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Abstract

Background: A model that can predict treatment response for a patient with specific baseline characteristics would
help decision-making in personalized medicine. The aim of the study is to develop such a model in the treatment
of rheumatoid arthritis (RA) patients who receive certolizumab (CTZ) plus methotrexate (MTX) therapy, using
individual participant data meta-analysis (IPD-MA).

Methods: We will search Cochrane CENTRAL, PubMed, and Scopus as well as clinical trial registries, drug regulatory
agency reports, and the pharmaceutical company websites from their inception onwards to obtain randomized
controlled trials (RCTs) investigating CTZ plus MTX compared with MTX alone in treating RA. We will request the
individual-level data of these trials from an independent platform (http://vivli.org). The primary outcome is efficacy
defined as achieving either remission (based on ACR-EULAR Boolean or index-based remission definition) or low
disease activity (based on either of the validated composite disease activity measures). The secondary outcomes
include ACR50 (50% improvement based on ACR core set variables) and adverse events. We will use a two-stage
approach to develop the prediction model. First, we will construct a risk model for the outcomes via logistic
regression to estimate the baseline risk scores. We will include baseline demographic, clinical, and biochemical
features as covariates for this model. Next, we will develop a meta-regression model for treatment effects, in which
the stage 1 risk score will be used both as a prognostic factor and as an effect modifier. We will calculate the
probability of having the outcome for a new patient based on the model, which will allow estimation of the
absolute and relative treatment effect. We will use R for our analyses, except for the second stage which will be
performed in a Bayesian setting using R2Jags.

Discussion: This is a study protocol for developing a model to predict treatment response for RA patients receiving
CTZ plus MTX in comparison with MTX alone, using a two-stage approach based on IPD-MA. The study will use a
new modeling approach, which aims at retaining the statistical power. The model may help clinicians individualize
treatment for particular patients.
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Background
Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease, for which we cannot currently expect complete cure.
The drugs that can delay disease progression are known
as disease-modifying anti-rheumatic drugs (DMARDs).
There are 3 categories: conventional synthetic DMARDs
(csDMARDs), biologic DMARDs (bDMARDs), and tar-
geted synthetic DMARDs (tsDMARDs). bDMARDs can
be further divided into several subtypes according to the
target, among which the tumor necrosis factor (TNF) α
inhibitors are the most classic and widely used.
Most RA patients undergo long-term treatment. Accord-

ing to the treat-to-target strategy proposed by the EULAR
(European League Against Rheumatism) practice guideline
[1], repeated assessment of disease activity should be per-
formed every 3 to 6months after a treatment is given, to
evaluate the response and decide the next-step strategy:
switching drugs, maintenance, tapering, or discontinuation.
Hence, the disease course of RA is composed of many
short-term (3 to 6months) intervention-response loops. For
the purpose of improving long-term prognosis, such as
delaying the progression of bone fusion or functional defi-
ciency, short-term intervention-response loops need to have
beneficial outcomes [2].
To find the optimal treatment for a particular patient, it

is necessary to personalize the treatment. It would be
helpful if we could predict the probability of treatment re-
sponse based on the patient’s genetic, biologic, and clinical
features. However, common evidence in the form of ran-
domized controlled trials (RCTs) or their meta-analyses
(MAs) at the aggregate level only reports average results.
The drug that works for the average patients might not
work or even be harmful for a particular patient. Conse-
quently, it is desirable to identify subgroups of patients as-
sociated with different treatment effects.
Individual participant data meta-analysis (IPD-MA)

has been previously employed to develop prediction
models for treatment effects [3–6]. Previous treatment
response prediction models for RA were mainly based
on observational studies [7–11]. Observational studies
seem suited for predicting the absolute risk of an out-
come, but it may be less satisfactory in estimating the
relative risk between different drugs, because unknown
confounders may persist even when we try to adjust for
known confounders. On the other hand, though the
population in RCTs is highly restricted hence may be
less representative, data from RCTs are more rigorously

collected and more likely to provide an unbiased esti-
mate of the relative treatment effects [12]. The synthesis
of RCT data via IPD-MA can increase the statistical
power [13] and have been used to predict treatment re-
sponse [6, 14–17]. To the best of the authors’ know-
ledge, such an approach has not been taken to predict
treatment response in RA to date.
Our aim is to develop a prediction model of treatment ef-

