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Abstract

In the face of huge amounts of image data, how to let the computer simulate human cognition of images and
automatically classify images into different semantic categories have become a key issue in image semantic analysis.
Image classification is based on some attribute of the image, and it is divided into pre-set categories. For human
beings, image classification is not difficult but there is a series of problems in using computers to classify images:

(1) images contain a large amount of information, which is complex, diverse, and indescribable; and (2) there is a huge
difference between the physical expression of images and the conceptual information known by human beings.

The traditional sparse coding method loses the spatial information when classifying images. In this paper, spatial
pyramid multi-partition method is used to add spatial information restriction to the feature. The proposed multi-scale
spatial latent semantic analysis method based on sparse coding has higher average classification accuracy than many
existing methods, which verifies its effectiveness and robustness. Experiments also show that the classification accuracy
of this paper is 2.1% higher than that of sparse coding for image classification (ScSPM) and the classification
performance is 3.1% higher than that of SCSPM when the number of training images is 40. Compared with other
methods, the classification performance of the proposed method is improved significantly.
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1 Introduction

With the rapid development of high-speed Internet, the
development of information storage and transmission
technology, and the popularity of digital equipment, the
acquisition and storage of digital color images become
easier and the number of image data people come into
contact with is increasing at an unprecedented rate.
Faced with a huge amount of image data, how to simu-
late the cognitive mechanism of human understanding
of images and automatically classify images into different
semantic categories according to the way people under-
stand become a key issue. In addition, image classifica-
tion not only includes people’s overall understanding of
an image, but also provides the context in which objects
appear in the image, which provides a basis for further
identifying other content in the image [1]. Therefore,
image classification has become a hot topic in the field
of computer vision and multimedia information
processing.
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According to the different ways of describing images
in traditional image classification methods, image classi-
fication methods can be divided into two categories, one
is based on global features and the other is based on
middle-level semantic information. Traditional visual
dictionary models usually use K-means clustering and
other vector quantization coding methods to encode
local features to generate visual codebook, that is, visual
dictionary [2, 3]. Then, the local feature of the image is
assigned to the nearest visual word to form a visual vo-
cabulary histogram expressing the content of the image.
However, the methods of image representation and clas-
sification by vector quantization encoding have the fol-
lowing problems: (1) visual codebook generated by
vector quantization encoding will lead to the loss of
spatial information, (2) visual vocabulary histogram con-
struction leads to serious quantization errors, and (3)
this kind of image representation will show good classifi-
cation effect only when using non-linear kernel SVM
classifier. The training and testing time complexity of
non-linear SVM classifier are O (n2-#3) and O (n), re-
spectively. N is the number of training images, which
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will undoubtedly reduce its practicability; it is difficult to
apply to a large-scale dataset classification.

Visual neurophysiology studies have shown that mam-
malian visual cortex neurons have directional, localized,
and band-pass characteristics and the visual perception
system only needs a few neurons to obtain the main infor-
mation in the image and to form a sparse signal represen-
tation [4]. M. Kumar et al’s [5] physiological experiments
showed that the responses of primary visual cortex neu-
rons to natural images as stimuli were sparsely distributed.
D. Voegeli [6] suggests that in the early stages of the visual
cortex, sparse coding (SC) [7-10] is achieved by discover-
ing local statistical rules of natural images and thereby re-
ducing redundancy of neuronal signals. The middle part
of the visual cortex may be represented by a small number
of special atoms. That is to say, a small number of base
vectors are selected from the over-complete dictionary by
sparse coding to represent the input information.

