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Abstract

Background: Small-study effects and time trends have been identified in meta-analyses of randomized trials. We
evaluated whether these effects are also present in meta-analyses of diagnostic test accuracy studies.

Methods: A systematic search identified test accuracy meta-analyses published between May and September
2012. In each meta-analysis, the strength of the associations between estimated accuracy of the test (diagnostic
odds ratio (DOR), sensitivity, and specificity) and sample size and between accuracy estimates and time since first
publication were evaluated using meta-regression models. The regression coefficients over all meta-analyses were
summarized using random effects meta-analysis.

Results: Forty-six meta-analyses and their corresponding primary studies (N = 859) were included. There was a
non-significant relative change in the DOR of 1.01 per 100 additional participants (95% CI 1.00 to 1.03; P = 0.07).
In the subgroup of imaging studies, there was a relative increase in sensitivity of 1.13 per 100 additional diseased
subjects (95% CI 1.05 to 1.22; P = 0.002). The relative change in DOR with time since first publication was 0.94 per
5 years (95% CI 0.80 to 1.10; P = 0.42). Sensitivity was lower in studies published later (relative change 0.89, 95% CI
0.80 to 0.99; P = 0.04).

Conclusions: Small-study effects and time trends do not seem to be as pronounced in meta-analyses of test
accuracy studies as they are in meta-analyses of randomized trials. Small-study effects seem to be reversed in
imaging, where larger studies tend to report higher sensitivity.

Keywords: Diagnostic test accuracy, Sensitivity, Specificity, Meta-analyses, Publication bias, Small-study effects,
Time trends, Systematic reviews
Background
The validity and credibility of the results of a systematic
review of diagnostic test accuracy studies depend not
only on the methodological quality of the included stud-
ies but also on the absence of selective reporting [1-3].
Knowledge about the principles of selective reporting
can help with the interpretation of the results of a meta-
analysis.
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A sample-size effect in randomized trials has been de-
scribed before. Published trials with smaller sample sizes
tend to have larger and more favourable effects com-
pared to studies with larger sample sizes [4,5]. This
phenomenon may occur for several reasons. It has been
suggested that smaller studies are more likely to be
published when they show significant positive results.
Larger studies may more likely be submitted, accepted
and published regardless of their estimated effect. This
mechanism, which is called small-study effect, can ham-
per the validity of a systematic review by overestimating
the ‘true’ effect [3,6-8].
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In addition to a small-study effect, meta-analyses of
randomized trials may also be influenced by the prob-
lems arising from a time-lag effect. This effect can result
from variability in the time it takes to complete and pub-
lish a study report, which may depend on the direction
and strength of the trial results [9]. Empirical studies
have indicated that negative or null results take approxi-
mately two or three more years to be published com-
pared to positive results [3,10]. This time-lag effect
could influence the meta-analysis and has implications
for the timing of a review, the inclusion of on-going
studies, and for updating the review.
Studying time-lag effects in diagnostic studies is not

currently possible due to the lack of registration of such
studies. However, overarching time trends, the tendency
for study findings to change over time within a review,
can be used as a proxy for time-lag effects. Although
time-lag effects are only one reason for a change in re-
sults over time within a review, discovery of time trends
would increase concern about the possible presence of
time-lag effects in diagnostic accuracy studies.
Whereas these effects are well known and described

for randomized trials, it is unclear whether they also
translate to diagnostic accuracy studies [11-13]. Publica-
tion of diagnostic accuracy studies may be influenced by
a different set of factors than randomized trials. In gen-
eral, test accuracy studies tend to rely less on statistical
significance testing than randomized trials. Many studies
do not report confidence intervals around estimates
[14], and sample size calculations based on a minimally
relevant performance levels are typically absent [15].
However, there is some evidence of a failure to publish
completed research projects. Korevaar et al. compared
registry information for test accuracy studies to pub-
lished reports and concluded that failure to publish and
selective reporting are also present in test accuracy stud-
ies [16]. However, the mechanisms driving these in test
accuracy studies are not understood.
In this study we aimed to assess whether meta-analyses

of diagnostic test accuracy suffer from small-study effects
or time trends, using a set of recently published systematic
reviews of such studies.

Methods
Selection of reviews and meta-analyses
This study was part of a meta-epidemiological project
on systematic reviews of diagnostic accuracy studies. On
12 September 2012, MEDLINE and EMBASE were
searched for systematic reviews on test accuracy studies
published between 1 May 2012 and 11 September 2012.
For our analysis, we limited inclusion to reviews with a
meta-analysis for which we were able to obtain all two-
by-two classification tables of the studies included in the
meta-analysis. A meta-analysis was defined as an analysis
producing a summary estimate for at least one accuracy
statistic or, alternatively, producing a summary ROC
curve (sROC). Reviews of tests in animals, of prognostic
tests, and of individual patient data were excluded, as
there may be other effects related to publication in these
types of studies. Only English language reviews were in-
cluded. The full text of the search strategy is available in
Additional file 1.

