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Abstract

Though segmentation of spinal column from medical images have been intensively studied for decade, most of the
works were concentrated on the segmentation of the vertebral body and arch, instead of the endplate. Recently, the
increasing study on degeneration analysis of vertebra and intervertebral disc (IVD) make endplate segmentation as
important as others. While the accurately segmentation of mice endplate from micro computed tomography (CT)
images is challenging. The major difficulties include potential high system payload and poor run-time efficiency
resulting from high-resolution micro-CT data, highly complicated and variable shape of the vertebra tissues, and the
ambiguous segmentation boundary due to the similarity of spongy structures inside both the endplate and its
adjacent vertebral body. To solve the problems, the core idea of the proposed method is to identify trabeculae
between the endplate and the body through a graph-based strategy. In addition, in order to reduce the data
complexity, an endplate-targeted region of interest (ROI) extraction method is introduced according to the analysis of
spatial relationship and variety of bone density of vertebra. Furthermore, shape priori of endplate in both
two-dimensional and three-dimensional are extracted to assist in the segmentation. Finally, an iterative cutting
procedure is implemented to produce the final result. Experiments were carried out which validate the performances
of the proposed method in terms of effectiveness and accuracy.

Keywords: Vertebral endplate, Trabecular bone, Segmentation, Harmonic field, Graph cuts, Micro-computed
tomography

1 Introduction
Demanded by image-based spine assessment, biomechan-
ical modeling and surgery simulation, segmentation of
spinal column from medical images have been intensively
studied for decades. In former researches, most of the
works were concentrated on segmenting vertebral tis-
sues such as the body and arch, while vertebral endplate
segmentation were rarely mentioned. However, endplate
is as important as the others. As a transitional zone
between the intervertebral disc (IVD) and vertebra, it not
only plays an important role in containing the adjacent
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disc, distributing applied loads evenly to the underlying
vertebra, but also serves as a semi-permeable interface
that allows the transfer of water and solutes, preventing
the loss of large proteoglycan molecules from the disc
[1, 2]. Recently, it is also believed that there has a close
relationship between the harm of endplate and osteoporo-
sis [3]. Therefore, endplate segmentation could become
an important pre-requisite of vertebra/IVD degeneration
analysis and many other applications, which is a major
motivation of this work.
Up to now, endplate segmentation from computed

tomography (CT) images accurately is still a challenging
task in practice, which relies heavily on knowledge, expe-
rience, and manual works [4]. The main difficulties can be
concluded as follows.

• Potential high system payload and poor run-time
efficiency. The average thickness of endplate is
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generally less than 80 μm; therefore, a high-
resolution imagery such as the micro-CT technique
is required in order to achieve a high-accuracy
segmentation. While, high resolution often leads to
high system payload and poor run-time efficiency.

• Highly complicated and variable shape of the
vertebra tissues. The shape of vertebra including the
endplate, body and arch are highly complicated and
variable. For example, the mice vertebra mice we test
have transverse processes relatively longer and of
larger curvature comparing to the human’s.
Therefore, mice vertebral body and arch are more
likely to be interrupted with each other; it is more
difficult to separate them properly. Besides, existing
algorithms designed for human vertebrae may not be
suitable for our case anymore.

• Ambiguous segmentation boundary. Both the
endplate and body are composed of spongy
cancellous bone (see blue and green region marked in
Fig. 1a), which makes the segmentation boundary
ambiguous. Though there exists a gap area (labeled
with a yellow dotted line in Fig. 1b) between them,
however, the gap is considerably narrow and divided
by trabeculae, which means it is difficult to find a
proper continuous curve as a segmentation boundary.

