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Abstract

In this paper, two methods of zoommotion estimation for color and depth videos by using depth information are
proposed. Color and depth videos are independently estimated for zoommotion. Zoom for color video is scaled by
spatial domain, and depth video is scaled by both spatial and depth domains. For color video, instead of existing
methods of zoommotion estimation that apply all of possible zoom ratios for a current block, the zoom ratio of the
proposed method is determined as the ratio of the average depth values of the current and reference blocks. Then,
the reference block is resized by multiplying the zoom ratio and the reference block is mapped to the current block.
For depth video, the reference block is first scaled in the spatial direction by the same methodology used for color
video and then scaled by a distance ratio from a camera to the objects. Compared to the conventional motion
estimation method, the proposed method reduces MSE by up to about 30% for the color video and up to about 85%
for the depth video.
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1 Introduction
Intelligent surveillance systems for monitoring the behav-
ior of objects are operated in various places for public
safety. These systems can use not only conventional RGB
videos but also infrared and depth videos to acquire new
information. In order to operate the intelligent surveil-
lance systems by transmitting the videos, an efficient
encoding method is required for the various types of the
videos.
In video coding standards such as H.264/AVC [1–4]

and H.265/HEVC [5, 6], various methods for removing
redundancies are used to compress color video. The tem-
poral direction is one type of the redundancies of the
video. The temporal redundancy is efficiently removed
by motion estimation for objects in frames. The block
matching algorithm (BMA) [7, 8] has been embraced as
a method of motion estimation in the video coding stan-
dards. BMA estimates object motion accurately when the
object size among frames is fixed. However, conventional
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motion estimation methods through BMA have a limita-
tion that it estimates object motion inaccurately when the
object size is changed because the size of the reference
block is equal to the size of a current block.
In order to estimate various types of object motion

including zoom, whose size is changed, the object motion
models such as affine [9–11], perspective [12], polynomial
[13], or elastic [14] can be applied. However, motion esti-
mation methods through the motion models have high
computational complexity because they need computa-
tion of model factor for each object. An improved affine
model that the number of parameters is reduced from 6
to 4 has been introduced to solve this problem [15, 16].
Instead of computing the model parameters, a method
of introducing a zoom ratio into the conventional BMA
[17] has been proposed. However, there is a need to limit
searching range of zoom ratios since the possible zoom
ratios are infinite. To reduce the searching complexity of
the zoom ratio, a diamond search method has been intro-
duced to zoom ratio search [18]. Methods [19–21] for
determining the zoom ratio instead of searching a zoom
ratio have also been researched as follows. Superiori [19]
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observes that directions of motion vectors (MVs) tend to
align with a direction from the border to the center of
the object when the object has zoom motion. Takada et
al. [20] proposes a method of improving coding efficiency
by calculating zoom ratios by analyzing MVs in the coded
video and re-coding the video. This method has a limita-
tion that it can only be applied in the coded video. Shukla
et al. [21] proposes a method of finding warping vectors
in the vertical and horizontal directions instead of the
conventional BMA. Shen et al. [22] proposed a motion
estimation method for extracting and matching scale-
invariant feature transform (SIFT) features that are robust
for rotating and scaling. Luo et al. [23] proposes a motion
compensation method to detect feature points through
the speeded-up robust features (SURF) algorithm in ref-
erence and current frames and find corresponding image
projections by the perspective-n-point method. Qi et al.
[24] proposes a 3D motion estimation method by predict-
ing a future scene based on the 3Dmotion decomposition.
Wu et al. [25] introduces a K-means clustering algorithm
to improve a performance of motion estimation.
In this paper, a zoom estimation method for color video

is first proposed by using depth information. Each pixel
value in the depth video represents some distance from
a depth camera to the objects. Applications of depth
video have been researched in various fields such as face
recognition [26–28], simultaneous localization and map-
ping [29, 30], object tracking [31–35], and people tracking
[36–38]. The proposedmethod determines the zoom ratio
as the ratio of the representative depth values of a current
block to a reference block. The representative depth value
is set to an average of depth values in each block. Then, a
reference block size is determined by multiplying the cur-
rent block size and the zoom ratio. The reference block
is scaled to the current block size by spatial interpolation,
and two blocks are compared in order to find an optimal
reference block.