Data extraction
Data were extracted using an online structured data-
extraction form. An independent double data-extraction
pilot was performed for a subset of the reviews (30%) until
all authors agreed on the items of the data-extraction
form. After that, data were extracted by one reviewer (CN,
EO or WvE) and checked by a second reviewer (CN, EO
or WvE) for discrepancies. Disagreements were resolved
during a consensus meeting.
For each eligible review, we classified the type of test

under evaluation and the total number of studies in-
cluded in the meta-analyses. Data were then collected
on the primary studies within one meta-analysis for each
included review. Only one meta-analysis per review was
included, so as not to give reviews with multiple meta-
analysis extra weight and to avoid having to deal with
correlated results. We selected the meta-analysis with
the largest number of included primary studies, as the
power to detect an association (if present) will be gener-
ally larger in meta-analyses with more primary studies.
We assumed that there is no association between the
number of studies in a meta-analysis and the associa-
tions of interest. For each primary study in a meta-
analysis, we extracted the year of publication and data to
populate the individual two-by-two accuracy table: the
number of true positives, false negatives, false positives,
and true negatives.
Whenever information on the primary studies was not

available to us directly from the published review, we
contacted the review authors. When we were unable to
reach the author after sending two reminders or when
authors could not provide the data, data were extracted
from the original primary study reports. Failure to obtain
this data from all studies in the meta-analysis was not a
reason to exclude a meta-analysis. A second author
checked the results of the data extraction.

Data analysis
The aim of the analysis was to investigate the strength of
the association between estimates of accuracy and sam-
ple size and between accuracy and time since first publi-
cation within a meta-analysis. These analyses were done
in two steps. We first examined these associations within
each included meta-analyses separately and then calcu-
lated a pooled estimate across all meta-analyses. This
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two-step approach was chosen to accommodate for
differences in accuracy between meta-analyses related to
differences in tests or fields.
These associations were examined for three commonly

used measures of accuracy: sensitivity, specificity and the
diagnostic odds ratio [12,17,18]. To examine the associ-
ation between sensitivity and sample size (that is the
number of diseased subjects in a study), we performed a
random effects meta-regression using logit sensitivity as
the outcome and including the number of diseased sub-
jects as a covariate in the model. To account for differ-
ences in the precision of sensitivity estimates between
studies, we used the exact binomial distribution to
model the within-study sampling error. This means that
larger studies (that is studies with more diseased sub-
jects) get more weight in the analysis. We used the exact
binomial distribution (that is a non-linear mixed model)
to avoid the need to add 0.5 to the data, which would
have produced a downward bias in estimates which is
more pronounced in smaller studies [19,20]. The slopes
and corresponding standard errors for sample size were
estimated for each meta-analysis.
To prevent estimation problems when fitting this

model, we excluded meta-analyses with four or fewer
primary studies. In addition, primary studies without any
diseased subject were also excluded from the analysis.
To estimate the association across all meta-analyses, we
then used the generic inverse variance method to get a
pooled random effect estimate of this slope and its 95%
confidence interval [21]. The analysis for the association
of specificity and sample size was done in the same way,
only now using the number of non-diseased subjects as
the measure of sample size.
To examine the association between the magnitude of

the diagnostic odds ratio and total sample size, we first
estimated the natural logarithm of the odds ratio in each
individual study using Firth’s correction method for
small samples sizes [22]. This correction method is pre-
ferred as it avoids the need of adding 0.5 in case the
odds ratio estimate cannot be calculated. This method
also reduces the bias that exists when estimating the
odds ratio in small samples [23]. We then fitted a meta-
regression model for each meta-analysis separately using
the log of the diagnostic odds ratio as the outcome and
total sample size as the covariate. The inverse of the var-
iances of the log odds ratios were used as weights (that
is the generic inverse variance method was used) [21].
Similar to the analysis of sensitivity and specificity, the
slopes were estimated within each meta-analysis and
then combined across the meta-analyses.
Similar analyses were done to look at associations be-

tween accuracy and time since first publication in a
meta-analysis. Here the time interval between the date
of publication of each study and the date of the oldest
publication within a meta-analysis was used as the
covariate in the regression model.
Both sample size and time since first publication were

entered as continuous covariates to the model, assuming
a linear association. To examine whether there were
non-linear associations, we also classified studies in each
meta-analysis into three groups using tertiles of sample
size and tertiles of time since the first publication in
years, respectively, and used these tertiles as categorical
variables in the meta-regression.
The non-linear mixed effects models for (logit) sensi-

tivity and specificity were performed in SAS using the
NLMIXED procedure [24]. All other analyses were con-
ducted in the statistical package R [25].

