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Abstract

Blind image quality assessment (BIQA) aims to use objective measures for predicting the quality score of distorted
images without any prior information regarding the reference image. Several BIQA techniques are proposed in
literature that use a two-step approach, i.e., feature extraction for distortion classification and regression for predicting
the quality score. In this paper, a three-step approach is proposed that aims to improve the performance of BIQA
techniques. In the first step, feature extraction is performed using existing BIQA techniques to determine the
distortion type. Secondly, features are selected for each distortion type based on the mean value of Spearman rank
ordered correlation constant (SROCC) and linear correlation constant (LCC). Lastly, distortion-specific features are used
by regression model to predict the quality score. Experimental results show that the predicted quality score using
distortion-specific features strongly correlates with the subjective quality score, improves the overall performance of
existing BIQA techniques, and reduces the processing time.

Keywords: Blind image quality assessment, Feature extraction, Feature selection, Classification, Support vector
regression

1 Introduction
In recent years, multimedia content has become a signif-
icant part of our lives. Delivery of images at the highest
quality to the end user is an essential requirement for
many modern imaging applications. Therefore, estima-
tion of perceived image quality by humans, also known as
subjective evaluation has gained importance. Subjective
evaluation is used as a benchmark for image quality
assessment (IQA), but the constraint of time and the
tedious nature of the task make it unsuitable for many
applications [1]. IQA techniques aim to replicate the
behavior of human visual system to evaluate the quality
score of images using objective parameters or measures.
Objective IQA is divided into full reference (FR), reduced
reference (RR), and blind IQA techniques. FR-IQA tech-
niques require the pristine version of the image to predict
the quality score of images [2–10]. RR-IQA techniques
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do not require the whole reference image but some infor-
mation extracted from the reference image to perform
IQA [11–17]. Techniques that evaluate the image quality
score without the use of any prior information of reference
image are called blind image quality assessment (BIQA)
techniques [1]. BIQA techniques usually follow a two-step
approach. Firstly, the distortion type affecting the image is
determined using extracted features and then regression
is applied to predict the quality score of the image.
Most BIQA techniques extract features, which are

altered in the presence of distortion [18–37]. Features
are extracted either in spatial domain, wavelet domain,
and discrete cosine transform (DCT) domain or using
edge information of image. Discrete wavelet transform
and complex wavelet transform have been used in [38]
and [24], respectively, to extract statistical features from
distorted images to determine the distortion type and
predicting the quality score. The ability of wavelet trans-
forms to extract high frequencies can be exploited for edge
analysis and IQA. In [31], curvelet transform is utilized
to extract statistical features for the purpose of BIQA,
which has rich information of scale and orientation in
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Fig. 1 Block diagram of the proposed three-step BIQA approach

the image. Blind image integrity notator [39], which is
an extended version of [40] has used DCT-based features
along with the Bayesian inference model for predicting
the quality score of the image. It requires no statistical
model and utilizes sampled DCT coefficients for IQA.
Natural scene statistics (NSS)-based features have been
extracted in spatial domain for the evaluation of image
quality score using luminance information [41]. It is sim-
ple and computationally less expensive since no transform
has to be computed. In [42], the collection of quality aware
features in a spatial domain are utilized for BIQA that
measures the deviation in statistical properties between
a distorted and natural images. In [43], two-dimensional
features called atoms are introduced, which used sparse
representation of coefficients in feature set to assess the
quality of images. Shearlet transform has been used in [44]

tomodel the NSS characteristics of images. Natural undis-
torted parts of the image are compared with the distorted
parts to assess the quality score. Laplacian of Gaussian and
Gaussian magnitude along with support vector regres-
sion (SVR) are used in [30] for the predicting the quality
score of images using edge information. In [45], spa-
tial and spectral entropy that captures information over
different scales are used to compute features for the eval-
uation of quality score. Since, utilizing entropy as features
to perform FR-IQA showed promising results; therefore,
entropy was utilized as features for BIQA. Recently, BIQA
is performed on multiple distorted images by augment-
ing the features extracted using blind image quality index
(BIQI) [46], blind/referenceless image spatial quality eval-
uator (BRISQUE) [41], and sparse representation for nat-
ural scene statistics (SRNSS) [47] and selecting the top

