial with s ∈
S = (1,…, m) where S is a finite set of trials. Let Xi be a
set of observed covariates, including both subject-level
and trial-level covariates for subject i. Yi ≡ Yi(si; ti) is
the observed outcome for subject i in study s under
treatment t.
The authors extend the potential outcome framework

to multiple studies by considering the potential out-
comes a subject would have had should he/she partici-
pated in a different trial. Let t = (t1,…, tn) and s = (s1,
…,sn), where ti ∈ T, si ∈ S, i = 1,…,n, and let Yi(s; t) de-
note the response subject i would have under the alloca-
tion s to studies and assignment t to treatments.
Assumption A1 is the extension of SUTVA under

multiple trials and treatments. A2 denotes that each trial
includes a random sample from its respective

Fig. 1 Flowchart
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population. A3a and A3b state that the effect of a treat-
ment is the same across studies unconditionally or con-
ditional on covariates. A4 further weakens these
assumptions stating that the relative effect of treatment t
versus treatment t’ is the same across studies, uncondi-
tionally or conditional on covariates. A5a and A5b de-
note that although different versions of the treatment
may exist, their effect on the potential outcomes is
equivalent. This allows several treatments to be grouped
together. A6 is the classic unconfoundedness assump-
tion. If all studies are randomized trials, this assumption
is expected to hold unconditionally and conditional on
X1. Based on A7, the authors explicitly acknowledge that
different trials may sample their subjects from different
populations, but assume that given a set of covariates
X2, subject assignment into trials is unconfounded. The
authors comment that some of these assumptions are
untestable by themselves, but if a number of those are
assumed to hold, one can then test the plausibility of
them holding given the other assumptions holding.
Overall, this framework does not use a complex analyt-
ical approach, rather is being based on the plausibility of
the aforementioned assumptions to hold and by a cor-
rect model specification using study level covariates and
possibly treatment, study, and covariates interactions.
The authors applied a standard Cox model to estimate
the causal effect which they justified based on A7.
Dahabreh et al. [7, 8] proposed a causal inference

framework under which meta-analysis estimates are
causally interpretable and transportable ATEs to a target

population. This approach requires IPD from the ran-
domized trials along with baseline covariate data from a
random sample from the target population, in order to
account for differences in distributions. They provide a
set of assumptions for identifiability conditions and also
propose an estimand that takes into account the distri-
butional differences between trials and target population
(Table 3). This framework assumes that the observed
data are obtained by random sampling from an infinite
superpopulation of individuals which is stratified by
study S. Authors denote this sampling method as a
“biased” sampling since the proportion of the sampled
population is not expected to be equal with the superpo-
pulation due to convenience sampling in the majority of
the RCTs. This framework assumes complete adherence
to the trial protocol and no loss-to-follow-up, leading to
the intention-to-treat effect being equal to the per-
protocol effect.

Notation
Let t denote the treatment with t ∈ T = (1,…, L) where
T is a finite set of treatments. Let s denote the trial with
s ∈ S = (1,…, m) where S is a finite set of trials. Let also
S = 0 denote the non-randomized target population. Let
X be a set of observed baseline covariates. E[Yt − Yt’∣ S
= 0] denotes ATE in the target population for the treat-
ments t and t’.
B1 implies that the treatment effect is consistent irre-

spective of trial participation. Conditions B2 and B3 are

Table 2 Sobel et al. identifiability conditions

A1. Extended stable unit treatment value assumption (eSUTVA): For all
possible assignments t and allocations s, Yi(s; t) = Yi(si; ti) ≡ Yi(s; t)

A2. Study sampling assumption: For all subjects i in study s, s = 1,…, m,
the random vectors Yi; Xi | Si = s; Ti = t are independent and identically
distributed Y; X | S = s; T = t

A3a. Strong response consistency assumption for treatment t: For all s;
s’ and subjects i, Yi(s; t) = Yi(s’; t)

A3b. Weak response consistency assumption for treatment t: For all s, s’
and X:
F (y(s; t) | S = s’; X = x) = F (y(s’; t) | S = s’; X = x)