A method of motion estimation for depth video is also
proposed in this paper. In depth video coding, studies for
intra-prediction have been conducted [39–43], but stud-
ies for interprediction are insufficient. When an object
in depth video has zoom motion, not only the size but
also depth values of the object are scaled to a zoom rate.
In order to accurately estimate the zoom motion for the
depth video, we propose a 3D scaling method that is
simultaneously scaling 2D spatial size and depth values
of the reference block. The spatial scaling is similar to
the method for the color video. After the spatial scaling,
the depth values in the reference block are also scaled by
multiplying the zoom ratio.
Contributions of the proposed method are as fol-

lows. The proposed method for color video encoding
reduces a computational complexity for determining a
zoom ratio through calculating the ratios of depth values.
The proposed method for depth video encoding improves
the accuracy of motion estimation through considering
changes of pixels in the depth video when the object has
zoom motion.
This paper is organized as follows. The proposed

method is described in Section 2. In Section 3, we
present the simulation results to show the improve-
ment of motion estimation accuracy using the proposed
method. Finally, we describe a conclusion for this paper in
Section 4.

2 Proposedmethod
2.1 Relationship between depth values and object size
The size of an object and the distance from a camera
appear to be inversely proportional. To clarify the rela-
tionship between the object size and the depth value
of the depth frame, object widths in captured pictures
are measured while moving a diamond-shaped object
at intervals of 0.5 m from 1 m to 4 m as shown in
Fig. 1.

Fig. 1Measurement of relationship between distance and width of object. a 4 m and b 1 m
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The relationship between the width and distance of the
object is described as shown in Fig. 2. The measured rela-
tionship can be approximated with a fitting equation as
follows:

P = β

dα
, (1)

where P means the number of pixels of the object width
shown in red arrow in Fig. 1, d means the distance from
the camera, and α and β mean constant values. In the
case of Fig. 2, α and β are measured as 0.965 and 214.59,
respectively.

2.2 Relationship between depth values and object size
When the zoom motion of an object occurs between
the current and reference picture, a size of the object
is zoomed as the distance moved toward the camera.
Therefore, the size of the reference block should be deter-
mined through the distance in order to estimate the object
motion which has zooming. The depth information has
distances from the camera at each pixel. Therefore, the
zoom ratio between the current and reference blocks can
be calculated through the depth information. The aver-
ages of the depth values in the current and reference
blocks are assumed as distances of each block. If the zoom
ratio s is defined as the ratio of the number of the pixels
between the current and reference blocks, s is calculated
by substituting the number of pixels of the current and
reference blocks into Eq. (1) as follows:

s = Pref
Pcur

= β

(dref)α

/
β

(dcur)α
, (2)

where dcur and dref mean the representative depth values
of the current and reference blocks, respectively, and Pcur
and Pref mean the number of pixels of the current and
reference blocks, respectively. A simplified expression of
Eq. (2) is as follows:

Fig. 2 Approximation of relationship between distance and width of
object

s =
(
dcur
dref

)
. (3)

When a size of the current block is assumed asm×n, the
size of the reference block is determined as sm × sn. The
reference block is scaled by interpolation so that the size of
the reference block is equal to the size of the current block.
Figure 3 shows a flowchart of the proposed zoom motion
estimation for the color video and Fig. 4 shows processes
of the proposed method.
Figure 5 shows an example of zoom motion estimation

for the color video. Areas surrounded by the red rectan-
gle in Fig. 5 a and b are the 8 × 8 current and reference
blocks, respectively, and Fig. 5 c and d show depth values
in each blocks. dcur and dref of 8 × 8 current and ref-
erence blocks in depth pictures are about 2322.312 and
2469.523, respectively, so s is calculated as about 0.940 if
α is set to 0.965. Therefore, the size of the reference color
block is determined to 7× 7. Then, a 7× 7 reference color
block is scaled so that the reference block size is equal to
the current block size. The mean square errors (MSEs) of
conventional and proposed motion estimation methods
are about 169.734 and 74.609, respectively. These results
shows the proposed zoom motion estimation method is
more accurate when the object in the video has zoom
motion.