Subgroup analysis
In addition, separate analyses were carried out for im-
aging tests and for laboratory tests. Our rationale for this
subgroup analysis was based on the observation that im-
aging studies generally have an implicit threshold. The
reported accuracy in studies with an implicit threshold
can be affected by the number of diseased patients and
is more likely to change over time [26-28]. In addition,
with imaging, gradual improvements in techniques may
also induce time trends. We therefore hypothesized that
a small study effect or time trends might act differently
in imaging studies than in laboratory studies.

Results
Search results
The search identified 1,273 references. After screening the
titles and abstracts, 89 references were found potentially
eligible and were read as full-text articles. Attempts were
made to obtain the two-by-two tables of 53 eligible re-
views. In three reviews, attempts were unsuccessful in
extracting all of the two-by-two tables, resulting in 50 re-
views (Additional file 2). In four reviews, the number of
primary studies was four or lower and therefore excluded
from the meta-epidemiological analyses. The remaining
46 meta-analyses contained a total of 859 primary studies
(Additional file 3 contains a list of the reviews).

Characteristics of the included reviews and meta-analyses
Fourteen reviews investigated a laboratory test, 27 an
imaging test and 5 addressed clinical examinations. The
selected meta-analyses had a median of 14 primary studies
(interquartile range (IQR) 10–20). The median prevalence
of the target condition in the studies was 47% (IQR: 24%-
69%). More characteristics of the primary studies are pre-
sented in Table 1.

Sample size
The median sample size of the included studies (N = 859)
was 87 participants (IQR 45–185), ranging from extremely



Table 1 Characteristics of primary studies (N = 859) across
and within the included meta-analyses (N = 46)

Number of sample size Median Interquartile
range

Min-max

Across all
meta-analyses

Number of diseased 33 17-63 0-1,358

Number of
non-diseased

36 18-100 0-49,973

Sample size 87 45-185 3-50,008

Time since first
publication (years)

6 3-10 0-42

Median of
the median

Interquartile
range of medians

Min-max of
the median

Within meta-analyses

Number of diseased 31 18-41 5-154

Number of
non-diseased

38 18-87 0-11,276

Sample size 94 46-332 20-11,281

Time since first
publication (years)

5 4-11 0-26
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small (N = 3) to very large (N = 50,008). In total, there
were 51,875 diseased participants and 525,838 non-
diseased. This skewed distribution was mainly caused by a
small set of studies on screening tests with very large sam-
ples but very few diseased compared to non-diseased.
The relative increase in DOR per 100 participants

was 1.01 (95% CI 1.00 to 1.03; P = 0.07). This increase
was mainly due to a relative increase in sensitivity of
1.11 per 100 additional diseased subjects (95% CI 0.98
to 1.26; P = 0.09). The analyses by tertiles confirmed
that larger studies tend to produce higher estimates of
accuracy, in particular for sensitivity (see Table 2).
Table 2 Small-study effects and time trends

Accuracy measurea Relat
(95%

Number of diseased Sensitivity 1.11 (
P = 0.

Number of non-diseased Specificity 1.00 (
P = 0.

Sample size DOR 1.01 (
P = 0.

Time since first publication Sensitivity 0.89 (
P = 0.

Time since first publication Specificity 1.04 (
P = 0.

Time since first publication DOR 0.94 (
P = 0.

aThe analyses were performed on the natural logarithm of the DOR and on the log
and DOR is reported per increase in 100 diseased, non-diseased, or total participant
per 5 year increase; cT1 is the lowest tertile of sample size or time since first publica
Time of publication
The primary studies included in the meta-analyses were
published between 1969 and 2012. Within meta-analyses,
the median time interval between the first and the last in-
cluded publication was 6 years (IQR: 3–10). For the DOR,
there was a non-significant, negative association with time
since first publication in a review, with a relative decrease
in DOR of 0.94 per 5 years (95% CI 0.80 to 1.10; P = 0.42).
Again this was mainly caused by the trend observed for
sensitivity, with a relative decrease per 5 year of 0.89 (95%
CI 0.80 to 0.99; P = 0.04. No association between time
since first publication and specificity was observed. For
detailed results see Table 2.