A4. Weak consistency of effects of treatment t versus t’: For all s, s’ and
X, the causal estimands:
H (F (y(s; t) | S = s’; X = x); F (y(s; t’) | S = s’; X = x)) = H (F (y(s’; t) | S = s’;
X = x); F (y(s’; t’) | S = s’; X = x))

A5a. Strong equivalence of treatments t1 and t2 in study s: For all i: Yi(s;
t1) = Yi(s; t2)

A5b. Weak equivalence of treatments t1 and t2 in study s:
F (y(s; t1) | S = s; X = x) = F (y(s; t2) | S = s; X = x)

A6. Unconfounded treatment assignment given observed covariates: for
every s, and treatment t ∈ T s, F (y(s; t) | T = t; S = s; X1 = x1) = F (y(s; t) |
S = s; X1 = x1)

A7. Unconfounded study selection, given observed covariates: For all
studies s, s’ and treatments t, F (y(s; t) | S = s; X2 = x2) = F (y(s; t) | S = s’;
X2 = x2)

Table 3 Dahabreh et al. identifiability conditions when pooling
trials

B1. Consistency of potential outcomes: If Ti = t; then Yi
t = Yi, for every

individual i in the target population or the populations underlying the trials
in S

B2. Conditional exchangeability over treatment assignment T:
E[Yt ∣ X = x; S = s; T = t] = E[Yt ∣ X = x; S = s], for every trial s ∈ S, each
treatment t ∈ T, and every x with f(x; S = s) > 0

B3. Positivity of the treatment assignment probability in the trials:
For every treatment t ∈ T, Pr[T = t ∣ X = x; S = s] > 0 for every trial s ∈ S
and every x with f (x; S = s) > 0

B4. Conditional exchangeability in measure between the trial and the
target population: For every pair of treatments t and t′ in T, E[Yt – Yt ′∣ X
= x; S = 0] = E[Yt – Yt ′∣ X = x; S = s] for every trial s ∈ S and every x
with f (x; S = 0) > 0

B5. Positivity of the probability of participation in the trials: Pr[S = s ∣ X =
x] > 0 for every s ∈ S and every x with f (x; S = 0) > 0

Under conditions B4 and B5 the conditional mean difference of each trial is
equal to the conditional causal effect of the target population:
E[Yt – Yt ′∣ X; S = 1] = E[Yt – Yt ′∣ X; S = m] = E[Yt – Yt ′∣ X; S = 0]

Under conditions B1–B3, the common conditional mean difference is giver
from the formula:
τ(t; t ′; X) ≡ E[Y ∣ X; S = 1; T = t] – E[Y ∣ X; S = 1; T = t′] = … = E[Y ∣ X;
S = m; T = t] – E[Y ∣ X; S = m; T = t ′]

Finally, the ATE for the target population is:
E[Yt – Yt ′∣ X; S = 0] ≡ E[τ(t; t ′; X) ∣ S = 0]
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expected to hold within trials due to randomization. B4
implies that there is no trial effect affecting ATE condi-
tional on the baseline covariates X. Finally, B5 implies
that the probability of observing covariate patterns based
on which B4 stands, should be non-zero. Under B1–B5,
inferences are transportable from each trial to the target
population. Specifically, under B4 and B5, the ATE is in-
dependent of study participation in S, within strata of
baseline covariates. When multiple trials are pooled, the
positivity assumption B5 can be relaxed assuming that
trial-specific conditional ATE is equal to the conditional
ATE of the target population under a subset of baseline
covariates X and that the probability of covariate patters
occurring under different trials is non-zero.
All conditions B1–B5 assume that there is perfect ad-

herence and compliance in all trials and there is no trial
attrition. The authors also provided extensions to the
conditions in Table 2 under specific setting where this
assumption does not hold.
Based on the above set of identification conditions,

Dahabreh et al. [7, 8] provided two estimation ap-
proaches. The first approach models the conditional
ATE directly from the pool of the trials and baseline co-
variates. The second estimation method is based on a
weighting estimator, that is, applying trial-specific weight
based on the probability of trial participation and treat-
ment (see [7, 8] for details). In both cases, the authors
suggest that Wald-type or bootstrap-based confidence
intervals can be derived. The authors provided code in R
for implementation of the above estimands.