2.3 Zoommotion estimation for depth video
In depth video, the distance of an object from the depth
camera is changed when the object has zoom motion, so
the depth values of the object are changed as shown in
Fig. 6. Therefore, not only the size but also depth values
of the object should be considered for the zoom motion
estimation for depth video.
A method of 3D scaling is introduced for the zoom

motion estimation for depth video. 3D scaling means that
depth axis scaling has been added to the 2D spatial scal-
ing that scales the block size. The flowchart of 3D scaling
is shown in Fig. 7.
In 3D scaling, the zoom ratio calculation and the size

determination of a reference block are the same as the
processes of zoom motion estimation for previous color
video. Then, the depth values of the size-scaled reference
block are scaled by the following equation:

Ri(i, j) = s × R(i, j), (4)

where R(i, j) and Ri(i, j) mean original and scaled depth
values in position (i, j), respectively.

Fig. 3 Flowchart of proposed method for color video
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Fig. 4 Processes of proposed method for color video

Fig. 5 Zoommotion estimation for color video. a Current picture, b reference picture, c current block, d 7 × 7 reference block, and e size-scaled
reference block

Fig. 6 Pixel values in depth pictures including an object a when object moves in parallel and b when object has zoommotion
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Fig. 7 Flowchart of proposed method for depth video

Figure 8 shows an example of zoom motion estimation
for the depth video. Areas surrounded by the red rectan-
gle in Fig. 8a and b are the 8 × 8 current and reference
blocks, respectively, and Fig. 8 c and d show the depth val-
ues in each block. dcur and dref for each 8 × 8 block are
about 679.625 and 776.969, respectively, so s is calculated
as about 0.874. If α is set to 0.965, the reference block size
is determined as 7 × 7 as shown in Fig. 8 e when the cur-
rent block size is 8 × 8. Then, a 7 × 7 reference block is
scaled by the spatial scaling so that the reference block size
is equal to the current block size. After that, depth values
in 2D scaled reference block is scaled as shown in Fig. 8
g. MSEs of conventional and proposed methods are about
9482.97 and 3.48, respectively. These results show that the
3D scaling improves an accuracy of the motion estimation
for the depth video.

2.4 Zoommotion estimation for variable-size block
The video coding standard provides the variable-size
block that groups blocks which have similar MVs in order
to reduce the number of coding blocks. In the motion esti-
mation of H.264/AVC [1–4], the size of variable-size block
is allowed to be 16×16, 16×8, 8×16, and 8×8 when the
macroblock size is 16×16 and 8×8, 8×4, 4×8, and 4×4
when the macroblock size is 16 × 16. Figure 9 shows the
division of a macroblock in the variable-size block. The
modes of variable-size block are determined by compar-
ing sum of absolute errors (SAEs) or sum of square errors
(SSEs) of each variable-size block.
In addition, an introduction of the variable-size block

can solve a problem that is difficult to determine the
representative depth value of a mixed block having fore-
ground object and background. For the mixed block, the

Fig. 8 3D scaling in proposed method for depth video. a Color current picture, b color reference picture, c current block, d reference block, e 7 × 7
reference block, f size-scaled block, and g value-scaled block
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Fig. 9 Variable-size block in H.264/AVC

representative depth value is determined as an average
value of the depth values of background and foreground,
and then this causes the inaccurately zoom ratio. This
problem can be solved by dividing the block into smaller
size blocks so that each block has only background or
foreground object.
The proposed method can provide estimation for

variable-size block. The variable-size block is applied
independently to both color and depth videos. When the
size of sample block is 16 × 16, SAE for the original block
and sums of SAEs for partitioned block are 16×16, 16×8,
8 × 16, and 8 × 8. In motion estimation for partitioned
block, coding of each MVs for partitioned block should
also be considered. In the case of comparing between
16 × 16 and 16 × 8 variable-size blocks, the equation for
comparing SAEs is as follows:

SAE16×16 ≥
∑

SAE16×8 + T16×8, (5)

where SAE16×16 and SAE16×8 mean SAEs for original
block and partitioned block as 16 × 8, respectively, and
T16×8 means a threshold considering MVs. If the 16 × 16
sample block satisfies Eq. (5), this block can be partitioned
into 16 × 8.