As we mentioned above, though few works could be
found on endplate segmentation, plenty of researches
have been done to achieve detection and segmentation of
vertebrae [5–9], spinal canals [10], and spinal cord [11].
For the purpose of separating the neighboring vertebrae

roughly, Zhao et al. [12] proposed a neighboring point rat-
ing method based on constructing membership grade to
form a virtual plane to cut adjacent processes. Themethod
proposed by Kim et al. [9] searches a ray emitted from the
stared point among the center axis of the spine and further

construct a three-dimensional (3D) surface by propagat-
ing the ray to detect the accurate gap area between two
processes.
A common strategy to reduce the data complexity is

by limiting the algorithm applied to a relatively small
region of interest (ROI) [13]. In order to identify the
ROI, Athertya et al. [5] extract the Harris corners [14]
among the possible vertebra region to detect the vertebra
range. However, the detection needs several interactions
and training in advance, meanwhile the accuracy of detec-
tion depends on the selection of multi-stage seed points.
Cheng et al. [6] detect the vertebra region by a proba-
bilistic map computed from a voxel-wise classifier and use
mean shift algorithm to estimate the ROI after annota-
tions.
In our work, we also need to isolate individual vertebra

from a given vertebral column, to extract the ROI for data
complexity reduction, while more importantly, to segment
the endplate, and we made it in a endplate-targeted way.
Specifically, taking micro-CT images as input, we aim to
develop an intelligent framework to accurately segment
the endplate from the others. And the core idea is to
recognize the trabeculae (e.g., marked by red circles in
Fig. 1b) within the narrow gap formed by the endplate and
its adjacent vertebral body by a graph-based algorithm.
The proposed framework can be separated into four parts,
which are (1) pre-processing, (2) priori shape extraction,
(3) gap trabecula detection, and (4) trabecula cutting
and refining. Particularly, we firstly isolate each vertebra
and identify the ROI for endplate in a top-down basis
(Section 2.1). Secondly, shape priori in both 2D and 3D are
introduced to offer constraints for later graph cuts based
trabeculae recognition (Section 2.2). After that, a graph
will be constructed based on mask skeletonization before
the graph cuts based trabeculae recognition (Section 2.3).
Finally, we find an optimal cutting strategy to remove the

Fig. 1 Demonstration of endplate segmentation difficulties. a A sagittal view of the micro-CT data, where the blue and green marked the spongy
structure caused by the cancellous bone. b Zoom in view of the endplate and its adjacent vertebral body region, where two of the gap trabecular
and the gap line are labeled in red and yellow respectively
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redundant connections properly (Section 2.4). An accu-
rate result can be achieved after these processes, which
is ready for subsequent operations such as the 3D recon-
struction.

2 Material andmethods
The experimental data we used were collected from
the animal laboratory of spinal surgery of the Xiangya
Hospital. Micro-CT technique is adopted due to the high-
quality imagery requirement. To capture the data, mice
of different ages were fixed in a slot scanned by a Bruker
SkyScan1172 micro-CT scanner. The in-plane resolution
of the image is 7.27μm × 7.27 μm, and the slice spacing
is 7.27 μm. Figure 2 demonstrates a typical data of the
inputs, which contains 4 lumbar vertebrae.

2.1 Pre-processing
The aim of the pre-processing is to get proper ROI for
the endplates. In this work, a top-down strategy which
consists of three steps as shown in Fig. 3 is proposed to
achieve the goal from coarse to fine.
The first step is to isolate the vertebra from each oth-

ers. Other than finding separation lines or surfaces such
as the method proposed by Kim et al. [9], thanks to the
high resolution of micro-CT image and unconnected spa-
tial relationship among different vertebrae, this step can
easily be done by 3D region growing on the mask resulting
from a Otsu threshold.
The second step finds out ROI for endplate within each

axial slices. Due to the shape complexitymentioned above,
it is normally impossible to completely cut off the ver-
tebral arch by planes as proposed in existed methods
[12, 15]. To remove useless regions as many as possible,
an optimal cylinder will be computed automatically in our
method to meet the quasi-cylindrical shape of the verte-
bral body as shown in the right of Fig. 4. The cylinder can
be obtained by topology analysis of the vertebra beginning

from both the top and bottom part to the center part
in axial planes slice by slice as indicated by blue arrows
in Fig. 4. Because in this way, we could find two regions
indicated by R1 and R2 in Fig. 4 which cover the entire
endplate. Then, based on the projection of bone regions
within R1 and R2, we can easily find a circle (e.g., C1 in
Fig. 4) which can be used to define the target cylinder.
The last step produces the finest ROI by further con-

firming the proper range of the axial slices. It travels each
slice in the way as described in the second step, while
other than analyzing the topology, bone density ρ(Ii) of
each slice i will be calculated according to Eq. 1, and
then the variation of bone density will be used to find the
rightful indexes.