Causal inference for network meta-analysis using
summary data from independent RCTs
Schnitzer et al. [9] described a framework where causal
estimates can be derived in a network meta-analysis set-
ting by using aggregate data from multiple RCTs. This
approach focuses on estimating an average treatment ef-
fect under the presence of heterogeneity rising from dif-
ferences in study-level characteristics. The authors
define a marginal and model-independent causal esti-
mand and outline the key assumptions that are required
for this estimand to be identifiable under measured
study–level confounding. An arm-based network meta-
analysis approach is adopted throughout the paper
which estimates the arm-specific effects, in contrast to
the study-based approach that estimates the study-
specific effects.
In the arm-based approach, the authors assume that

each trial samples randomly from their respective popu-
lation and that, due to randomization, each trial arm is
representative of their population. Then, the authors de-
fine their superpopulation (coining the term metapopu-
lation) as the union of the trials’ populations. Due to
differences across trial, the authors assume that each

trial may not be representative of the superpopulation
and that each trial estimates its own effect. Therefore, in
order to account for differences across trials, one would
have to adjust for variables that contribute to differential
treatment selection and to the outcome distribution.
Regarding the computational part, in total, three esti-

mation methods (G–computation, inverse probability of
treatment weighting (IPTW), and targeted minimum
loss–based estimation (TMLE)) are presented and com-
pared in a simulation study. Briefly, in the G–computa-
tion method, a maximum likelihood substitution
estimator of the G–formula [10], the authors start by
fitting a regression model that estimates the outcome of
each arm i in study j using all arm regardless of treat-
ment assignment. In the next step, the predicted study
effect under each treatment is estimated and a mean ef-
fect across studies is derived. Finally, the standard error
of the G–computation estimate is derived by bootstrap
methods. The disadvantage of this approach is that the
correct model specification is challenging. The second
method is based on IPTW where a propensity score that
estimates the probability of each arm receiving the treat-
ment is computed and this probability is used as weights
to create a “pseudo–population” of study arms that are
free from confounding bias from the study-level con-
founders. The disadvantage of this approach is that the
number of study arms must be sufficiently large. IPTW
using propensity scores is also subject to correct model
specification. The TMLE is a doubly robust method that
involves the estimation of arm-based effects by fitting a
model for the expected value of the arm-based means
and by obtaining the predictions of study-specific effects
under treatment. In the next step, these predictions are
updated by a no-intercept logistic regression using only
the arms under treatment and a single covariate corre-
sponding to the estimated probability form the IPTW
method. Under a correct model specification for the pro-
pensity score, this method provides a consistent esti-
mate. Based on a simulation study, under a correctly
specified model, the G–computation method had the
performance followed by the TMLE. G–computation
and TMLE methods where more sensitive to model mis-
specification than IPTW; however, the latter was mode
biased and had a larger variance when the number of
studies was small.

Conceptual framework considerations
Data generation process and sampling for common, fixed,
and random effects
As we already showed, approaches to identification of
causal effects under a meta–analytical framework, al-
though scarce, do exist in the literature. However, there
exists a more fundamental problem that seems to not
have attracted enough attention. This problem pertains
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to the actual scientific relevance and/or clinical applic-
ability of an otherwise valid causal estimate. This prob-
lem directly translates to the specification of the data
generation process of the study and participants.
In the medical literature, meta-analysis has been a use-

ful tool for summarizing the plethora of evidence in any
specific topic. These two prevalent approaches in under-
taking a meta-analysis are commonly known as the
fixed-effect and the random-effects models. What is usu-
ally overlooked is that there exist in fact two distinct sets
of assumptions that lead to the same estimator derived
from a fixed-effect model [11] which are denoted as the
common effect model and the fixed-effects model. The
common-effect model is well known in the literature; it
is the “classic” fixed-effect meta-analysis model. In this
model we assume that all identified studies are trying to
estimate one common-effect θ and that all differences
between studies are attributed exclusively to the sam-
pling error. The fundamental assumption of this model
is that all studies use data from their populations who in
turn are random samples from the same superpopula-
tion. Therefore, under the common effect assumption,

