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Abstract

Recent state-of-the-art methods for skin lesion segmentation are based on convolutional neural networks (CNNs).
Even though these CNN-based segmentation approaches are accurate, they are computationally expensive. In this
paper, we address this problem and propose an efficient fully convolutional neural network, named DermoNet. In

DermoNet, due to our densely connected convolutional blocks and skip connections, network layers can reuse
information from their preceding layers and ensure high accuracy in later network layers. By doing so, we take
advantage of the capability of high-level feature representations learned at intermediate layers with varying scales
and resolutions for lesion segmentation. Quantitative evaluation is conducted on three well-established public
benchmark datasets: the ISBI 2016, ISBI 2017, and the PH2 datasets. The experimental results show that our proposed
approach outperforms the state-of-the-art algorithms on these three datasets. We also compared the runtime
performance of DermoNet with two other related architectures, which are fully convolutional networks and U-Net.
The proposed approach is found to be faster and suitable for practical applications.
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1 Introduction

Skin lesion segmentation is a key step in computerized
analysis of dermoscopic images. Inaccurate segmenta-
tion could adversely impact the subsequent steps of an
automated computer-aided skin cancer diagnosis system.
However, this task is not trivial due to a number of rea-
sons, such as the significant diversity among the lesions;
inconsistent pigmentation; presence of various artifacts,
e.g., air bubbles and fiducial markers; and low contrast
between lesion and the surrounding skin, as can be seen
in Fig. 1.

In recent years, we have witnessed major advances of
convolutional neural networks (CNNs) in many image
processing and computer vision tasks, such as object
detection [1], image classification [2], and semantic image
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segmentation [3]. A well-known CNN-based segmenta-
tion approach, fully convolutional networks (FCNs) [3],
tackles per pixel prediction problems by replacing the
fully connected layers with convolutions which kernels
can cover the entire input image regions. Doing so, FCNs
can process any image size and output pixel-wise labeled
prediction map. However, the pooling layers in a down-
sampling path cause a loss in the image resolution and
make the network fragile to handle the lesion boundary
details, e.g., fuzzy boundaries. In addition, the fully con-
volutional layers contain a large number of parameters,
which produce a computationally expensive network.
Most of the CNN approaches, such as SegNet [4]
and DeconvNet [5], developed for segmentation purposes
by using the encoder-decoder structure as the core of
their network architecture. Another effective segmenta-
tion network is the employment of skip connections for
the U-Net [6]. The encoder part is responsible for extract-
ing the coarse features. It is followed by the decoder,
which upsamples the features and is trained to recover
the input image resolution at the network output. These
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Fig. 1 Sample dermoscopic images from the ISBI 2017 Challenge: Skin Lesion Analysis Toward Melanoma Detection. The presence of artifacts such
as hairs on the skin and inconsistent pigmentation making accurate skin lesion segmentation difficult

CNN architectures [4, 5] use a base network adopted from
VGG architecture [7], which is already pre-trained based
on millions of images. Having said that, they utilize the
deconvolution or unpooling layers to recover fine-grained
information from the downsampling layers.

Inspired by the residual networks (ResNets) [2],
recently, a CNN architecture called DenseNet was intro-
duced in [8]. The core components of the DenseNet are
the dense blocks, where each block performs iterative
summation of features from the previous network layers.
This characteristic enables DenseNet to be more efficient,
since it needs fewer parameters. Moreover, each layer can
easily access their preceding layers; therefore, it reuses
features of all layers with varying scales.

Even though deep convolutional neural networks have
been a significant success for the image pixel-wise seg-
mentation, their inefficiency in terms of computational
time limits their capability for real-time and practical
applications. The motivation for this work is to propose
an efficient network architecture for skin lesion segmen-
tation, while achieving the state-of-the-art results. Our
contributions can be summarized as follows.

1. Our main aim is to perform an efficient
segmentation under limited computational
resources, while achieving the state-of-the-art results
on skin benchmark datasets.