fects based on individual characteristics of RA patients
through IPD-MA. Since TNFα inhibitors are the most classic
and widely used bDMARDs for RA, we will build a model
for certolizumab (CTZ), a TNFα inhibitor with sufficient
IPD data, in this study. We will first estimate the pooled
average effect sizes for the primary and secondary outcomes
using one-stage Bayesian hierarchical IPD-MA. The main
objective of the study is to use a two-stage risk modeling ap-
proach to predict the individualized treatment effects interest
[12]. The first stage is to build a multivariable model aiming
to predict the baseline risk for a particular patient blinded to
treatment. In the second stage, this baseline risk score will be
used as a prognostic factor and an effect modifier in an IPD
meta-regression model to estimate the individualized treat-
ment effects of CTZ. We consider to validate and optimize
the modeling approach in the present study, and plan even-
tually to expand it to an IPD network meta-analysis to com-
pare several drug types (e.g., interleukin-6 inhibitors, anti-
CD20 antibodies) as our future research perspective.

Methods
The present protocol has been registered within the
PROSPERO database (provisional registration number
ID#157595) and is being reported in accordance with
the reporting guidance provided in the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
Protocols (PRISMA-P) statement [18] (see the checklist
in Additional file 1). The proposed IPD-MA will be re-
ported in accordance with the reporting guidance pro-
vided in the Preferred Reporting Items for Systematic
Reviews and Meta-analyses of Individual Participant
Data (PRISMA-IPD) statement [19]. Any amendments
made to this protocol when conducting the study will be
outlined and reported in the final manuscript.

Eligibility criteria
Studies will be selected according to the following cri-
teria: patients, interventions, outcomes, and study
design.
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Patients
We will include adults (18 years or older) who are diag-
nosed with either early RA (2010 American College of
Rheumatology (ACR)/European League Against Rheuma-
tism (EULAR) classification criteria) [20, 21] or established
RA (1987 classification criteria) [22]. Patients with inner
organ involvement (such as interstitial lung diseases), vas-
culitis, or concomitant other systemic autoimmune diseases
will be excluded. We will include both treatment-naïve pa-
tients and patients who have insufficient response to previ-
ous treatments. We will include patients with moderate to
severe disease activity based on any validated composite dis-
ease activity measures. Patients who have already achieved
remission or at low disease activity at baseline will be ex-
cluded. Patients who have used certolizumab (CTZ) within
6months before randomization will be excluded.

Interventions
We will include RCTs which compare certolizumab
(CTZ) plus methotrexate (MTX) with MTX monother-
apy, regardless of doses. If a study compares CTZ + any
csDMARDs with any csDMARDs, we will only include
patients on CTZ + MTX or MTX from that study. Trials
investigating the tapering or discontinuation strategy of
CTZ will be excluded.

Outcomes
Our primary outcome is efficacy defined by disease states,
which is achieving either remission (based on ACR-
EULAR Boolean or index-based remission definition [23])
or low disease activity (based on either of the validated
composite disease activity measures [24]: DAS28 (Disease
Activity Score based on the evaluation of 28 joints) ≤3.2
[25], CDAI (Clinical Disease Activity Index) ≤ 10 [26],
SDAI (Simplified Disease Activity Index) ≤ 11 [27]) at 3
months (allowance 2–4months) after treatment, as a bin-
ary outcome. We choose it as our primary outcome be-
cause it is suggested as the indicator of the treatment
target in both the practice guideline [1] and the guideline
for conducting clinical trials in RA [2], and it has been
shown to provide more information for future joint dam-
age and functional outcomes compared to relative re-
sponse (change from baseline) [28].
We have two secondary outcomes. One is efficacy de-

fined by response (improvement from baseline), for
which we will use the ACR response criteria ACR50
(50% improvement based on ACR core set variables)
[29]. Another is adverse events (AEs). We will perform
an IPD-MA separately for patients with all kinds of in-
fectious AEs within 3 months since it is one of the most
important AEs for biologic agents. We will also describe
other noticeable AEs within 3 months reported in the
trials. We will not make predictions models for the sec-
ondary outcomes.