Researchers have also done a lot of work to solve the
problem of missing spatial information of visual words
in traditional visual dictionary models. Spatial pyramid
matching (SPM) divides an image into multiple blocks
of the same size at multiple scales. The visual lexical
histogram descriptions of each image block are gener-
ated to compensate for the lack of word space informa-
tion [11]. S. Rousseau and others extend the initial
spatial pyramid matching method and integrate the
spatial position information of visual words into the vis-
ual dictionary model [12]. Zhao Chunhui and Zhao
Zhongqiu proposed an image classification method
based on sparse coding and multi-scale space to solve
the problem of serious quantization error. This method
not only compensates for spatial information, but also
improves the robustness of image content expression
[13, 14]. To solve the problem of serious quantization
error, S. Zhang anf S. Zhang.et.al proposed a soft alloca-
tion method [15-17], which effectively reduced the
quantization error and enhanced the accuracy of image
expression. Weinshall and others combined the soft allo-
cation strategy with the latent Dirichlet allocation model
(LDA) and proposed a soft allocation LDA model [18,
19]. In order to obtain non-linear image expression vec-
tors, we can still get better image classification perform-
ance in the case of linear kernel SVM classifier. J. Zhu,
et al . used fast sparse coding algorithm to generate SIFT
descriptor-based visual dictionary and sparse vector
combined with spatial pyramid matching (SPM) algo-
rithm [20-22] and proposed sparse coding-based spatial
pyramid matching method for image classification. This
method uses linear kernel SVM classifier (can be used).
Reducing the training time complexity of the classifier
to O (n) can still achieve better classification perform-
ance, thus effectively reducing the training time of the
classifier and enhancing the practicability of the
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classification method. Through further study of sparse
coding results, Y. Gao et al. [23, 24] proposed a
locality-constrained linear coding (LLC) method based
on sparse coding, which further improved the coding
performance. The premise of high classification accuracy
is that the local feature and its k-nearest neighbors are
in the same subspace [25]. However, the k-nearest neigh-
bor algorithm is very sensitive to noise, so it is difficult
to ensure that the k-nearest neighbors are in the same
subspace; therefore, Zhuang et al. [26, 27] proposed a
non-negative sparse local linear coding (NSLLC) algo-
rithm based on LLC algorithm to encode local features.
Moreover, compared with sparse representation,
non-negative sparse representation is more suitable for
image classification tasks. However, all the sparse coding
models mentioned above belong to the sparse represen-
tation model of signal reconstruction error
minimization. They aim at minimizing signal reconstruc-
tion error and ignore the importance of discriminability
to image classification task.

Aiming at the shortcomings of the existing methods,
in order to solve the shortcomings of the previous
methods, and taking into account the spatial distribution
of regional semantics in similar images, there are often
some rules; in this paper, an image classification method
based on sparse coding and multi-scale spatial latent se-
mantic analysis is proposed. This method uses spatial
pyramid to divide the image into spatial layers and local
regions to obtain the spatial relationship between the
local blocks. Then, it uses SC to soft-quantify each local
block to form a co-occurrence matrix. Then, it uses the
PLSA model to mine the latent semantic information of
each local block to obtain its latent semantic informa-
tion distribution. Finally, the latent semantic information
collected at different scales is concatenated by weights
to get the final feature description of the image. The fea-
ture takes into account not only the local latent seman-
tic information of images, but also the spatial
information of images. Experimental results show that
the algorithm can generate multi-scale spatial latent se-
mantic information with high classification performance.
The classification accuracy is 2.1% higher than that of
ScSPM, and the classification performance is 3.1%
higher than that of ScSPM when the number of training
images is 40. Compared with other methods, the classifi-
cation performance of the proposed method is improved
significantly.

2 Proposed method

Image can be regarded as a collection of several local re-
gions. The method proposed in this paper is to classify
images according to their spatial distribution and local
latent semantic information.
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2.1 Local feature extraction

At present, features are widely used in the field of com-
puter vision, such as scene classification, object recogni-
tion, and motion detection, because of their unique
characteristics, rich information, robustness, and scalabil-
ity. According to the description, the extraction process of
the feature, as shown in Fig. 1, contains four steps.

(1) Detection of extreme points in scale space—establishing
differential Gauss scale space for input images, and
search in this scale space, the critical point is
determined by the cable extreme point.

(2) Accurate location of key points—Taylor expansion
of differential Gaussian function and interpolation
operation are used to accurately locate key points.
At the same time, they can filter out low contrast
points and strong edge response points.

(3) Key point direction parameter
assignment—statistical key point neighborhood
pixel gradient direction histogram designates key
points for two parameters of main direction and
auxiliary direction.

(4) SIFT describes sub-generation—the neighborhood
of the key point 16 x 16 is divided into 16 4 x 4
small neighborhoods, and then, a histogram of the
gradient direction of eight lattices is computed in
each small neighborhood; thus, a 128-dimensional
feature descriptor is constructed for each key point
and the scale space of a two-dimensional image can
be obtained by convolution of image and Gauss ker-
nel. Set I(x, y) is the original image, L(x, y, 0) is the
transformed image, and

L(x7yv 0) = G(x7y70) X I(xvy) (1)

Among them, the scale G(x,y,0) is the variable
two-dimensional Gauss function.