2. We transform the DenseNets into a fully
convolutional network. In particular, our
architecture is built from multiple dense blocks in
the encoder part, and we add a decoder part to
recover the full input image resolution. This helps
the multi-scale feature maps from different layers to
be penalized by a loss function.

3. The multiple skip connections are arranged between
encoder and decoder. In particular, we link the
output of each dense block with its corresponding
decoder at each feature resolution. Doing so will
enable the network to process high-resolution
features from early layers as well as high-semantic
features of deeper layers.

4. Since we only upsample the feature maps produced
by the preceding dense block, the proposed network
uses fewer parameters. This enables the network

achieve the best accuracy within a limited
computational budget. We have conducted extensive
experiments on ISBI 2016, ISBI 2017, and PH2
datasets, and we have shown that the proposed
approach is superior to the state-of-the-art skin
lesion segmentation methods.

The rest of this paper is organized as follows: Section 2
presents the related work. Section 3 describes the pro-
posed network architecture in detail. Section 4 conveys
and discusses the experimental results. Finally, section 5
concludes the paper.

2 Related work

Recently, deep learning has ushered in a new era of com-
puter vision and image analysis. It is even more remark-
able that the trained models on big dataset seem to trans-
fer to many other problems such as detection technology
[1, 9, 10] and semantic segmentation [3]. In particular,
recent works on applying CNNs to image segmentation
demonstrate superior performance over classical methods
in terms of accuracy. In particular, convolutional neural
networks can be adapted to FCNs [3] and perform seman-
tic segmentation by replacing the fully connected layer of
a classification network with a convolutional layer. How-
ever, due to the resolution loss in the down-sampling
steps, the predicted lesion segmentation lacks lesion
boundary details. Recently, several alternatives have been
presented in the literature to address this shortcoming in
FCNs. SegNet [4] and DeconvNet [5] are two examples
of these approaches built upon auto-encoder network. In
encoder, they both use the convolutional network from
VGG16 for image classification. DeconvNet keeps two
fully connected layers from VGG16, but SegNet discards
them to decrease the number of parameters. Different
from FCN in which the segmentation mask is recovered
with only one deconvolution layer, the decoder network is
composed of multiple deconvolution and unpooling layers
both in SegNet and DeconvNet, which identify pixel-wise
class labels and predict segmentation masks.

U-Nets [6] have shown to yield very good results in
different segmentation benchmarks. In the U-Net archi-
tecture, there are skip connections from encoder lay-
ers to their corresponding decoder layers. These skip
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connections help the decoder layers to recover the image
details from the encoder part. As a result, a faster con-
vergence and a more efficient optimization process are
obtained during the training. Farabet et al. [11] pro-
posed a segmentation method, where the raw input
image is decomposed through a multi-scale convolutional
network and produces a set of coarse-to-fine feature
maps. Bozorgtabar et al. [12] proposed a skin segmenta-
tion method, which integrates fine and coarse prediction
scores of the intermediate network layers. Simon et al. [13]
used DenseNets to deal with the problem of semantic seg-
mentation, where they achieved state-of-the-art results on
urban scene benchmark datasets such as CamVid [14].

In addition, post-processing techniques such as conditional
random fields (CRF) have been a popular choice to enforce
consistency in the structure of the segmentation out-
puts [15]. Zheng et al. [16] proposed an interpretation of
dense CRFs as recurrent neural networks (RNN). In their
segmentation method, CRF-based probabilistic graphical
modeling is integrated with deep learning techniques.

Our proposed DermoNet is based on fully convolutional
neural network. Unlike the FCN, in the DermoNet archi-
tecture, the outputs of the encoders are linked into the
corresponding decoder to recover lost spatial information.
The main difference between DermoNet and U-Net is that
the encoder in DermoNet consists of four dense blocks
with each block having four layers, whereas the encoder
of U-Net is a path followed by the typical architecture of a
convolutional neural network as can be seen in Fig. 2.