Subgroup analysis
The subgroup analyses by type of test (that is imaging
technique or laboratory test) revealed that the observed
associations in the overall group were mainly caused by
studies examining an imaging technique. In particular, a
highly significant and positive association was found
between sample size and sensitivity in imaging studies.
In other words, larger imaging studies tend to report
higher values of sensitivity than smaller studies examin-
ing the same technique. For detailed results see Table 3.

Discussion
We assessed the existence of small study effects and
time trends in test accuracy meta-analyses using a
meta-epidemiological analysis of a series of published
systematic reviews. Opposite to what was expected, we
observed no significant effects, and accuracy estimates
of diagnostic studies tended to be lower in studies with
a small sample size compared to studies with a larger
sample size. Time trends were in the opposite direc-
tion; studies published after the first publications
tended to report lower sensitivity. These trends were
ive increaseb

CI) P value
T2 vs. T1c

(95% CI) P value
T3 vs. T1c

(95% CI) P value

0.98 to 1.26)
09

1.08 (0.87 to 1.34)
P = 0.50

1.22 (0.99 to 1.51)
P = 0.06

0.99 to 1.02)
49

1.05 (0.83 to 1.33)
P = 0.66

0.97 (0.73 to 1.28)
P = 0.82

1.00 to 1.03)
07

1.15 (0.94 to 1.40)
P = 0.16

1.26 (0.96 to 1.64)
P = 0.09

0.80 to 0.99)
04

0.61 (0.11 to 3.39)
P = 0.57

0.59 (0.13 to 2.67)
P = 0.49

0.90 to 1.19)
60

1.07 (0.85 to 1.35)
P = 0.55

1.00 (0.76 to 1.32)
P = 0.99

0.80 to 1.10)
42

0.94 (0.71 to 1.25)
P = 0.68

0.93 (0.71 to 1.21)
P = 0.57

it scale for sensitivity and specificity; brelative increase for sensitivity, specificity,
s, respectively. For time since first publication, the relative increase is reported
tion, T3 the highest. DOR, diagnostic odds ratio.



Table 3 Small-study effects and time trends assessed in subgroups of imaging and laboratory tests

Accuracy
measurea

Imaging test
(N = 27 meta-analyses)

Laboratory test
(N = 14 meta-analyses)

Relative increaseb

(95% CI) P value
Relative increaseb

(95% CI) P value

Diseased Sensitivity 1.13 (1.05 to 1.22)
P = 0.002

1.01 (0.80 to 1.28)
P = 0.92

Non-diseased Specificity 1.03 (0.86 to 1.24)
P = 0.73

1.01 (1.00-1.02)
P = 0.14

Sample size DOR 1.05 (0.97 to 1.14)
P = 0.23

0.94 (0.63 to 1.40)
P = 0.76

Time since first publication Sensitivity 0.88 (0.77 to 1.00)
P = 0.05

0.94 (0.75 to 1.17)
P = 0.57

Time since first publication Specificity 1.02 (0.87 to 1.19)
P = 0.84

1.13 (0.80 to 1.58)
P = 0.50

Time since first publication DOR* 0.89 (0.78 to 1.02)
P = 0.09

0.87 (0.42 to 1.81)
P = 0.71

aThe analyses were performed on the natural logarithm of the DOR and on the logit scale for sensitivity and specificity; brelative increase for sensitivity, specificity,
and DOR is reported per increase in 100 diseased, non-diseased, or total participants, respectively. For time since first publication, the relative increase is reported
per 5 year increase. *DOR, diagnostic odds ratio.
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mainly caused by the subgroup of studies examining an
imaging technique.
Our findings are in contrast with earlier findings for

meta-analyses of randomized trials, where higher treat-
ment effect sizes were reported to be strongly associated
with small sample sizes [7,8,29]. Nüesch et al. studied 13
meta-analyses with continuous outcomes and found on
average a 0.21 (95% CI 0.08 to 0.34) higher effect size in
small trials than in large trials [7]. Dechartres et al. in-
cluded 93 meta-analyses with binary outcomes. They
concluded that the quartile of smallest trials had 32%
(95% CI 18% to 43%) larger treatment effects than the
quartile with the largest trials [8]. The differences in ef-
fect size between small and large trials can be the result
of the publication process, which selects positive and
significant results over negative or null results [30].
According to the review of Hopewell et al., the odds of
finding positive, significant results in a publication are
four times higher than finding negative or null results [31].
We consider it unlikely that the sample-size effect we