3 Results and discussion
In order to measure motion estimation accuracies of the
proposed zoom motion estimation, we use the depth
video datasets [44] that the camera moves forth or back as
shown in Fig. 10 a and b, and we capture videos in which 1
or 2 people move back and forth while the position of the
camera is fixed as shown in Fig. 10 c and d. The videos in
Fig. 10 a and b are captured by Microsoft Kinect, and the
videos in Fig. 10 c and d are captured by Intel Realsense
D435. The resolutions of color and depth videos are speci-
fied as 640 × 480.We used 30 consecutive frames that has
the most prominent zoom motion in each video. The ref-
erence picture basically has a picture gap from the current
picture. The full-search method is applied as the search
method for BMA. The search range is set to ± 15 while
the sizes of the sample block are set to 8 × 8 and 16 × 16.
α in Eq. (3) is set to 0.965. In the color videos, only a gray
channel is used. The searching pixel unit is limited as 1/2
pixel in the case of the color video and 1 pixel in the case
of the depth video.
In the proposed method, the RD optimization method

can be used to determine the motion estimation mode.
However, this paper does not discuss the coding method
of depth video. Therefore, the estimation mode for each
block is selected by following equation:

Fig. 10 Color and depth videos for simulation. a Bedroom, b basement, c a man, and d two men



Kwon and Lee EURASIP Journal on Image and Video Processing         (2020) 2020:11 Page 7 of 13

Fig. 11 Comparison of MSEs between conventional and proposed methods for color videos (8 × 8 block size)

SSEME > SSEZME + Tmode, (6)

where SSEME and SSEZME mean SSE for the conventional
and proposed methods. If a block satisfies Eq. (6), then
the motion estimation mode of this block is selected as
the zoom motion estimation. In this simulation, Tmode is
determined as the following equation:

Tmode = 2mn, (7)

where m and n mean the height and width of a current
block, respectively.
Figures 11 and 12 show MSEs of motion estima-

tion for the color videos through the conventional and
proposed methods. A picture gap between the current
picture and the reference picture is 1. The accura-
cies of motion estimation by the proposed method are
improved.

Fig. 12 Comparison of MSEs between conventional and proposed methods for color videos (16 × 16 block size)
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Table 1 Averages of MSEs in color video according to frame gap in 8 × 8 block size

Video name Picture gap MSEME MSEZME �MSE �MSE/ MSEME Selected rate of zoom estimation mode (%)

Bedroom

1 15.883 11.918 3.965 24.96% 10.5

2 18.971 15.062 3.909 20.61% 13.9

3 20.258 16.177 4.081 20.15% 14.7

Basement

1 53.952 38.521 15.431 28.60% 13.7

2 62.147 48.331 13.816 22.23% 16.2

3 62.505 50.052 12.453 19.92% 16.0

A man

1 8.671 6.235 2.436 28.09% 2.47

2 14.115 11.441 2.674 18.94% 3.97

3 17.600 14.735 2.865 16.28% 4.85

Two men

1 7.469 5.310 2.159 28.91% 2.25

2 10.806 8.211 2.595 24.01% 4.05

3 13.489 11.091 2.398 17.78% 6.31

Tables 1 and 2 show the average MSEs according to the
frame gap between the current picture and the reference
picture. In Tables 1 and 2, MSEME and MSEZME mean
averages of MSEs for conventional and proposed motion
estimation methods and �MSE means improved MSE
by the proposed zoom motion estimation. The picture
gap between the current and reference pictures is farther,
and the number of selected block as the zoom estimation
mode is larger. In color image, blocks including the object
boundary region are mainly selected as the zoom motion
estimation mode. This means that when the color video
has the zoommotion, regions of the object boundaries are
particularly affected in conventional motion estimation
method.
Figures 13 and 14 shows MSEs of motion estimation in

the depth videos through the conventional and the pro-
posedmethods. A picture gap between the current picture
and the reference picture is 1. The accuracies of motion

estimation by the proposed method are more improved
than in the case of the color videos. Figure 15 shows zoom
ratios in the proposed zoom motion estimation for depth
videos. The zoom motion estimation mode is selected for
almost all the areas where the zoom motion occurs.
Tables 3 and 4 show the average MSEs according to the

picture gap between the current picture and the reference
picture. Similar to the case of color images, the picture
gap between the current and reference pictures is farther,
and the number of selected block as the zoom estimation
mode is larger.
Estimation accuracies and reduction in the number of

MVs through the variable-size block are measured in
Tables 5, 6, 7, and 8. Thresholds of the block partition in
Eq. (6) are set as follows: T16×8 and T8×16 are set to 162/2,
T8×8 is set to 162, T8×4 and T4×8 are set to 82/2, and T4×4
is set to 82. Tables 5, 6, 7, and 8 show MSEs and a number
of each block size in a variable-size block allowing block