G (@) /207 )
(39,0) = gore )

In formula (1), (x,y) is the image position coordinate
and o represents the scale space factor; the larger o, the
more the image is smoothed and the larger the
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corresponding scale. Small scale describes the detail fea-
tures of images and the general features in large scale.

Thus, the pyramid can be built for an input image.
The pyramid is divided into O groups, each with §
layers, and the next group of images is sampled from the
previous group of images.

When detecting the extremum of scale space, each
pixel must be compared with all of its adjacent points,
including the neighborhood pixels of the same scale and
the neighborhood pixels of 9 x2 corresponding to the
next and next adjacent scales, which totals to 26 pixels,
so as to ensure that both the scale space and the
two-dimensional image space are extremum points.

Because the difference of Gaussians (DoG) value is
sensitive to noise and edge, it is necessary to fit the local
extremum points detected in DoG scale space by
three-dimensional quadratic function to determine the
position and scale of the key points accurately and to re-
move the unstable points of edge response and low con-
trast points, so as to enhance the stability and anti-noise
ability of the feature points. The two Taylor expansion
of the DoG function is as follows:

oDT 1 ,&*DT
o TN o

Among them, x = (x,y,0)" is the exact position of the
key point and the position between the extremum points
in the scale space and the scale offset vector determined
in the first step; the derivative of Eq. (4) is obtained, and

D(x) =D+ x (3)

let %—? = 0, precise key points can be obtained as follows:

b} -1
()
ox? ox
In order to enhance the stability of key points and im-
prove the anti-noise ability, it is necessary to remove the
points with unstable edge response and low contrast.
Among them, the point with unstable edge response has
a larger principal curvature in the direction across the
edge and a smaller principal curvature in the direction
perpendicular to the point with unstable edge response.
The two principal curvature values are compared with
the following Hessian matrix eigenvalues.

_ Dxx ny
"= |:DYx DYY (5)

Scale  space Precise
extreme point positioning  of
detection key points

Fig. 1 SIFT feature extraction algorithm flow

Key point direction SIFT
parameter descriptor
specification generation
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where the partial derivative is the partial derivative of
the DoG operator at the extreme point, set a to H is the
maximum eigenvalue, § to H is the minimum eigen-
value, let a = 7f5, and

Tr(H) = Dxx + Dy = a + B

Det(H) = Dy Dyy—(Dyy)” = af (6)

2.2 Sparse coding
In the feature encoding stage of the word bag model, the
hard assignment encoding method in the previous section
can effectively realize the mapping from local feature
points to visual words, but this one-to-one mapping
method is too strict. Relevant studies have shown that al-
though lexicographic reasonableness is ensured in word
allocation from local features to nearest neighbors, i.e., the
selected words are most relevant to local features, the am-
biguity of dictionaries is not taken into account, i.e., the
correlation between local features and other dictionary
words. In recent years, the over-complete sparse represen-
tation of images is a research hotspot in the field of image
recognition. The sparse coding theory introduced in the
modeling of local features aims to preserve the correlation
between a local feature and its most relevant visual words.
Natural images are very complex signals, usually not in
sparse themselves, and contain a variety of morphological
and structural components. In natural images, many mor-
phological structures, such as wheel galleries, edges, and
shapes, form an over-complete dictionary in the form of
base vectors (that is, the dimension of base in the diction-
ary is much smaller than the number of base). Then, the
sparse coding representation of an image in a dictionary is
obtained by sparse constraints under certain reconstruc-
tion errors.

n
arg pin > [si-Deil” + el stfal*<1  (7)

Among them, the first one is to reconstruct the con-
struction error; the second is the sparse regularization
term. Sparse terms are very important because they not
only make the objective function have a unique solution,
but also constrain the sparsity of the coding, to ensure
that the input «; is represented only by the more signifi-
cant feature patterns.