ρ(Ii) = NF(Ii)
AF(Ii)

× 100% (1)

where AF(Ii) is the area (measured by number of pixels)
of the entire vertebral region within slice Ii, while NF(Ii)
denotes the region where identified as the bone tissue
within AF(Ii) (e.g., the colored region of slice in Fig. 5a).
The effect of this method lies in the fact that, as shown

in Fig. 5a, the top layer of endplate is much denser than the
other parts. For example, ρ(Ia) > ρ(Ib) > ρ(Ic) > ρ(Id).
With the computed data, a chart, as illustrated in Fig. 5b,
can be used to find the desirable range. The horizontal
axis of the chart is the slice index, the vertical axis is the
bone density accordingly. For the case shown in Fig. 5b,
P1 and P2 will be chosen as the bounds of the range.
Because, along with the direction of the horizontal axis,
ρ(IP1) reaches the first peak and the variation of bone
density around IP2 become very small.

2.2 Shape priori extraction
It is well known that shape priori could be very useful
because the constraints they represent could be important

Fig. 2 The sagittal, coronal, and axial views of the input data
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Fig. 3 The workflow of the proposed pre-processing

guidance for the segmentation. As for endplate segmenta-
tion, there are two kinds of shape priori according to our
observation. The first one is that there appears a concave
gap between the endplate and the adjacent body, which
can be observed from its 3D geometry. We use the yellow
dotted line in Fig. 6a to show this 3D shape priori. The sec-
ond one is the shape similarity between the internal and
external edge of endplate, which can be approximated by
the green and red dotted line in Fig. 6b respectively.
As we mentioned, the core idea of our method is to

find and cut the trabeculae within the narrow gap within
2D image as shown in Fig. 6b; therefore, it is better for
us to have some priori knowledge of the 2D gap, which
described by a gap line L (i.e., the green dotted line shown
in Fig. 6b) in our method. To identify L, two terminal
points (i.e., T1 and T2) and the curve between them are
used.
Fortunately, with the first shape priori, an optimal 3D

loop can be found by a harmonic field based method
introduced in Section 2.2.1, which is useful for locating
T1 and T2. While, with the second shape priori, a fitting
method is presented in Section 2.2.2 to approximate the
shape of L.

2.2.1 Terminal point identification
In our method, we solve the 2D terminal point identifica-
tion problem from a 3D point of view, namely, a harmonic

field -based method as presented in our previous works
[16, 17] is adopted to find an optimal 3D loop laying on
the vertebra mesh surface reconstructed from ROI intro-
duced above. Figure 7a demonstrates such a reconstructed
mesh model.
Generally speaking, a harmonic field Ø is a scalar field

attached to each mesh vertexes which satisfies �Ø =
0, where � is the Laplacian operator. Basic steps of
the harmonic field based method include (1) designat-
ing a proper weighting scheme, (2) calculating Ø by
a least square sense, and (3) choosing a desirable line
from the isolines uniformly sampled from Ø. We adopt
most part of the method from our former works, from
which details such as the methodology and parameter
setting can be found. Major differences between this
method and the previous one lays in the following two
aspects.
Firstly, when adopting least square method to solve the

Poisson equation �Ø = 0, we use boundary constraints
as illustrated in Fig. 7b, where the blue and red spheres
indicate mesh vertexes of Dirichlet condition [18] equal
to 1 and 0 respectively. Figure 7c shows all the isoline
candidates.
Secondly, we proposed a ranking method to select the

optimal isoline from the candidates through a score func-
tion Score(Ii) of the ith isoline Ii defined by Eq. 2, which
takes two factors including the field gradient magnitude

Fig. 4 Vertebral arch removal
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Fig. 5 Endplate region extraction. a Axial views (right) of four typical slices of index a, b, c, and d (left). b Bone density variation among a sequence of
slices. The horizontal axis is the slice index, the vertical axis is the bone density value accordingly, P1 and P2 indicate the range of the result

G(Ii) and the shape variance among the local region V (Ii)
into consideration.