the estimator θ̂ represents the weighted average estimate
of θ from the several studies. The exact same estimator
however can arise from an entirely different set of as-
sumptions, denoted here as the fixed-effect model.
Under this particular model, much like as in the
random-effects model, each study’s effect is an estimate
of its own θi. The difference from the random-effects
model is that under the fixed-effects model, we assume
that θis are unrelated. This model merely states that
each study estimates its own effect irrespective from the
other study effect. In contrast, under the random-effects
model, we assume that all study effects are a sample
from the distribution of study effects. This means that
each study’s effect, albeit different from the other stud-
ies’ effects, rises from the same distribution of effects,
governed by parameters or characteristics of the mixture
of distributions. The difference from common/fixed-ef-
fects is that by using random-effects, we shift the focus
from describing the intervention effect on the underlying
superpopulation to describing the characteristics of the
distribution of the effect sizes. These three meta-
analytical approaches in fact assume three distinct data
generation processes and we argue that, depending on
which approach one assumes, the pooled estimate for
the causal treatment effect may be biased.

Interpretation and scientific relevance of the identified
causal effects
Sobel et al. [6] made no remark on the choice of trials
included in their meta-analysis. However, based on A7,
they consider that each trial samples from its distinct

population, which implies that the superpopulation is a
mixture of each trial’s population. Schnitzer et al. [9] ex-
plicitly stated that the subjects in each trial are assumed
to be random samples of their own populations and fur-
thermore define their superpopulation (metapopulation)
as the union of each trial’s population. Essentially, these
two methodologies assumed that each trial includes a
random sample of their specific population and impli-
citly or explicitly assume that the underlying population
of all trials in the union of the trial-specific populations.
These descriptions of the superpopulations are in line
with the fixed-effects and the random-effects meta-
analysis models but not with the common effect model.
This does not necessarily translate to the methodologies
being completely incompatible with the common-effect
model. For example, in Sobel et al. (assuming that the
assumptions A1, A2, and A6 hold), in the special case
where assumptions A3a and A5a hold, as well as all
studies sample randomly from the sample superpopula-
tion (i.e., the assumption A7 hold unconditionally of the
X2) and then it essentially collapses to the common-
effect model, irrespective of the model of the effect size
H specified in the assumption A4. A more realistic sce-
nario, however, is when the assumption A7 holds condi-
tionally, as described in the original paper, where the
sample populations are not necessarily equivalent to the
superpopulation. Since the set of covariates X2 may in-
clude both individual- and study-level covariates, then it
seems even more unlikely for A7 to hold uncondition-
ally, since this would mean at least equivalence of the
distributions of the individual-level covariates across
studies. On the contrary, the approach of Dahabreh
et al. [7, 8] explicitly assumed that the data were ob-
tained by random sampling from an infinite superpopu-
lation (stratified by study S). Dahabreh et al. noted that
this procedure would lead to a “biased” sample, i.e., the
probability of individuals being included in a study dif-
fers between the infinite superpopulation and the sam-
pled data, but stated that the identicality of the causal
effects is unaffected. The authors acknowledge such a
hypothetical “infinite superpopulation” is (similar to
every frequentist approach for statistical inference) more
of a convenience than a likely existing population of in-
dividuals. The same holds for the superpopulation/meta-
population defined in the other methods. Even then,
such a superpopulation of individuals, seems more
plausible compared to an infinite population of effect
sizes from which the observed study effects are sampled
from, under the random-effects model [7, 8, 12]. Not
only is it unlikely that such a population of effect sizes
exist, but also the interpretation of the summary effect
pertains more to the characterization of the said distri-
bution that to the description of the effect on the
superpopulation.
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Sobel at al. did not explicitly address how their ap-
proach corresponds to either common, fixed, or random
effects. Instead, the model to be used for the estimation
of the effect size was represented by a generalized func-
tion H. Depending on the statistical model described by
the function H, all three meta-analysis models can be ap-
plied. In the provided example, the model used is similar
to a one-stage IPD meta-analysis and equivalent to the
common and fixed-effects models. Schnitzer et al. also
did not make any explicit assumptions regarding the
compatibility of the proposed approach with the three
meta-analysis models. However, the simulation study
that they performed to compare the efficacy of the esti-
mators only focused on random-effects methods. Finally,
the focus of the methodological approach described by
Dahabreh et al. is the identification and estimation of a
valid causal effect which can be applicable to a specific
target population with specific characteristics. Therefore,
it is not directly equivalent to any of the three usual
meta-analysis models whose primary focus leans towards
the generalizability rather that the transportability of the
effects.
All methodologies provide a valid approach to esti-