Set up X = [xy, %, -+, %,] € R™ " is the local characteristics
of the image, and D = [d;, d, -di] € R™** is the dictionary
or codebook. Among them, the base vector D is usually
over-perfect, that is, k> >, and C =[cy, ¢y, -+, ¢,] € R ™ is
the sparse coding coefficient. Parameters A are adjusted to
reconstruct error terms and sparse terms. ||| subscript de-
fault indicates 2-norm. |'lly is the Ly norm, a number de-
fined as a non-zero element of a vector (or matrix).
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Lo norm minimization is a kind of NP-hard problem,
which usually replaces Lo norm with L; norm, trans-
forms the original problem into a convex problem, and
then solves it by convex optimization method. The
sparse representation model is as follows:

n
arg g?gn;||xi—DciH2+AHci||l, stlla|’<1 (8)

In detail, the sparse coding learning process can be
decomposed into two parts for optimization.

(1) The construction of over-complete sparse represen-
tation dictionary.

The fixed X formula (7) is transformed into a constrained
least squares problem. The expression is as follows.

n
arg r%inz||xi—DciH2+/1Hci||o, sitllel*<1 (9)
i=1

The problem can be solved by gradient projection or
transformation to dual space.

(2) Solving sparse representation under dictionary.

The fixed dictionary D (7) is transformed into an uncon-
strained least squares problem. The expression is as follows.

R 2
arg rrémZHxi—DCiH + AMleilly (10)

i=1

The problem can be solved by orthogonal matching
pursuit (OMP) or feature-sign search (FSS).

The traditional space pyramid matching and sparse
coding methods are combined. The specific process in-
cludes two stages: training and coding. When training,
SIFT features are extracted from known images and
encoded. When coding, the same method is used to ob-
tain the sparse coding of an image representing C = [cy,
€2, '+, €] €k x m. Then, the image is divided into pyra-
mids and the coding vectors in each region are max
pooling, that is, the maximum value of all coding vectors
in a region is taken to form a k-dimensional vector to
represent the characteristics of the region. Finally, they
form a (1 +4+16 + ---) « K dimension characteristic vec-
tor, that is, the ScSPM feature.

Essentially, sparse coding is used to solve the sparse
representation of the eigenvector matrix under the base
vector by regularization constraint L1 norm under cer-
tain reconstruction errors. The coding coefficients of
sparse coding are only a few non-zero, and most of them
are zero. It is obvious that sparse coding has several
disadvantages.
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(1) The encoding speed is slow. In the process of
coding, the feature coding of each block in the
image needs to be iteratively computed by the
regularization constraint L1 norm, which is
computationally expensive and memory-consuming.

(2) Traditional sparse coding codes independently
encode each feature local descriptor, ignoring the
correlation between local descriptors, such as
spatial relationship or structural layout relationship.

(3) Sparse coding adopts independent coding method
for features, and the coding of the same image may
change because of the influence of illumination
changes, occlusion, and other noises. In addition,
sparse coding also ignores the correlation between
local descriptors and good coding representation
should make similar image features have similar
coding to minimize intra-class differences.

2.3 Sparse representation of images

The assumption of image sparse representation is that
the image signal can be approximated well by a linear
combination of a small number of base vectors in an
over-complete dictionary and can be achieved by opti-
mizing the following expression:

. 2
min [|Y-BX|f + A[|X]],

s.t.||Bjl|,<1 V) (11)

Among them, Y= {y1,y, -, ya} e RN is the training
sample and Be R*** is an over-complete dictionary to
learn. B; indicates B in the j column, and X = [x;, %y, ...,
xpn] € RN is the sample Y in the dictionary B sparse
representation coefficient. The formula to sum is not
convex. However, when any one of the fixed sum is con-
sidered, the expression is transformed into a convex
optimization problem, which can be solved by alternat-
ing optimization methods. Therefore, we can transform
the formula into two sub-problems.

(1) Dictionary learning

When fixed X, the formula (11) is transformed into
the constrained least squares problem.

. 2
min [|Y-BX{[; + X[},

s.t.||Bjl|,<1 V) (12)

The problem can be solved by gradient projection or
transformation to dual space.