Score(Ii) = G(Ii) × V (Ii) (2)

where G(Ii) and V (Ii) meets Eqs. 3 and 4 respectively.
These two factors reflect both the variance along the indi-
vidual isoline and among the local isoline region; there-
fore, they can offer more accurate variance for evaluating
the final score.

G(Ii) =
∑

lj∈Ii
ljg(fj)/

∑

lj∈Ii
lj (3)

V (Ii) =
k∑

j=1
e−

j2

2σ2
(
lIi−k + lIi+k − 2lIi

)
/lmax (4)

Let fj be the jth triangle where Ii path through, then lj and
g(fj) denote the length and corresponding gradient of Ii
within fj respectively. For the shape variance factor V (Ii),
we take the isoline Ii as the center, and select the pre-
vious and next k isolines as the local region, Ii+k is the
previous kth isoline, Ii−k is the next kth isoline. lmax is
the maximum length of the candidate isolines. The Gaus-
sian convolution is used to design the different weight
for neighboring isolines with different distances from the
center isoline, and it makes the measure insensitive to
the choice of k. In our experiment, we set k to 6 and
σ to 2.
According to the value of the obtained sores, we rank

the candidate isolines and select the one with the highest
value as the final 3D gap line. Figure 7d shows the result
(i.e., the blue line) of the proposed ranking method, which
is a closed and smooth curve locating among the desirable
concave 3D gap region. With this loop, it is easily for
us to find the corresponding pixels within the 2D image

Fig. 6 Demonstration of two types of shape priori used in our method. a The first shape priori is there appears a concave gap marked with yellow
dotted line between the endplate and the adjacent body in the view of 3D geometry. b The second one is the shape similarity between the internal
and external edge of endplate, which can be approximated by the green and red dotted line respectively. The green dotted line is named as gap
line L with two terminal points T1 and T2
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Fig. 7 Processes of the harmonic field based 3D shape priori extraction scheme. a The 3D mesh model reconstructed from the ROI. b The blue and
red spheres indicate mesh vertexes of Dirichlet condition in our case equal to 1 and 0 respectively. c The isolines uniformly sampled from the
generated harmonic field. d The result of the harmonic field based concave 3D gap shape priori extraction

which can be used as the terminal points of the 2D gap
line.

2.2.2 2D gap line identification
After the identification of terminal points T1 and T2 (e.g.,
the red points shown in Fig. 8), the next step is to deter-
mine the shape of the gap line L with a proposed fitting
method demonstrated in Fig. 8, which is based on the sim-
ilarity of shape between the internal and external edge of
an endplate. Specifically, let �z denotes the direction of Z
axis, we first locate T ′

1 and T ′
2 which are offset points from

T1 and T2 along with �z by distance D, where D is the aver-
age distance travel from T1 and T2 to the top contour of
endplate along with �z. After that, we can find more end-
plate top contour points (e.g., the yellow points in Fig. 8)
which have the same space in Y axis between T ′

1 and T ′
2.

Then, taking the yellow points as controllers, a spline L′

Fig. 8 Processes of the fitting based 2D shape priori extraction
scheme. T1 and T2 are the terminal points of gap line L, T ′

1 and T ′
2 are

the offset points from T1 and T2 by distance D, L′ is a spine
approximates external edge of endplate generated according to the
yellow control points

(e.g., the yellow dotted line in Fig. 8) could be generated.
Finally, we can get the L by pushing back distance D along
with the opposite direction of Z axis.