3 Method

In this section, we propose a CNN-based architecture to
perform lesion segmentation. Our network, DermoNet,
consists of an encoder and a decoder; the encoder starts
with a block, which performs the convolution on an input
image with a kernel size of 7 x 7 and a stride of 2, and
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followed by the max pooling with stride of 2. In Der-
moNet, the output feature dimension of each layer within
a dense block has & feature maps, where they are concate-
nated to the input. This procedure is repeated four times
for each dense block; the output of the dense block is
the concatenation of the outputs of the previous layers as
in Eq. 1.

X] = Fl ([xl_l,xl_z, s ,xo]) (1)

where x; denotes the output feature of the /th layer. F (-)
is a nonlinear function defined as a convolution followed
by a rectifier non-linearity (ReLU), and [ - - - ] denotes the
concatenation operator. By using dense blocks, we enable
the network to process high-resolution features from early
layers as well as high-semantic features of deeper layers.

Similar to the encoder, the decoder consists of four
blocks, with each block having three layers. Each decoder
block is composed of a convolutional layer with a ker-
nel of size 1x1, a full-convolution layer with a kernel of
size 3x3 followed by an upsampling by a factor 2 and a
convolutional layer with a kernel of size 1x1. The net-
work ends with three last convolutional layers and two
bilinear upsampling steps by a factor of 2 in order to gen-
erate a segmented image with the same size as the input.
Table 1 presents the architectural details of the proposed
DermoNet.

Figure 3 illustrates an overview of the proposed archi-
tecture; the encoder could be found on the right side of
the figure while the decoder is shown on the left side.

Since FCNs perform the image pixel-wise classification,
cross-entropy loss is usually used for the segmentation
task. However, a skin lesion usually occupies a small por-
tion of a skin image. Consequently, the segmentation
network trained with cross-entropy loss function tends to
be biased toward the background image rather than lesion
itself. Different variants of the cross-entropy loss have

~
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Table 1 Architectural details of the proposed DermoNet
Inputimage, 384x512x3

Encoder Decoder
Input Filter Output Input Filter Output
i-1 7%x7,/2 192x256x64 d-4-1 1x1 6x8x128
i-2 3x3,/2 96x 128 x64 d-4-2 3x3,*2 12x16x128
e-1-1 3x3,/2 48x64x 64 d-4-3 1x1 12x16%256
e-1-2 3x3 48x64x64 d-3-1 1x1 12x16x64
e-1-3 3x3 48x64x64 d-3-2 3%3,%2 24x32x64
e-1-4 3x3 48x64x64 d-3-3 1x1 24x32x128
e-2-1 3%3,/2 24x32x128 d-2-1 1x1 24%32x32
e-2-2 3%x3 24x32x128 d-2-2 3%3,*2 48x64x32
e-2-3 3%x3 24%32x128 d-2-3 1x1 48x64x64
e-2-4 3x3 24%32x128 d-1-1 1x1 48x64x16
e-3-1 3x3,/2 12x16%256 d-1-2 3x3,*2 96x128x16
e-3-2 3x3 12x16%256 d-1-3 1x1 96x 128 x64
e-3-3 3x3 12x16%x256 o-1 3%3,%2 192x256x32
e-3-4 3x3 12x16%x256 0-2 3%x3 192x256x32
e-4-1 3%3,/2 6x8x512 0-3 2x2,*2 384x512x%1
e-4-2 3x3 6x8x512
e-4-3 3%x3 6x8x512
e-4-4 3x3 6x8x512

Output image, 384x512x 1 ‘

Here, /2 and %2 denote downsampling operator using strided convolution and upsampling using a factor of 2, respectively.

been devised to address this problem, which focus on the
class balancing [17]. However, this class balancing strat-
egy brings additional computation cost during the training
procedure. In this paper, we use a loss function based on
Jaccard distance (L) [18], which is complementary to the
Jaccard index:

_ > tipiy)
2ij t?j + Zi,jpzzj — 21 (tipip)

L=1 )

where £; and p;; denote the target and prediction output at
image pixel (i, j), respectively. The Jaccard index measures
the intersection over the union of the labeled segments for
each class and reports the average. It takes into account
both the false alarms and the missed values for each class.
Our experimental results disclose that this loss function is
more robust compared to the classical cross-entropy loss
function. In addition, it is well suited to the imbalanced
classes of the foreground and background, respectively.