have found for test accuracy meta-analyses results from
an actual preference to publish small studies with low
accuracy estimates, rather than small studies with
higher accuracy estimates. Our findings on sample size
effect are similar to those of Haines and colleagues.
They found a similar relation between sample size and
Youden’s Index, a test statistic that captures test per-
formance [32]. In their evaluation, studies with larger
samples had a higher Youden’s Index. Haines et al.
claimed that this relationship was attributable to pre-
maturely stopping studies with poorer outcomes at
smaller sample sizes while still publishing the results. It
will be challenging to assess if this hypothesis is valid
because power calculations are rarely reported in
diagnostic accuracy studies [33]. Another possibility is
that the small-sample effect is a result of variability in
methodological quality. In diagnostic research, some
large studies could be based on routine care data. Such
data may suffer from verification problems, resulting in
higher accuracy [34]. In any case, the mechanisms be-
hind the small-study effects observed deserve further
exploration.
Another issue that deserves attention when meta-

analysing estimates of accuracy is when zero counts
occur in the two-by-two table; in such cases, sensitivity
or specificity estimates are 0% or 100%, or the odds ra-
tio estimate is infinity. A standard solution is to add 0.5
to each cell of the two-by-two table [35]. Although this
correction prevents estimation problems, it does pro-
duce a downward bias in the estimates, which is more
pronounced in small samples. To avoid imposing a
positive association between the level of accuracy and
sample size, it is critical to avoid the 0.5 correction. For
this reason, we use non-linear mixed models to meta-
analyse the logit transformed sensitivities or specific-
ities within each review, with the exact binomial
distribution to model the within-study sampling error
[19,20]. For our analyses with the odds ratio as the out-
come, we estimate the log of the odds ratio in each
individual study by using Firth’s correction method [22]
to avoid the need of adding 0.5 [23].
Our primary analysis was based on the assumption of

a linear relationship between test accuracy and sample
size or time since first publication. We assumed that if
an association between sample size or time since first
publication is present, a more or less linear association
is most likely. As the actual relation might deviate, we
also performed an additional analysis by tertiles of
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sample size or time since first publication as a way to
examine potential non-linear associations. These ana-
lyses revealed no indications of strong non-linear
associations.
The time trend observed in our DTA meta-analyses

was limited, compared to several time trends identified
for randomized trials [3,9,35]. We observed a negative
association between sensitivity and time after the first
publication within a review. This direction is similar to
the trend of randomized trials, with lower DORs in
later studies. Similar to our results, the study of Sonnad
et al. found that earlier published studies had higher
accuracy, but the relation was not significant [36].
A possible explanation for such a trend is that the de-

sign of studies may change over time, from explorative
case control type studies to prospective studies in con-
secutive patients [37]. In addition, the setting and tar-
geted patients may change over time, with better
understanding of the most useful application of a diag-
nostic test [38]. It would be worthwhile to study if spe-
cific study characteristics, such as study setting or
patient spectrum, change over time in a large cohort of
primary diagnostic accuracy studies. In future studies it
would also be worthwhile to investigate the separate
the effects of sample size and time trends by jointly
modelling them.
The trends in our meta-epidemiological study were

more pronounced for the sensitivity of imaging tests.
The reasons for this remain speculative. Differences in
the inclusion or exclusion criteria or setting of a diag-
nostic study are more likely to affect the case-mix of
patients with the target condition and therefore have a
greater effect on sensitivity. High-resolution imaging
techniques are often used at the end of a diagnostic
pathway and determine further clinical actions. Convin-
cing evidence showing high accuracy in a large number
of patients may therefore be pursued.
The meticulous follow-up of a cohort of diagnostic

accuracy studies would be a way of documenting the ac-
tual mechanisms in designing, reporting and publishing
such studies, and would allow us to analyse to what
extent non-random publication bias exists [9,39]. Factors
that influence the decision to submit or to accept a
research article can also be studied from trial registers.
In 2006, the International Committee of Journal Editors
(ICMJE) established prospective registration of trials, de-
fined as ‘any research project that prospectively assigns
human subjects to intervention and comparison groups
to study the cause-and-effect relationship between a
medical intervention and a health outcome’ [40]. At
present, this definition does not seem to capture all test
accuracy studies, and recent analyses have shown that
only a small subset of such studies is currently registered
before enrolment of the first patient [41].
Conclusions
Awaiting further evidence, our study results lead us to
conclude that some of the typical mechanisms associated
with publication bias, which are well documented in the
literature for randomized clinical trials, are less promin-
ent in test accuracy research. Small-study effects seem
to be reversed in meta-analyses on imaging tests, where
larger studies tend to report higher sensitivity. Confirm-
ation of the findings of our study may provide reassur-
ance to those relying on the published literature for
evidence of the performance of medical tests.
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