Table 2 Averages of MSEs in color video according to frame gap in 16 × 16 block size

Video name Picture gap MSEME MSEZME �MSE �MSE/ MSEME Selected rate of zoom estimation mode (%)

Bedroom

1 19.945 15.619 4.326 21.69% 10.5

2 25.486 21.030 4.456 17.48% 13.9

3 28.575 23.781 4.794 16.78% 14.7

Basement

1 58.634 43.794 14.840 25.31% 13.7

2 69.201 56.263 12.938 18.70% 16.2

3 70.680 58.833 11.847 16.76% 16.0

A man

1 12.475 9.900 2.575 20.64% 2.47

2 21.677 18.676 3.001 13.84% 3.97

3 27.437 24.087 3.350 12.21% 4.85

Two men

1 10.567 8.426 2.141 20.26% 2.25

2 16.590 14.175 2.415 14.56% 4.05

3 21.907 19.367 2.540 11.59% 6.31
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Fig. 13 Comparison of MSEs between conventional and proposed methods for depth videos (8 × 8 block size)

sizes of 16×16, 16×8, 8×16, and 8×8, and in a variable-
size block allowing block sizes of 8 × 8, 8 × 4, 4 × 8,
and 4 × 4. In Tables 5 and 6, MSEVB means MSEs of the
variable-size block and MSE16×16, MSE8×8, and MSE4×4
means MSEs of the fixed-size block. In Tables 7 and 8,
notations such asMV16×16 andMV16×8 mean the number

of MVs in the variable-size block, MVfixed(8×8) means the
number of MVs in the fixed-size block, and

∑
MSEVB

means the sum of the number of MVs in the variable-size
block. MSEs in the variable-size block are similar to the
fixed-size block whose the block size is equal to the small-
est size in allowed size. The number of MVs is greatly

Fig. 14 Comparison of MSEs between conventional and proposed methods for depth videos (16 × 16 block size)
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Fig. 15 Zoom ratios for simulation depth videos. a 8 × 8 block size and b 16 × 16 block size

Table 3 Averages of MSEs in depth video according to frame gap in 8 × 8 block size

Video name Picture gap MSEME MSEZME �MSE �MSE/ MSEME Selected rate of zoom estimation mode (%)

Bedroom

1 104.263 72.647 31.616 30.32% 10.5

2 131.821 80.936 50.885 38.60% 13.9

3 174.051 85.729 88.322 50.74% 14.7

Basement

1 76.351 15.685 60.666 79.46% 13.7

2 98.926 18.464 80.462 81.34% 16.2

3 120.149 19.115 101.034 84.09% 16.0

A man

1 542.273 32.968 509.305 93.92% 2.47

2 1651.302 61.946 1589.356 96.25% 3.97

3 3088.303 95.173 2993.130 96.92% 4.85

Two men

1 81.302 8.143 73.159 89.98% 2.25

2 194.368 10.847 183.521 94.42% 4.05

3 502.936 14.415 488.521 97.13% 6.31

Table 4 Averages of MSEs in depth video according to frame gap in 16 × 16 block size

Video name Picture gap MSEME MSEZME �MSE �MSE/ MSEME Selected rate of zoom estimation mode (%)

Bedroom

1 198.284 166.766 31.518 15.90% 10.5

2 257.755 192.514 65.241 25.31% 13.9

3 332.117 206.987 125.13 37.68% 14.7

Basement

1 172.938 77.911 95.027 54.95% 13.7

2 225.602 93.993 131.609 58.34% 16.2

3 277.677 99.45 178.227 64.19% 16.0

A man

1 647.179 139.144 508.035 78.50% 2.47

2 2048.382 277.636 1770.746 86.45% 3.97

3 3601.99 411.556 3190.434 88.57% 4.85

Two men

1 176.645 41.904 134.741 76.28% 2.25

2 334.603 53.456 281.147 84.02% 4.05

3 707.025 69.863 637.162 90.12% 6.31
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Table 5 Comparison of MSEs between variable- and fixed-size blocks (16 × 16, 16 × 8, 8 × 16, and 8 × 8)