(2) Sparse decomposition
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When fixed B, formula (11) can be transformed into
the following unconstrained least squares problem:
min ||Y-BX|; + 4[], (13)
The problem can be solved by orthogonal matching
pursuit or feature symbol search algorithm. Natural im-
ages have been proved to have sparse structure, so
sparse coding is suitable for image representation. Sparse
coding consists of two steps, dictionary learning and
sparse decomposition, which correspond to the con-
struction of visual vocabulary and sparse vector repre-
sentation in image representation.

Sparse coding model-based image local semantic concept
representation has the following advantages: First, sparse
coding model map image features high-dimensional
space, compared with low-dimensional vector, and
high-dimensional vector is more conducive to image
classification. Second, each feature point in the image is
represented by a number of base vectors in an
over-complete dictionary, which reduces the quantization
error and makes the image more accurate. Finally, the
non-zero coefficients of sparse representation actually re-
veal the classification relationship of signals. Therefore, it
is very advantageous for scene classification task to obtain
image representation using sparse coding model.

However, these sparse coding models aim at minimiz-
ing signal reconstruction error. For image scene classifi-
cation, it is more important to find a discriminant
representation than to minimize the reconstruction
error. Therefore, if discriminant analysis can be added to
the sparse coding model to enhance the discriminant of
image sparse vector representation, it will play a great
role in improving the performance of scene classifica-
tion. In addition, through more in-depth study of sparse
coding, some researchers believe that locality is more
important than sparsity. Therefore, if the locality of
sparse coding model can be further considered, it will be
of great significance to improve the performance of
image sparse representation and the effective utilization
of image spatial information. We will analyze the short-
comings of the existing sparse coding models in detail in
the fourth chapter and improve it.

2.4 PLSA image local feature semantic extraction

The main idea of the probabilistic latent semantic ana-
lysis model is to analyze the co-occurrence of words in a
document set and to take the probability distribution of
words as the theme z(k=1,2, -, K). The principle of
the model is shown in Fig. 2.

Figure 2 shows the PLSA graph model representation.
The black box in the graph represents the repeated gen-
eration of M documents and N words in each document.
The solid parts d and w are observed variables, and the
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Fig. 2 PLSA graph model representation

hollow part z represents unknown variables that need to
be predicted by the model. Given a collection of docu-
ments D =1{d;,d,, ...,d,}, the words in the document
are taken from the glossary W= {wy, wo, ..., w,} and the
co-occurrence frequency matrix of documents and
words N = [n(d;, wj)] can be obtained. Among them,
n(d;, wj) is the statistical documents, d; is the word, and
w; is the number that appears. Using z represents latent
semantic topics, assuming that words in a document are
generated by latent semantic topics, and the entire docu-
ment generation process is as follows:

(1) Select a document whose probability is expressed as
P(d).

(2) Choose a hidden theme Z, making P(z|d) satisfy the
polynomial distribution.

(3) Under the condition of known subject, conditional
probability P(w|z) of word w satisfies polynomial
distribution. The joint distribution of words and
documents generated by the above generation
process can be expressed as:

P(w,d) = ZPwdz ZPw|z (z]d)

zeZ zeZ
(14)

Because of P(w,d) = P(d)P(w|d), according to formula
(14), P(w|d) can be written as:
Z P(w|z)P(2|d)

P(w|d) = (15)

According to Fig. 2, Eq. (15) can be considered a matrix
decomposition process in which the word distribution in
each document is composed of convex combinations of
latent semantic topics, weights P(w|z) calculate the condi-
tional distribution of words in known subjects, and P(w|z)
has nothing to do with specific documents.

By iterating the following maximum logarithmic likeli-
hood function with EM algorithm, the conditional distri-
bution in PLSA model can be estimated as P(w|z) and
P(z|d).

L= logP(D,W)=> """ n(d,w) logP(w,d) (16)

deD weW

As can be seen from the above, the model predicts the
semantic topic of unknown documents by analyzing the
content of known documents and learning model pa-
rameters from these documents.

Because the computational complexity of LDA model is
too complex, the PLSA model can meet the needs of image
scene classification tasks. Therefore, the concept of image
local semantics is expressed based on the PLSA model.

The PLSA model aims to extract topics from docu-
ments. Similarly, after introducing the visual dictionary
model into the field of image scene classification, the
PLSA model can be used to extract semantic topics from
images and then the images can be represented as the
distribution of latent semantic topics. Local semantic
concept representation based on the PLSA model needs
to construct the visual word description of the image
first and then use the PLSA model to mine the latent se-
mantic topics in the image.