Study design
We will include double-blind RCTs only. If there are
crossover RCTs, only the data of the first phase will be
used for analysis. Cluster RCTs, quasi-randomized trials,
and observational studies will be excluded.

Information source and literature search
We will conduct an electronic search of Cochrane CEN-
TRAL, PubMed, and Scopus from inception onwards,
with the keywords: “rheumatoid arthritis,” “certolizu-
mab” or “CDP870” “Cimzia”, “methotrexate” or “MTX,”
without language restrictions. A draft search strategy is
provided in Additional file 2. We will search WHO
International Clinical Trials Registry Platform to find the
registered studies. We will search the US Food and Drug
Administration (FDA) reports to see if there are any un-
published reports from the pharmaceutical companies.
For IPD, we will contact the company which markets
certolizumab and request IPD through http://vivli.org.
We will assess the representativeness of the IPD among
all the eligible studies by investigating the potential dif-
ferences between trials with IPD and those without IPD.

Screening and selection procedure
Two independent reviewers will screen the titles and ab-
stracts retrieved from the electronic searches to assess
for inclusion. If both reviewers agree that a trial does
not meet eligibility criteria, it will be excluded. The full
text of all the remaining articles will be obtained for fur-
ther reading, and the same eligibility criteria will be ap-
plied to determine which to exclude. Any disagreements
will be resolved through discussion with a third member
of the review team.

Data collection
At aggregate level
Two reviewers will independently extract the informa-
tion for all the included studies at aggregate level. A de-
tailed data extraction template will be developed and
piloted on 3 articles; after finalizing the items on the
data extraction form, the 3 articles will be re-extracted.
The main information includes intervention/control de-
tails, trial implementation features (e.g., completion year,
randomized numbers, dropouts, follow-up length), base-
line demographic and disease-specific characteristics,
and outcomes of interested. The above information
will be used for: (1) exploring the representativeness
of the trials with IPD among all the eligible trials
and (2) confirming if the IPD is consistent with the
reported results.

At IPD level: for studies with IPD available
When the IPD is ready to be used, we will identify the
variables of interest before the analysis. The variables
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regarding intervention, control, and outcomes are de-
fined as the above in the “Eligibility criteria” section.
With regard to patient or trial characteristics to be used
as potential covariates in the prognostic model, based on
the literature [30–32] and our clinical practice, we
propose the following factors as candidates of potential
prognostic factors (PFs, baseline factors that may affect
the response regardless of the treatment) (Table 1),
which will be used for baseline risk model development

(see the “Predicting treatment effect for patients with
particular characteristics: a two-stage model” section
below). We will try to collect all the information listed
in Table 1 from the data, but only available factors that
have been recorded in the trials will be added into the
model. We will decide in which type (e.g., continuous,
categorical, binary, etc.) a covariate will be put into the
model according to the distribution of that covariate
after we obtain the data.

Risk of bias assessment
Two independent reviewers will assess the risk of bias
(RoB) for each included RCT according to “RoB 2 tool”
proposed by the Cochrane group [34]. For the efficacy
primary outcome, RCTs will be graded as “low risk of
bias,” “high risk of bias,” or “some concerns” in the fol-
lowing five domains: risk of bias arising from the
randomization process, risk of bias due to deviations
from the intended interventions, missing outcome data,
risk of bias in measurement of the outcome, and risk of
bias in selection of the reported result. The assessment
will be adapted for IPD-MA, i.e., as per the obtained
data and not the conducted and reported analyses in the
original publications. Finally, they will be summarized as
an overall risk of bias according to the RoB 2 algorithm.

Data analysis
Since our primary aim is to develop a prediction model and
not to get a precise estimation of the treatment effects, all
the analyses will be based on IPD only. Therefore, we will
neither analyze aggregate data together nor investigate the
robustness of the IPD-MA including aggregate data, for
they are beyond the perspectives of the present study.