Frame order MSE16×16 MSE8×8 MSEVB MSEVB − MSE8×8

1 39.555 7.909 7.969 0.059

2 35.941 6.311 6.376 0.065

3 48.032 9.497 9.553 0.056

4 34.747 6.318 6.384 0.066

5 29.623 5.627 5.701 0.074

6 20.695 3.677 3.741 0.064

7 33.325 6.600 6.675 0.076

8 38.762 7.683 7.756 0.073

9 48.284 9.819 9.883 0.064

10 93.755 19.189 19.256 0.067

Table 6 Comparison of MSEs between variable- and fixed-size blocks (8 × 8, 8 × 4, 4 × 8, and 4 × 4)

Frame order MSE8×8 MSE4×4 MSEVB MSEVB − MSE4×4

1 7.909 1.999 2.071 0.072

2 6.311 1.588 1.657 0.068

3 9.497 2.286 2.367 0.081

4 6.318 1.599 1.668 0.068

5 5.627 1.498 1.573 0.074

6 3.677 1.092 1.164 0.072

7 6.600 1.741 1.812 0.072

8 7.683 1.865 1.943 0.078

9 9.819 2.372 2.454 0.082

10 19.189 4.615 4.683 0.068

Table 7 Comparison of a number of MVs between variable- and fixed-size blocks (16 × 16, 16 × 8, 8 × 16, and 8 × 8)

Frame order MV16×16 MV16×8 MV8×16 MV8×8
∑

MVVB MVfixed(8×8) 1 −
∑

MVVB
MVfixed(8×8)

1 141 152 176 2420 2889 4800 39.8%

2 134 190 162 2400 2886 4800 39.9%

3 129 176 148 2476 2929 4800 39.0%

4 134 176 178 2396 2884 4800 39.9%

5 151 164 200 2308 2823 4800 41.2%

6 119 180 194 2416 2909 4800 39.4%

7 146 204 182 2284 2816 4800 41.3%

8 150 180 190 2300 2820 4800 41.3%

9 137 136 166 2488 2927 4800 39.0%

10 150 144 158 2436 2888 4800 39.8%
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Table 8 Comparison of a number of MVs between variable- and fixed-size blocks (8 × 8, 8 × 4, 4 × 8, and 4 × 4)

Frame order MV8×8 MV8×4 MV4×8 MV4×4
∑

MVVB MVfixed(4×4) 1 −
∑

MVVB
MVfixed(4×4)

1 1613 1178 1408 2936 7135 19,200 62.8%

2 1657 1216 1262 2976 7111 19,200 63.0%

3 1622 1292 1298 2892 7104 19,200 63.0%

4 1635 1290 1206 3028 7159 19,200 62.7%

5 1655 1216 1364 2780 7015 19,200 63.5%

6 1693 1262 1396 2472 6823 19,200 64.5%

7 1653 1276 1250 2896 7075 19,200 63.2%

8 1675 1192 1262 2952 7081 19,200 63.1%

9 1630 1100 1300 3240 7270 19,200 62.1%

10 1656 1086 1248 3268 7258 19,200 62.2%

reduced to up to about 40% compared to the fixed-size
block.

4 Conclusions
In this paper, we proposed a method of calculating the
zoom ratio for the zoom motion estimation of color
video by using the depth information. We also proposed
a method of the zoom motion estimation for the depth
video. We measured the improvement of MSEs when the
proposed method was separately applied to the color and
depth videos. The simulation results showed that MSE
is reduced up to about 30% for the color video and 85%
for the depth video. Furthermore, zoom motion estima-
tion for variable-size block reduces a lot of the number of
motion vectors.
Some of the conventional methods for zoom motion

estimation determine the zoom ratio by extracting and
matching object features which are robust against zoom-
ing. There are also methods for determining the zoom
ratio through searching the pattern of zoom motion from
the direction and size of MVs. In the other method, an
optimal zoom ratio can be found through scaling a refer-
ence block in the range of possible zoom ratios. However,
these conventional methods of determining the zoom
ratio have a limitation of high computational complexity.
On the other hand, a computation of the zoom ratio is
simplified in the proposed method, since the determina-
tion of the zoom ratio is required only in the calculation
of a ratio of depth values between reference and current
blocks.
The motion estimation method proposed in this paper

is expected to be applicable to the video coding stan-
dard. Also, a method to encode the zoom motion vector
is to be studied more in the future. Further research
to obtain optimal coding efficiency by considering both
the number of bits for additional transmission of the
zoom motion vector and the coding gain according to

the reduced motion estimation difference signal is also
required.
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