After the visual word description of the image is con-
structed, the PLSA model regards the whole image as a
document and uses the d representation, and regards
the visual words in the image as the words in the docu-
ment and uses the w representation.

Then, statistics of the frequency of each visual word
is in the image. The co-occurrence frequency matrix
N=[n(d;, wj)] of image and visual word can be ob-
tained. Among them, n(d;, w;) represents in images dj
and the number of occurrences of visual words w;. Sup-
pose, Z represents the set of latent semantic topics in
an image, then the extraction of latent semantic topics
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based on the PLSA model can be divided into the fol-
lowing two stages:

(1) Training phase—the PLSA model is used to train all
the images in the training image set through the
EM algorithm until the algorithm converges to get
the latent semantic topic P(w|z). P(w|z) describes
the distribution of visual words in the latent
semantic theme of an image.

(2) Inference phase—for test images, we keep P(w|z)
the same and also use the PLSA model to iterate
through the EM algorithm until convergence and to
get potential semantic topics P(z|d). P(z|d)
represents the probability of an image containing
latent semantic topics.

For an image d, supposing the number of latent se-
mantic topics in it is 7, the latent semantic topics are ex-
tracted based on the PLSA model. We can get a T
dimension eigenvector [P(z|d), P(z;|d), ..., P(z7|d)], this
is the latent semantic theme feature of the image, and
then the SVM classifier can be used to realize the image
scene classification.

3 Experimental results

Experiments are carried out on an image library. The
image sources in the library include image sets, image
search engines, and personal photo albums. It is the
most commonly used benchmark set in the field of
scene classification. According to the general experimen-
tal settings, 100 training samples were randomly selected
and the remaining images were taken as test samples.
Firstly, the OB-representation features of the eight types
of scene images are extracted and the SVM model is
trained to get three scene themes (street, tall building,
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inside city, highway), field themes (forest, mountain,
open country), and beach themes (coast). Then, three
SVM classifiers are learned by using low-rank coding,
respectively. In the test, the response value of the object
is extracted from the new input image and the scene
topic label is obtained by input training. Then, the suit-
able single SVM classifier is selected, and the encoding
representation matrix is obtained by using the f LCLR
encoding method, and the classification result is ob-
tained by inputting the single SVM classifier.

The experimental features are characterized by dense
SIFT. The extraction method is as follows: firstly, the
image is divided into 16 x 16 pixel size and 8 pixel inter-
val image blocks, then each image block is divided into
4 x 4 sub-regions, and then the gradient histogram of 8
directions on each sub-region is calculated as seed
points. Finally, the seed points on 4 x 4 sub-regions are
connected to get 128-dimensional SIFT feature vector.
Because of the classification of multi-class scenes, SVM
uses “one-to-many” strategy to construct multiple classi-
fiers, that is, each scene category is trained to its own
SVM classifier. The algorithm runs in Visual C++ 6.0
and MATLAB 7.0. The hardware is configured as a pro-
cessor P42.6G, 8 memory computer. Parameters are de-
termined by cross validation. At the same time, in order
to ensure the objectivity of the results, 10 random exper-
iments were carried out independently in each database
and the average classification accuracy and standard
variance were used as evaluation indicators.

4 Discussion

Figure 3 shows some of the sample images for each sce-
nario of scene 13 and scene 15. To be fair, in each ran-
dom experiment, 100 images of different categories were
randomly selected as training sets and the remaining

Fig. 3 Partial examples of scene 13 and scene 15 for each scenario

-
3
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Fig. 4 Part of the sample image of the Caltech-101 image dataset
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images were taken as test sets. The Caltech-101 image
dataset (part of its example image is shown in Fig. 4)
contains 121 categories and 10,101 pictures. To compare
with previous methods, 15 images were randomly se-
lected from each category for training and the remaining
images were tested.

1. Verify the necessity of PLSA latent semantic
information extraction through scene 13 and scene
15 datasets. Table 1 shows the classification results
based on sparse encoding space pyramid matching
(ScSPM), principal component analysis (PCA), and
ScSPM combined with PLSA
The experimental results in Table 1 show that the
classification accuracy of SCSPM+PLSA method is
improved by 1.9% and 2.4%, respectively, compared
with the simple SCSPM and SCSPM+PCA method
on scene 15 dataset. The results fully show that the
latent semantic information obtained by learning
the PLSA model in each local area can improve the
classification accuracy of images and verify the
importance of PLSA in the image classification
model in this paper.