Average relative treatment effect: IPD-MA
We first synthesize the data using one-stage Bayesian hier-
archical IPD-MA [35]. We will estimate the average relative
treatment effect in terms of odds ratio (OR) for efficacy.
Let yij denote the dichotomous outcome of interest

(yij = 1 for remission or low disease activity), for patient i
where i = 1, 2, …, nj in trial j out of N trials, tij be 0/1 for
patient in control/intervention group, and pij is the
probability of having the outcome.

yij � Bernoulli pij
� �

log
pij

1−pij

 !
¼ logit pij

� �
¼ α j þ δ jtij

δ j � N δ; τ2
� �

where αj is the log odds of the outcome for the control
group, in trial j, which is independent across trials; δj is

Table 1 Potential candidates to be involved as prognostic
factors in the prognostic model

Demographics

Age*, sex*, ethnicities

BMI*, smoking history*

Clinical features

Family history of first-degree relatives

Length of time since first onset until the trial commencement, length
of time since first onset until first treatment*

Disease activity:
• Number of tender joints*, number of swelling joints*, self-report level
of pain based on visual analogue scale (VAS)*

• Disease Activity Score (continuous)*, disease activity level
(categorical)*

Joint involvement:
• Large joint involvement: knee, hip joints, etc.
• Uncommon joint involvement

Nonspecific systemic symptoms: fever, fatigue, etc.

Comorbidities*: osteoporosis, osteoarthritis, etc.

Functional/global quality of life (QoL) conditions at baseline*

Prior treatment history: failure times, failed drug types, etc.

Cointerventions decided before randomization:
• Steroids, nonsteroidal anti-inflammatory drug (NSAIDs)

Biochemical features

Serum inflammatory factors*:
• Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP); others
such as TNF, IL-6, etc.

Serum antibodies*:
• Rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP),
antinuclear antibody (ANA) spectrum

Radiographic features

Joint fusion (already deformed), bone erosion*, synovitis*, early bone
inflammation

Radiographic scores*

Genetics#

HLA (human leukocyte antigen) types and SNPs (single nucleotide
polymorphisms) if they are tested.

*Factors that have been proved to be a prognostic factor for any treatments in
previous studies
#Since genetic tests for RA are not routinely implemented in clinical practice,
we anticipate that most studies will not report them. Although genetics are
often considered critical in precision medicine, we will consider it justifiable if
no genetic information is included in our model, because there is no single
one that has been proven to be strongly associated with the prognosis or
treatment responses, and two studies have indicated that genetic information
barely contribute in predicting treatment effects [33]
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the treatment effect (log OR), which we assume to be
exchangeable across trials; δ is the summary estimate of
the log-odds ratios for the intervention versus the con-
trol arm; and τ2 is the heterogeneity of δ across trials
and normally distributed across trials.

Predicting treatment effect for patients with particular
characteristics: a two-stage model

Data pre-processing Within each study, the outcomes
and the covariates will be evaluated for missing data,
and we will further look at their distributional character-
istics and correlations between the covariates (listed in
the “At IPD level: for studies with IPD available” sec-
tion). We will use multiple imputation methods for
handling missing data [36]. We will consider data trans-
formation for continuous variables to resolve skewness
and re-categorization for categorical variables if neces-
sary. If two or more variables are highly correlated, we
will only retain the variable that is most commonly re-
ported across studies and in the literature or the variable
that has the least missing values.

Stage 1: Developing a baseline risk model In this step,
we will build a multivariable model to predict the prob-
ability that a patient, given her or his baseline character-
istics, is likely to achieve remission or low disease
activity irrespective of treatment; we will refer to this
model as the baseline risk model. The risk model can be
built using the patients from the control group only, or
from both intervention and control group. The former is
more intuitive; however, a simulation study indicated
that models based on the whole participants produced
estimates with narrower distribution of bias and were
less prone to overfitting [37]. We will fit a multivariable
logistic regression model:

yij � Bernoulli rij
� �

logit rij
� � ¼ b0 j þ

Xp

k¼1
bkj � PFijk

b0 j � N β0; σ
2
β0

� �

bkj � N βk ; σ
2
βk

� �

rij is the probability of the outcome for patient i from
trial j at the baseline. b0j is the intercept, which is ex-
changeable across studies. PFijk denotes the k prognostic
factor (in total, there are p prognostic factors) in study j
for patient i, and bkj is the regression coefficient for k
prognostic factor in study j and is exchangeable across
studies.