2.3 Trabecula detection
Introduced by Boykov et al. [19, 20], graph cuts theory has
become a powerful tool for medical image segmentation
[21–23]. There are two major steps for graph cut-based
segmentation, which are graph construction and cost
function designation. Traditionally, all pixels and their
neighborhood relationship in the image will be used as
vertexes and edges to construct a graph, and pixel intensi-
ties are used to determine the weight. One problem with
this method is that when dealing with high-resolution
images, the graph scale would be explosive.
The graph cuts framework is also adopted in our

method, however, aiming for trabeculae detection instead
of image segmentation, the proposed method is differ-
ent from the traditional one in the following two aspects.
(1) Only key pixels are treated as the vertexes for graph
construction, which can be extracted by a skeletoniza-
tion of the mask image within the coronal or sagittal view
of the ROI (Section 2.3.1). (2) The shape prior intro-
duced in Section 2.2 are used to design the cost function
(Section 2.3.2).

2.3.1 Graph construction
To address the graph sale explosion problem when con-
structing the graph, Linguraru et al. [21] generate a regular
sampling of the organ’s surface before segmentation. A
semi-supervised learning method is proposed by Maha-
patra et al. [22] to predict annotations combing with the
global features and local image consistency for graph cut
optimization. Pauchard et al. [23] introduced a multi-level
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banded graph cuts for fast segmentation. In our case, a
skeletonization-based method is proposed as shown in
Fig. 9.
Specifically, with the mask depicted in Fig. 9b, a skele-

tonisation method proposed by Cardenes [24] is firstly
employed to thin the foreground bone tissues into 1-pixel
width skeletons as shown in 9c. Then the skeletons will
be refined by keeping the largest connected component as
shown in Fig. 9d. Finally, a graph G = (V ,E) will be con-
structed according to the skeleton S, where V and E are
the vertex set and edge set respectively.
According to the graph cuts theory, V is consisted of

three kinds of nodes, i.e., the source node S, sink node T ,
and the rests denoted byN . In our method,N is formed by
vertexes selected from S by checking every skeleton point
p according to its 8-neighborhood connectivity Nd8(p),
namely, p belongs to N if and only if Nd8(p) > 2 or
Nd8(p) = 1, which means p is a branch or terminal point
of S. In additional, if there exists a edge Evu ∈ E between
vertex u and v (u, v ∈ N), then within S we can always find
a path from u to v without passing any other vertex w ∈ N
.

2.3.2 Cost function design
The graph cuts is driven by cost functions as the weight
of the graph. Derived from the basic cost function templet
[25], the graph cuts is defined as an energy minimization
problem. For a vertex set N and a label set L, the goal is
to find a mapping f : N → L such that the boundary of
an object can be detected by minimizing energy function
E(f ) defined in Eq. 5.

Ef =
∑

v∈V
Ed(fv) + λ

∑

(v,u)∈E
Es(fv, fu) (5)

where Ed is a data term defined as a cluster likelihood of
nodes for the object, while the region cost is the sum of a

data penalty term Ed . On the other hand, Es is a bound-
ary term that denotes a shape boundary penalty term of
the two adjacent vertexes labeled by different labels. λ

controls the balance between region and shape boundary
constraints. In order to better incorporate the endplate
shape priori into segmentation, we re-designed both Ed
and Es as follows.
In our data term, the source node S represents endplate

regions, and the sink node T represents the body region.
Take the gap line introduced above as a initial cut curve
Ccut, the new data term meets Eq. 6.

Ed(fv) =
⎧
⎨

⎩
ln

(
dmax−dmin

dmax−d(v,Ccut)+ε

)
, (S, v) ∈ Es

ln
(

dmax−dmin
d(v,Ccut)−dmin+ε

)
, (v,T) ∈ Et

(6)

where d(v,Ccut) is the distance from vertex v to Ccut,
which could be positive or negative depending on which
side v lie on. dmax = max(d(v,Ccut)), (v ∈ N), and
dmin = min(d(v,Ccut)), (v ∈ N). In this way, the data term
measures the confidence degree belonging to labels with
signed distance of nodes related to the initial cut curve,
namely, the larger d(v,Ccut), the higher confidence degree
v has, and vice versa.
Though both vertebral body and endplate exist in tra-

beculae, their shape are different. Specifically, trabeculae
inside the body seem longer and their growth directions
are inconsistent, while trabeculae among endplate seem
much shorter and their growth direction are similar to the
principal direction. Therefore, these shape characteristic
can help us to tell the two kinds of trabeculae, and the
corresponding boundary term can be defined in Eq. 7.