4 Results and discussion

The output of DermoNet model is binarized to a
lesion and compared with the ground truth provided
by clinicians. As the evaluation metrics, Jaccard coeffi-

cient (JC) and Dice similarity coefficient (DSC) are used,
which measure the spatial overlap between the obtained
segmentation mask and the ground truth, respectively.
They are defined as follows:

IC = torvTrD DSC = sriivs Where TP,
FP, and FN denote the number of true positives, false
positives, and false negatives, respectively.

4.1 Datasets
For the experiments, we have used the following three
datasets :
ISBI 2017: This dataset [19] contains 2000 training der-
moscopic images, while there are 600 test images with the
ground truths provided by experts. The images sizes vary
from 771 x 750 to 6748 x 4499.
ISBI 2016: This dataset [20] contains dermoscopic
images, where the image sizes vary from 1022 x 767 to
4288 x 2848 pixels. There are 900 training images and 379
test images.
PH2: This dataset has been acquired at Dermatology Ser-
vice of Hospital Pedro Hispano, Matosinhos, Portugal
[21] with Tuebinger Mole Analyzer system. This dataset
contains 200 dermoscopic test images with a resolution of
768 x 560 pixels.

Table 2 gives a summary about all three datasets.
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Fig. 3 DermoNet is composed of four blocks in the encoder and decoder, respectively. Black arrows show connectivity patterns in the network,
while red horizontal arrows represent skip connections between the encoder and decoder

4.2 Implementation details
We have trained our network using the resized RGB
images of size 384 x 512 pixels. For the augmentation,

Table 2 Datasets summary
we flipped the training images horizontally and vertically

Dataset No. of No. of Image sizes . s . . .
training set test set J and did shrinking via cropping. Then, we normalized each
image such that the pixel values would be between 0 and
ISBI 2017 2000 600 771 x 750 — 6748 x 4499 L. .
1. The initial weights of our network are sampled from
ISBI 2016 900 379 1022 x 767 — 4288 x 2848

Xavier initialization. Adam optimizer is used as the opti-
PH2 - 200 768 x 560 mizer for the DermoNet. The base learning rate for the
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network is set to 10~%, The maximum number of itera-
tion is 5540. The whole architecture is implemented on
the TensorFlow [22]. We used Nvidia Tesla K40 GPU
with 12 GB GDDR5 memory for the training. We apply a
threshold value of 0.5 to final pixel-wised score to generate
lesion mask.

4.3 Runtime

To verify the effectiveness of the DermoNet in terms of
test execution time, we compare it with two related archi-
tectures, namely FCN and U-Net. Table 3 presents the
segmentation execution times per image using a system
with Intel Core i7-5820K CPU. Due to the densely con-
nected convolutional blocks and having less parameters,
the proposed network is found to be faster.

4.4 Results on ISBI 2016 dataset

For the experiments on the ISBI 2016 dataset, for train-
ing the models, we used either only the training dataset
provided by the ISBI 2016 challenge or the augmented ver-
sion of it, in which we include 6500 dermoscopic images
from DermoSafe [23] to the ISBI 2016 training dataset, in
order to introduce a wider variety of images. These trained
models are then evaluated on the ISBI 2016 test dataset.
Obtained results on the ISBI 2016 challenge dataset are
given in Table 4. In this challenge, the participants are
ranked only based on the JC. In addition, we also report
the DSC results. The proposed DermoNet improved the
segmentation performance both in terms of Jaccard coef-
ficient and Dice similarity coefficient. As can be seen
from the table, in terms of JC, 9.9% and 2.2% absolute
performance increase improvement has been achieved
with respect to FCN and U-Net, respectively. In terms
of DSC, the obtained absolute increase in performance
with respect to FCN and U-Net is 7.8% and 1.8%, respec-
tively. As can be seen from the last two rows of the table,
DermoNet’s performance improves with the use of the
additional data provided by DermoSafe. However, even
without using the additional DermoSafe data, it stills out-
performs the state-of-the-art methods. Figure 4 shows
several examples of automatic segmentation results on the
ISBI 2016 test set with different cases, such as hairy skin,
irregular shape, and low contrast. We observe that the
proposed DermoNet is able to separate the skin lesions
from these artifacts and is robust to different image acqui-
sition conditions.