In order to select the most appropriate model, we
propose two approaches: (1) use previously identified
prognostic factors and through discussions with rheuma-
tologists to decide the subset of the most clinically rele-
vant factors and estimate the coefficients using penalized
maximum likelihood estimation shrinkage method and
(2) use LASSO penalization methods for variable selec-
tion and coefficient shrinkage [38].
For each possible model, we will examine the sample

size first, in order to assess the reliability of the model.
We will calculate the events per variable (EPV) for our
model, using all the categories of categorical variables
and the degrees of freedom of continuous outcomes
[39]. We will calculate efficient sample size for develop-
ing a logistic regression model [40]. Validation is essen-
tial in prediction model development. Since no external
data is available, we can only use internal validation. Via
resampling methods like bootstrap or cross-validation,
we can estimate the calibration slope and c-statistic for
each model, to indicate the ability of calibration and
discrimination.

Stage 2: Developing a meta-regression model for
treatment effects We use the same notation system as
that in the “Average relative treatment effect: IPD-MA”
section. The logit(rij) from stage 1 will be used as a co-
variate in the meta-regression model, both as a prognos-

tic factor and as an effect modifier. Let logitðrijÞ j denote
the average of logit-risk for all the individuals in study j.
The regression equation will be:

yij � Bernoulli pij
� �

logit pij
� �

¼
aj þ g0 j � logit rij

� �
−logit rij

� � j� �
; if tij ¼ 0

aj þ δ j þ g0 j � logit rij
� �

−logit rij
� � j� �

þ g j � logit rij
� �

−logit rij
� � j� �

; if tij ¼ 1

8<
:

δ j � N δ; τ2
� �

g0 j � N γ0; σ
2
γ0

� �

g j � N γ; σ2γ
� �

aj is the log odds in the control group when a patient has
a risk equal to the mean risk, which is assumed to be inde-
pendent across trials. g0j is the coefficient of the risk score,
while gj is the treatment effect modification of the risk score
for the intervention group versus the control group; both are
assumed to be exchangeable cross trials and normally dis-
tributed about a summary estimate γ0 and γ respectively.

Predicting the probability of having the outcome for
a new patient Assume a new patient i who is not from

any trial j has a baseline risk score glogitðriÞ calculated
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from stage-one. In order to predict the absolute logit-
probability to achieve the outcome, we use:

logitðpiÞ ¼ aþ γ0 � ð glogitðriÞ−logitðrÞÞ; i f xi ¼ 0

logitðpiÞ ¼ aþ δ þ γ0 � ð glogitðriÞ−logitðrÞÞ þ γ

�ð glogitðriÞ−logitðrÞÞ; i f xi ¼ 1

We would have estimated δ, γ0, and γ in the meta-

regression stage. We will estimate logitðrÞ as the mean
of logit(rij) across all the individuals and studies. For a,
we will estimate it by synthesizing all the control arms.
Then, we can calculate the individual probability of the
outcome both for the control and the intervention and
estimate the predicted absolute and relative treatment
effect.
To evaluate the performance of the two-stage predic-

tion model, we will use internally validation methods via
both the traditional measures, like c-statistic, and mea-
sures relevant to clinical usefulness.

Publication bias Considering that we will probably not
be able to include all the relevant research works, as
some studies or their results were likely not published
owing to non-significant results (study publication bias
and outcome reporting bias) [41, 42], we will evaluate
this issue by comparing the search and screening results
(as we will try to retrieve possibly unpublished reports)
with the IPD we can get. If necessary, we will address it
by adding the study’s variance as an extra covariate in
the final IPD meta-regression model (see the section
“Predicting treatment effect for patients with particular
characteristics: a two-stage model”—“Stage 2: Develop-
ing a meta-regression model for treatment effects”).