Es(fv, fu) = ln(|−→n 1(v,u)|arccos
( ||−→n 1(v,u)|| × ||−→n ||

|−→n 1(v,u) · −→n |
)

+ βlength(v,u))

(7)

Fig. 9 The skeletonisation process. a The input image. b The mask image resulting from a, where the foreground bone tissues are in green. c
Skeletonisation result from b, where skeletons are in red. d The final skeleton used for graph construction after removing some components
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where −→n 1(v,u) represents the vector starting from node
v to node u, −→n is a normalized principle vector of the
vertebra, length(v,u) denotes the length of the skeleton
path between v and u, arccos( ||−→n 1(v,u)||×||−→n ||

|−→n 1(v,u)·−→n | ) is the inter-
section angle between vector −→n 1 and vector −→n , which is
among the range [ 0, π

2 ], β is a weighting factor for bal-
ancing the intersection angle and the length of edge. The
design of the boundary term assign a higher weight to
edge with shorter length and with direction similar to
principle direction, which makes the minimal cut passes
the edge standing for trabecula with such characteristic.
With the help of the proposed graph cuts method, all the
trabeculae between endplate and vertebra body can be
found successfully.

2.4 Trabecula cutting
As a result, the graph cuts proposed above labeled the ver-
texes into two sets, and the edges between the two sets
stand for the trabeculae between the endplate and verte-
bral body in our method; therefore, in order to obtain the
final segmentation result, we have to further cut them.
Our basic idea is to generate a proper straight line to
achieve the purpose, while the main difficulty is the posi-
tion and angle of the straight line. To solve the problem,
an iterative searching strategy is proposed.
Firstly, we initialize a cut line described as a purple line

in Fig. 10a which passes through the trabecula represented
by the white edge on the graph. The cut line locates at the
middle of the white edge and forms two points p1 and p2
when extending to the boundary of bone tissue (e.g., the
white points in Fig. 10). The distance d1 between two ends
is |p1 − p2|.
Next, we move the cut line towards the endplate at uni-

form velocity. As the line moves, each move generates a
updated two-ends distance di (i = 2, 3, · · · · · · ). When the
cut line touches the endplate, the �di = |di − di−1| will
be increased dramatically. So we stop the movement when
�di meet the Eq. 8.

|�di − �di−1| > λ (8)

where we set λ to 20 empirically.
Finally, the cut line will be rotated clockwise with

a constant angle θ iteratively to get the proper angle.
During each iteration, the distance di(j ∗ θ), (j =
1, 2, · · · · · · , 2
/θ) at the jth rotation will be compared
with di−1, namely, |di(j ∗ θ) − di−1|. The angle with min-
imal variation is the optimal direction, which is the most
parallel to the boundary of endplate, and the interface tra-
becula can be cut completely according to such a line as
described in Fig. 10c.

3 Results and discussion
In this section, experiments designed to evaluate the per-
formance of the proposed method will be presented. All
experiments were carried out on a common personal
computer with a Intel Core i3 processor (3.5 GHz) and
8 GB memory.

3.1 Experiment for shape prior extraction
In Section 2.2, we proposed two kinds of shape prior,
which are the 3D gap line on the mesh surface and the 2D
gap line within CT slices. Since the 3D gap line serves as
the foundation of the 2D gap line detection, its extraction
performance is firstly assessed.

3.1.1 Shape prior extraction results
We test effect of the proposed shape prior extraction
method by employing it for all vertebra in our data set.
The (1) generated harmonic field, (2) isoline candidates
and (3) resulting 3D gap line of a randomly selected verte-
bra are shown in the first row of Fig. 11 from left to right
respectively. Since the 3D gap line will be further trans-
formed into two terminal points of the 2D gap line, Fig. 11
also shows the corresponding terminal points (i.e., the red
dots) within some typical slices, whose index are labeled
on the top-right of the slice image. From the figures, we
can see that both the 3D gap line and terminal points are
correctly detected.