4.5 Results on PH2 dataset
In these experiments, we have used the trained models
obtained in Section 4.4 and evaluated them on the
Table 3 Comparison of average runtime (s) per image
Method FCN U-Net

DermoNet

Run time (s) 0.145 0.092 0.081
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Table 4 Performance comparison between the proposed
segmentation and other state-of-the-art methods on ISBI 2016
challenge test set

Method JC (%) DSC (%)
HED [24] 79.3 88.4
SegNet [4] 70.0 82.3
UiT-Seg [25] 80.6 NA
IHPC-CS [20] 799 NA
CNN-CRF [20] 79.7 NA

FCN - (JO) trained with DermoSafe data 726 816
U-Net - (JC) trained with DermoSafe data 80.3 876
DermoNet (JC) trained without DermoSafe data 81.1 88.2
DermoNet (JC) trained with DermoSafe data 82.5 89.4

Here, JC denotes Jaccard coefficient

200 skin images from the PH2 dataset. We have also
compared the performance of the proposed lesion seg-
mentation method with superpixel-based saliency detec-
tion approaches [26—28] on the PH2 dataset. Attained
results are given in Table 5. From the experimental results,
it can be observed that DermoNet which is trained using
DermoSafe data has outperformed the other skin lesion
segmentation methods. Due to dense connectivity in Der-
moNet, each layer is connected with all subsequent layers
and allows later layers to bypass features and to maintain
the high accuracy of the final pixel classification layer in
a deeper architecture with fewer parameters. As a result,
this brings additional performance gains.

Input image

DermoNet generated probabilistic map

Fig. 4 Sample segmentation results of ISBI 2016 challenging images.
Ground truth contours and our detected contours are marked in red
and blue, respectively
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Table 5 Performance comparison between the proposed
segmentation and other state-of-the-art methods on PH2 dataset

Method JC (%) DSC (%)
Adaptive thresholding [29] 72 80
Yen thresholing [30] 45 55
Level set active contours [31] 76 83
Statistical region growing [32] 43 61
Bootstrap segmentation [26] 60 75
Contexual hypergraph [27] 63 77
Multi-scale segmentation[28] 76 86
FCN - (JC) trained with DermoSafe data 75.8 847
U-Net - (JO) trained with DermoSafe data 84.8 91.1
DermoNet (JC) trained without DermoSafe data 843 90.2
DermoNet (JCO) trained with DermoSafe data 853 91.5

Here, JC denotes Jaccard coefficient

4.6 Results onISBI 2017 dataset

For the experiments on the ISBI 2017 dataset, for train-
ing the models, we used either only the training dataset
provided by the ISBI 2017 challenge or the augmented ver-
sion of it, in which we include 6500 dermoscopic images
from DermoSafe [23] to the ISBI 2017 training dataset.
These trained models are then evaluated on the ISBI 2017
test dataset. Table 6 compares the performance of Der-
moNet with the state-of-the-art algorithms on ISBI 2017
dataset. Many teams evaluated their segmentation algo-
rithms during the ISBI 2017 challenge. Among them, the
top two teams used different variations of a fully con-
volutional network in their segmentation methods. For
example, Yuan et al. [18] proposed a method based on
deep fully convolutional-deconvolutional neural networks
(CDNN) to segment skin lesions in dermoscopic image.
NLP LOGIX [33] used a U-Net architecture followed by
a CRF as post-processing in their segmentation method.
Here, we observed that the proposed DermoNet outper-
forms the other teams’ approaches.