mate an effect that has a causal interpretation in the re-
spective superpopulations. However, it is also important
to consider whether these superpopulations are actually
plausible populations that exist naturally. In that end,
one has to consider the data generation process of the
trials. While it is often reasonable to assume that each
trial samples randomly from their respective popula-
tions, we have to acknowledge that in most cases it
seems implausible that these same trials are a random
sample of a population of trials. Had we had a random
sample of trials, then this sample would allow for the co-
variate distribution of the superpopulation to be consist-
ent with the covariate distribution of a naturally existing
population. However, this is rarely the case, as conduct-
ing a trial is largely a function of very specific motives
and aims [13, 14], and one may argue that a random
sample of trials may not naturally occur. And while this
amalgamation of trials does not directly affect the
underlying assumptions invoked by a fixed-effects or a
random effect meta-analysis, which pertain to the sam-
pling of the effect estimates rather than the sampling of
trials [13, 15], we argue that, without taking into ac-
count any potential differences between the structure of
the superpopulation and that of a naturally occurring
population, the generalizability of the produced results
(which would have a pertinent causal interpretation for
the superpopulation) would be hindered. Therefore, one
must be very careful regarding the generalizability of the
meta-analytical causal estimates. One approach would
be to ignore this by implicitly or explicitly assuming that
the meta-analytical causal estimate for superpopulation

is the same or sufficiently close to the actual estimate for
the natural population. Alternatively, one could acknow-
ledge this caveat of the generalizability but describe the
estimate nonetheless. The obtained estimate would still
be the best available description of the effect. The
approach of Dahabreh et al. partially ameliorates this by
following an alternative approach which focuses on
assumption for trial populations rather that assumptions
of the trial effects, as discussed earlier.

Discussion
In this work, we reviewed published methodologies per-
taining to causally explicit description of meta-analyses
of RCTs and other similar evidence synthesis frame-
works, such as multilevel or hierarchical frameworks
with regard to obtaining a causally interpretable meta-
analysis estimate. Overall, we identified three method-
ologies directly pertinent to a causally explicit descrip-
tion of a meta-analytical estimate.
The first methodology [6] provided a set of 7 causal

inference assumptions under which a meta-analytical
causal effect is identifiable and estimable. This method-
ology required individual participant data from all trials
to work, similar to a one-stage meta-analysis. However,
this methodology differs computationally from a “classic”
one-stage meta-analysis in that it only fits a regression
model in contrast to the one-stage meta-analysis where
it is standard to use a hierarchical model for estimation.
The second methodology [7, 8] was also based on indi-
vidual participant data from trials and baseline data from
a target population using a well-defined causal inference
framework. A drawback of this approach is that it re-
quires baseline data from the target population on which
the causal effects are to be transported. As it is often un-
likely for data from the target population to be readily
available, the actual applicability of this approach seems
somewhat limited. Finally, the last methodology [9] fo-
cused on summary data from network meta-analysis.
This approach tries to account for differences across tri-
als in order to estimate a marginal causal effect that re-
fers to a superpopulation defined as the union of the
populations the trials sample from. Overall, the method-
ologies presented in this review address two distinct as-
pects of statistical inference, the generalizability of the
effects in the population from which the data are sam-
pled from and the transportability of the effects, which
allows for inferences to a new target population. While
both are equally important, our review focused more on
generalizability, which addresses the internal validity of
the estimates and is more often the focus in the litera-
ture of meta-analyses of RCTs.
An inherent limitation of such approaches is the data