3.1.2 Parameter evaluation of 3D gap extraction
During the selection of the best isoline, there is a param-
eter k in Eq. 4 standing for the range of considered local

Fig. 10 The proposed cut strategy. a Construct a initial cut line at the middle of the white edge. b The cut line move close to the endplate until it
touches the boundary of the endplate. c Reorient the cut line at an angle with minimal variation
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Fig. 11 Experimental results of shape priori extraction. The generated harmonic field, isoline candidates and the resulting 3D gap line of a randomly
selected vertebra are shown in the first row from left to right respectively. The rest part shows the terminal points corresponding to the 3D gap line
within some typical slices

region. As we mentioned, the extraction result is insensi-
tive to the value of k, and we set it to 6 empirically. In order
to prove that, another experiment is carried out, where we
vary the value of k for the optimal 2D gap line selection
and check out for the differences.
Specifically, let Ga be the selected gap line when k

equals to a, then we can have 7 gap lines under the con-
ditions that k varies from 3 to 9 (i.e., G3,G4, · · · · · · ,G9).
In order to see the differences between them, we calcu-
late the DCD(Ga,G6), (a ∈[ 3, 9]∧ a �= 6) which is the
directional cut discrepancy (DCD) metric as employed
in our previous work [16] to act as the mean errors
comparing Ga with G6 in millimeters. We randomly
selected eight vertebra from the data set and extract
eight gap lines for each of them. We calculate the

DCD data for these eight cases, and record them in
Table 1.
From the table, we can see that on the one hand, most of

the DCD data are zero, whichmeans we can have the same
gap line with k varies slightly for most of the cases. On the
other hand, all non-zero data are very small, which means
even if the selected gap line is different from the desired
one under some circumstances, the mean errors between
them is within a reasonable tolerance. In summary, the
gap line extraction method is effective and efficient, the
result is tolerable to the choice of k.

3.2 Segmentation results
The next experiment is to test the effect of the proposed
method by segmenting every vertebra in our data set. The

Table 1 DCD records for evaluation of K defined in Eq. 4

I II III IV V VI VII VIII

DCD(G3,G6) 0.02 0 0.14 0 0.04 0 0 0

DCD(G4,G6) 0 0 0.09 0 0.04 0 0 0

DCD(G5,G6) 0 0 0 0 0 0 0 0

DCD(G7,G6) 0 0 0 0 0 0 0 0

DCD(G8,G6) 0.02 0 0 0 0 0 0 0

DCD(G9,G6) 0.02 0 0.09 0.03 0.04 0 0.03 0
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Fig. 12 The segmentation results in terms of 2D slices. The proposed method is employed to a randomly selected vertebra, the color regions of the
12 slices in the first, and second two rows are two endplates of the vertebra respectively

experimental results show that most of the endplates (93%
exactly) can be successfully segmented, the reason for a
few failed cases is mainly due to the great damage of the
target vertebra.
Among the successful ones, segmentation results of

a randomly selected vertebra are shown in both 2D
(Fig. 12) and 3D (Fig. 13). Figure 12 shows the seg-
mentation results in terms of 2D slices. The first and

second double-row slices belong to the two endplates
of selected vertebra respectively. The slices were uni-
formly selected from different sagittal views. Figure 13
shows the segmentation results in terms of recon-
structed 3D meshes, namely, the first and second row
depict two endplates of the target vertebra in differ-
ent perspective views, while the third row shows the
relationship between the endplates and the rest parts of

Fig. 13 The segmentation results in terms of reconstructed 3D models. The proposed method is employed to a randomly selected vertebra, the
two successfully segmented endplates are shown in different colors
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Table 2 Accuracy evaluation of the proposed segmentation
method based on VD, Dice, ASSD, and MSSD metrics

Endplate Dice(%) ASSD(μm) MSSD(μm) VD(μm3)

L4U 91.02 ± 1.8 2.77 ± 0.01 7.85 ± 0.13 79.23 ± 8.9

L4D 90.43 ± 3.2 3.09 ± 0.06 6.96 ± 0.27 84.79 ± 11.2

L5U 91.14 ± 2.6 2.48 ± 0.03 8.11 ± 0.32 76.51 ± 9.6

L5D 90.88 ± 2.7 4.02 ± 0.02 7.55 ± 0.19 82.14 ± 10.5

the vertebra. From the figures, we can conclude that the
endplates were successfully segmented using the proposed
method.