Table 6 Performance comparison between the proposed
segmentation and other state-of-the-art methods on ISBI 2017
challenge test set
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4.7 Effect of loss function

As described in Section 3, due to imbalanced classes,
cross-entropy loss function would not be suitable for the
skin lesion segmentation task. Therefore, we used Jaccard
distance instead, which enabled the DermoNet’s training
to focus more on lesion pixels over background. To also
empirically analyze the effect of the loss function, we com-
pare the performance of DermoNet using Jaccard distance
or cross-entropy on ISBI 2016, 2017 and PH2 dataset.
As can be seen from Table 7, using Jaccard distance as
the loss function improves the performance significantly
compared to using cross-entropy as the loss function.

4.8 AQualitative comparison

In this section, we provide qualitative comparison
between DermoNet, FCN, and U-Net. Figure 5 shows
some tricky cases from ISBI 2017 challenge dataset. In
this figure, from left to right, we have the original image,
ground truth, the output of DermoNet, U-Net, and FCN,
respectivly. As can be observed, DermoNet provides bet-
ter results compared to FCN and U-Net and is able to sep-
arate the skin lesion from artifacts such as ink markings
and air bubbles.

Figure 6 shows cases where the ground truth is wrongly
labeled, and it leads to a very low Jaccard coefficients (JC)
even though the output of the segmentation is correct. In
this figure, from left to right, we have the original image,
ground truth, and DermoNet, U-Net, and FCN output.

Finally, Fig. 7 shows some of the challenging cases
among all the ISBI 2017 testing images where all three
models (DermoNet, U-Net, and FCN) performed poorly.
In these cases, the contrast between lesion and skin is very
low.

5 Conclusion and future work

In this paper, we have presented a new fully convo-
lutional neural network architecture for automatic skin
lesion segmentation. The idea behind DermoNet is shar-
ing features across all encoder blocks and taking benefit
of reusing features, while remaining densely connected

Table 7 Performance comparison of the proposed
segmentation on ISBI 2016 and 2017 and PH2 dataset when
using Jaccard coefficient or cross-entropy loss for training

Method JC (%) Dataset Method JC (%)
FCN-ensemble[18] 76.5 ISBI 2016 DermoNet (CE) 79.16
Modified U-Net[33] 76.2 DermoNet (JO) 82.5
FCN - (JO) trained with DermoSafe data 66.49 PH2 DermoNet (CE) 72.14
U-Net - (JC) trained with DermoSafe data 75.50 DermoNet (JC) 853
DermoNet (JC) trained without DermoSafe data 775 ISBI 2017 DermoNet (CE) 754
DermoNet (JC) trained with DermoSafe data 783 DermoNet (JO) 78.3

Here, JC denotes Jaccard coefficient

Here, JC denotes Jaccard coefficient and CE denotes cross-entropy, respectively
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Input image Ground truth DermoNet U-Net FCN

Fig. 5 Cases where our proposed DermoNet outperforms FCN and U-Net

Input image Ground truth DermoNet U-Net FCN

Fig. 6 Cases where all segmentation methods failed (mis-segmentation)
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Fig. 7 Cases where the results of all the networks are suboptimal
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to provide the network with more flexibility in learning
new features. The proposed network has fewer parame-
ters compared to existing baseline segmentation methods
that have an order of magnitude larger memory require-
ment. Moreover, it improves state-of-the-art performance
on challenging skin datasets, without using neither addi-
tional post-processing nor pre-training. We have achieved
an average Jaccard coefficient of 82.5% on the ISBI 2016
Skin Lesion Challenge dataset, 85.3% on the PH2 dataset,
and 78.3% on ISBI 2017 Skin Lesion Challenge dataset.
In our future work, we plan to apply the proposed seg-
mentation with some modifications in the network archi-
tecture on standard semantic segmentation benchmarks,
e.g., MSCOCO, to show the generalization capability of
the proposed framework.
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