generation process for the trial selection. Although all
methodologies provide valid causal estimates, these are
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restricted to their superpopulations respectively. As it is
rarely the case that the actual trials are random samples
from a population of trials that in turn sample randomly
form a naturally occurring population, it is evident that
these superpopulations may differ substantially from a
naturally occurring population. While this problem may
not hamper the interpretation of the results from a
“classic” meta-analysis where no causal interpretation is
made, that is, the description of the distribution of the
effect estimates (for random-effects meta-analysis), it
would severely hinder any efforts for a causal interpret-
ation of the said results. Therefore, although helpful in
summarizing and providing the best description available
for this evidence, caution is needed when trying to make
inferences. One would have to consider the differences
in the structure between the two (naturally occurring
and theoretically constructed) superpopulations and
consider whether the estimated causal effect is relevant.
Only the approaches by Dahabreh et al. [7, 8] recognized
this limitation in the data generation process and pro-
vided a limited solution under certain assumptions.
There is an extensive literature on the extensions of

causal inference focusing on complex single-trial settings
[16, 17] on surrogate endpoints [18], or on non-
randomized data (observational or quasi-experimental
settings) using multilevel or hierarchical frameworks
[19]. A comprehensive review of multi-level models for
causal inference focusing on randomized experiments in
education was recently published [20]. Finally, efforts to
synthesize data from multiple sources (observational and
experimental) also exist [21]. However, to our know-
ledge, this is the first systematic effort to survey relevant
methodologies which explicitly expand the causal infer-
ence framework to incorporate data from multiple trials
by using an evidence synthesis approach.
Other approaches exist in evidence synthesis that can

be used to investigate causality. A causal inference
approach in meta-analysis of RCTs focusing on a slightly
different scientific question to what was presented in
our review was addressed in Zhou et al. [22] who
focused on the estimation of the complier average causal
effect (CACE) based on meta-analysis of RCTs with
non-compliance. Under the principal stratification
framework [23] which takes into account the non-
compliance in trials, CACE is an alternative to ATE for
the estimation of causal effects. Zhou et al. [22] pre-
sented a novel approach in estimating CACE based on a
Bayesian hierarchical model by taking into account the
study-specific random-effects to account for heterogen-
eity across trials. Although this study provided insights
to the CACE estimation from meta-analysis, it did not
provide an explicit causal inference framework, but only
reflected upon the single-trial assumptions of the
principal stratification framework, leaving aside key

components, such as the exchangeability across trials.
Mendelian randomization studies are also alternative ap-
proaches based on evidence synthesis which can be used
to investigate causality [24]. However, the key difference
of these methodologies and the ones presented in this
paper is that in Mendelian randomization studies, one
starts based on the key assumption that the studied asso-
ciation is causal and then proceeds to synthesize the
available data. In contrast, causal inference approaches,
such the ones presented in this paper, aim to identify
potential causal relationships in an observed association.

Conclusions
Despite both causal inference methodology and meta-
analysis of randomized controlled trials being regarded
as two of the most useful tools in refining evidence-
based hierarchy, there is only limited effort in the bibli-
ography to combine these approaches in order to attain
higher levels of causally interpretable evidence. To date,
only a limited number of methodological frameworks
have addressed this issue, providing ways to obtain
causal estimates from meta-analyses of randomized con-
trolled trials. And while all three identified methodolo-
gies would produce a valid causal estimate, due to
potential violations of study protocols and limitations in
the assumptions regarding the data generation process
of the potentially included in the meta-analysis RCTs,
the interpretation and generalizability of the causal esti-
mands may prove challenging.
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