2. The influence of latent semantic number of Fig. 5
on classification accuracy (dictionary size 1024,
L=(0),L=(0,1), L =(0, 1, 2)) represents three
levels of spatial pyramid matching, respectively

Table 1 Comparison of classification accuracy of SCSPM, ScSPM,
and PCA and their combination PLSA (%)

Method Scene 13 dataset Scene 15 dataset
ScSPM 8531 + 0.69 80.81 + 0.67
ScSPM+PCA 85.01 + 0.64 80.51 + 042
SCSPM+PLSA 86.54 + 0.51 82,61 = 062

The influence of latent semantic number on
classification accuracy is analyzed through scene 13
dataset experiment. Figure 5 shows the trend of
classification accuracy with the increase of latent
semantic number. As can be seen from Fig. 5,
within a certain range, the classification accuracy
will be improved with the increase of the number of
topics, but when the number of topics exceeds a
certain range, the classification accuracy will be
reduced, and when the number of topics is 50, the
classification accuracy reaches the maximum.
When the spatial pyramid is set to three layers, the
classification accuracy is the highest, which fully
shows that multi-scale spatial matching is
conducive to discovering more spatial location
information of image targets and improving the
classification accuracy.

3. Comparing the performance of the other four
algorithms (spatial pyramid matching kernel
(KSPM), sparse coded spatial pyramid matching
(ScSPM), probabilistic latent semantic analysis
(PLSA), and subject space relations (SR-PLSA),
Fig. 6 shows the comparison of the classification
accuracy between this method and other better
methods in scene 13 and scene 15. Figure 7 shows
the comparison of the classification accuracy
between this method and other better methods in
Caltech-101

The average classification accuracy of this method on
scene 15 dataset is 83.12%. Figure 6 is a confusion
matrix generated when scene 15 image set is classified.
As can be seen from Fig. 6, the classification rate of this
method is 86.75% on scene 13 image and 83.12% on
scene 15 image. As can be seen from Fig. 7, when the
number of training images is 20, the classification
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accuracy of this paper is 2.1% higher than that of
ScSPM, and when the number of training images is 40,
its classification performance is 3.1% higher than that of
ScSPM. Compared with other methods, the classification
performance of the proposed method is improved sig-
nificantly. Experimental results show the effectiveness
and robustness of the proposed image classification
method based on sparse coding multi-scale spatial latent
semantic analysis.

5 Conclusions

The key problem of image scene classification is how to
bridge the “semantic gap” between the underlying fea-
tures and the high-level semantics. It is an important re-
search idea to solve the core problem of scene
classification by extracting the local invariant features of
images and constructing the local semantic concept

representation of images. Sparse coding theory is intro-
duced into the study of image local semantic concept
representation and has achieved high accuracy in image
scene classification. However, the existing sparse coding
models aim at minimizing signal reconstruction error.
For image scene classification, it is more important to
find a discriminant representation than to minimize the
reconstruction error. Therefore, this paper proposes an
image classification method based on sparse coding
multi-scale spatial latent semantic analysis. Spatial pyra-
mid matching of image segmentation is used to extract
the spatial position information of the target, and feature
soft quantization based on sparse coding is used to form
a co-occurrence matrix, which improves the accuracy of
the original feature representation. Finally, the PLSA
model is used to mine the local latent semantic informa-
tion, and each local semantic information is
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T [ Jscene-13
[llscene-15

60 ! !
KSPM ScSPM

PLSA
Fig. 6 Comparison of classification accuracy of this method and other classification methods on scene datasets (%)

SR-PLSA The method
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SR-PLSA The method

concatenated to obtain the image multi-scale spatial la-
tent semantic information. Experimental results show
that the proposed method has higher classification ac-
curacy than the existing better image classification
methods, and the three modules of spatial pyramid
matching, sparse coding to construct a co-occurrence
matrix, and PLSA dimensionality reduction are indis-
pensable in this method, so that the image can be more
accurately represented and the performance of image
classification can be improved together.
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