3.3 Quantitative results
There are many approaches proposed for human’s ver-
tebra segmentation; however, there is no study on mice
endplate segmentation from micro-CT data except our
study; therefore, no other methods can be found for
comparison. Instead, we compared our results with the
ground truth which are manually segmented by experi-
enced experts with an image editing software slice-by-
slice. In order to carry out the comparisons, four metrics
are used to quantitatively evaluate the segmentation accu-
racy, which include volume difference (VD, μm3), dice
similarity coefficient (DC, %), and two surface distance
metrics, i.e., average symmetric surface distance (ASSD,
μm), maximum symmetric surface distance (MSSD, μm)
[26, 27].
Table 2 shows the segmentation accuracy of the

proposed method in terms of the metrics described above
for the segmentation results mentioned in Section 3.2. For
better analysis, we classified the statistical results of end-
plates according to their anatomical positions, namely, the
L4U, L4B, L5U, and L5B stand for the upside/downside
endplate of the fourth/fourth lumbar vertebra respec-
tively. As shown in Table 2, four types of endplate’s Dice
coefficient are all more than 90%, the average DC is

91.33± 2.8%. The average ASSD of the endplates is 3.02±
0.04μm, which is smaller than 4μm. L5U has the largest
MSSD, which is less than 8.5μm.
As the VD data shows, the concave angle of upside end-

plate is typically less than that of downside endplate within
the same vertebra. For example, L4U with VD less than
that of L4D. It can be interpreted by the fact that the
surface of upside endplate is usually more flat than that
of the downside one. In additional, endplate of L5 has
higher Dice coefficient than the that of L4, which is mainly
because, comparing with L4, L5 is closer to the ischium,
and the concave angle of L5 is typically smaller in general.
According to the results illustrated above, we can draw the
conclusion that our method is accurate and complies with
the actual anatomic shape feature of mice endplate.

3.4 Computational efficiency
As another important issue, the efficiency of the proposed
method can be assessed by system time consumptions.
Therefore, time consumption for each process of the pro-
posed method including the pre-process, skeletonization,
shape priori and graph cuts, are recorded. Figure 14 shows
8 cases of our records. For each case, the input data
contains 6 endplates represented by 610 slices in total.
According to Fig. 14, the average time consumption for

the pre-process, skeletonization, shape priori and graph
cuts are 4.13 ± 0.83 s, 24.63 ± 4.27 s, 32.25 ± 3.88 s, and
62.88 ± 4.42 s respectively. And it takes around 20 s to
segment one endplate using the proposed method, which
is approved by the doctors.

4 Conclusions and future work
In this paper, an intelligent framework is proposed to seg-
ment each endplate from micro-CT data captured from
the vertebral column of mice. The innovations of the pro-
posed method can be summarized as the following three
aspects. Firstly, this work is one of few researches which
focus on endplate segmentation. Secondly, we solve the

Fig. 14 Statistics of time consumption. Time consumption (in seconds) of procedures including the pre-process, skeletonization, shape priori, and
graph cuts for 8 cases
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endplate segmentation as a recognition problem of trabec-
ulae within 2D gap area formed by target endplate and its
adjacent vertebral body by a graph-based strategy. Thirdly,
both 3D and 2D shape priori of the vertebra are used
to guide for the segmentation, which are extracted by a
harmonic field-based ranking method and a spline-fitting
method respectively.
To assess the proposed method, experiments for shape

prior extraction, accuracy and efficiency evaluation, and
demonstrations of the segmentation results are presented
and discussed in details, which proved the effective and
efficiency of this work. However, there still have some
works that could be done in the future including improve-
ment of the accuracy and efficiency by incorporatingmore
reliable shape priori and optimizing the graph cut-related
procedures, since it consumes half of the total time as
shown in the experiment.
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