Statistical software We will use R for our analyses.
Stage 2 will be performed in a Bayesian setting using
R2Jags. For the development of the baseline risk
model, we will use the pmsampsize command to esti-
mate if the available sample size is enough. We will
examine the linear relationship between each one of the
prognostic factors and the outcome via rcs and anova
commands. The LASSO model will be developed using
the cv.glmnet command. We will use the lrm com-
mand for the predefined model based on prior know-
ledge, and then for the penalized maximum likelihood
estimation, we will use the pentrace command. For
the bootstrap internal validation (both for the baseline
risk score and for the two-stage prediction model), we
will use self-programmed R-routines.

Discussion
We have presented the study protocol for a prediction
model of treatment effects for RA patients receiving
CTZ plus MTX, using a two-stage approach based on
IPD-MA.
Though there are many optional drugs in treating RA,

as treatment failure is relatively high, individualizing the
treatment is imperative. Many prognostic models for RA
have been proposed, but no one is sufficiently satisfac-
tory [31]. We have discovered several problems.
Most previous models focused on long-term radio-

graphic or functional prognosis. Although they are cer-
tainly the critical outcomes that both clinicians and
patients care about, the complex therapeutic changes
during the long treatment process are extremely difficult
to handle in developing prediction models. Thus, it usu-
ally ends up with a simplified strategy, such as taking
only the initial treatment into account, which compro-
mises the clinical interpretation and relevancy of the
model. On the other hand, a good short-term treatment
response is always positively associated with good long-
term prognosis [43, 44]. Predicting short-term treatment
effect is instructive in clinical practice; however, research
is lacking. A few established “short-term” disease-
activity-oriented prediction models used an outcome
measured at 6 months or 12 months. The problem is,
unless in active-controlled studies, there would be con-
siderable dropouts after 3–4 months; furthermore, due
to ethnical issues, many trials would offer the non-
responders other active treatments after 3–4months.
Under the ITT principle, patients were commonly ana-
lyzed as originally allocated; when dropouts were not
negligible, imputation methods were usually used, but
mostly single imputation such as non-responder imput-
ation or last observation carried forward (LOCF) [45].
One may argue that these estimates were conservative to
the intervention group though not precise. But in fact it is
not always conservative for a relative effect estimate, while
unbiased relative estimates are of critical interest in build-
ing personalized prediction models. As a result, in order
to be methodologically rigorous, we choose the outcome
measured at 3 months, when the randomization is likely
kept, and which is consistent with the assessment time
recommended by the guideline [1]. Additionally, thanks to
the IPD, we will be able to use multiple imputation to
handle missing data, rather than the single imputations
used in primary RCTs.
We will use a two-stage approach to construct the pre-

diction model using IPD-MA. Unlike the usual ap-
proach, which includes baseline features as prognostic
factors and effect modifiers (through interaction terms)
simultaneously, we first build a risk model for baseline
factors, then treating the risk score as both a prognostic
factor and an effect modifier. By doing so, overfitting
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problem caused by too many covariates and interaction
terms can be alleviated. Moreover, since penalization will
only be used in common regression during risk model-
ing stage but not in meta-regression, the compromised
penalization in meta-regression can be avoided. For
stage 1, generally there are two types of risk models.
One is an externally developed model, which is derived
based on data independent from the data used at stage
2, such as established models from previous studies, or
using some other studies. The other is an internally de-
veloped risk model, for which the same data will be used
to build both the risk model and the treatment effects
model [37]. Because there is no well-established risk
model to predict the short-term disease activity for RA
patients and also because we will very probably not have
sufficient sample size to divide the entire data into two
parts, we will use the internal risk model for our study.
We acknowledge several limitations in our study. First,

we handle effect modification at the level of risk scores,
instead of particular covariates. That is, we will not try
to identify specific effect modifiers. This may cause some
problems in interpretation, as the concept of distinguish-
ing prognostic factors and effect modifiers is well recog-
nized. However, our approach assures the statistical
power. Second, due to the restricted sample size, only
internal validation is planned while external validation is
lacking. It needs to be validated on an external dataset
in the future. Third, we only focus on short-term treat-
ment response for RA patients receiving two kinds of
treatment, CTZ and MTX. Future studies may extend
the scope to compare several kinds of therapies and
treatment strategies and finally model for the long-term
prognosis taking into consideration all the treatment
processes.
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