a b
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Fig. 2 Normalized histogram of features values averaged over all the distortion type for selected BIQA techniques. a BRISQUE, b GM-LOG, c BLIINDS
II, d SSEQ, e DIIVINE, and f CurveletQA, using original, all features, and after proposed feature selection algorithm
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three features based on the average value spearman rank
ordered correlation constant (SROCC) and linear correla-
tion (LCC) [48]. But the performance of feature selection
in [48] is only limited to the LIVE multiply-distorted
image database and features extracted in [42, 46, 47]. The
performance of [48] cannot be generalized to other BIQA
techniques.
All of the aforementioned BIQA techniques employ the

same set of features for each distortion type to evaluate
the quality score of images. Each distortion type affects
individual BIQA feature in a distinct manner because
every type of distortion exhibits different characteris-
tics, e.g., the Gaussian blur affects the edge information
in an image, whereas JPEG distortion introduces blocki-
ness. Therefore, the same set of features used for every
distortion type will not yield the optimum results. This
paper introduces a distortion-specific feature selection

algorithm, which is based on Spearman rank ordered
correlation constant (SROCC) and linear correlation con-
stant (LCC) scores. All features having SROCC and LCC
score computed over individual features, greater than the
mean value of SROCC and LCC, are selected for the spe-
cific distortion type. The major contributions of this work
are as follows:

1 A new SROCC- and LCC-based feature selection
algorithm is proposed, which can be utilized with any
two-step BIQA framework.

2 The proposed algorithm improves the performance
of BIQA techniques in terms of better correlation of
predicted quality score with the mean observer score
(MOS) and reduces the processing time.

3 The proposed three-step approach is robust, database
independent, and applicable in real-time scenarios.

Fig. 3 Performance comparison of proposed algorithm for each distortion on TID2013 database (median SROCC), a BRISQUE, b GM-LOG, c BLIINDS
II, d SSEQ, e DIIVINE, and f CurveletQA, using original, all features, and after proposed feature selection algorithm
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The rest of the paper is organized as follows. Section 2
explains the proposedmethodology along with distortion-
specific feature selection algorithm. Section 3 presents
the experimental results for six different BIQA techniques
followed by the conclusion in Section 4.

2 Proposedmethodology
The proposed methodology for BIQA is shown in Fig. 1,
which follows a three-step approach, i.e., feature extrac-
tion, distortion-specific feature selection, and support
vector regression, in contrast to the traditional two-step
approach that is feature extraction and regression. The
details of each step are as follows.

2.1 Feature extraction for BIQA
In the first step, the N number of features F = f1, · · ·, fN
are extracted using existing BIQA techniques. Since

noise in the image usually disrupts the high-frequency
information in the image such as edges and corners,
therefore, established BIQA techniques usually extract
features in spatial and transform domains that model
the deviation in characteristics of distorted images in
comparison to natural images. To validate the per-
formance of the proposed feature selection algorithm
over features extracted in different domains, six BIQA
techniques are selected that extract features in spa-
tial, DCT transform, wavelet transform, curvelet trans-
form, and spectral domains. All the selected BIQA
techniques follow a two-step approach, i.e., feature
extraction and distortion classification, followed by the
computation of the quality score using SVR. The six
BIQA techniques include BRISQUE [41], gradient mag-
nitude and Laplacian of Gaussian-based IQA (GM-LOG)
[30], blind image integrity notator based in DCT statistics

Fig. 4 Performance comparison of proposed algorithm for each distortion on LIVE database (median SROCC), a BRISQUE, b GM-LOG, c BLIINDS II,
d SSEQ, e DIIVINE, and f CurveletQA, using original, all features, and after proposed feature selection algorithm
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II (BLIINDS II) [39], spatial-spectral entropy-based
quality (SSEQ) [45], distortion identification-based image
verity and integration evaluation (DIIVINE) [38], and
curvelet quality assessment (CurveletQA) [31]. The
details of BIQA techniques used for feature extraction are
as follows:

2.1.1 Blind/referenceless image spatial quality evaluator
(BRISQUE)

BRISQUE [41] extracts features in the spatial domain by
utilizing locally normalized luminance coefficients and
their products over two scales. Local mean displace-
ments are removed to normalize the local variance of
log contrast, which has de-correlating properties.Eighteen
features are extracted over each scale using variance,
shape, mean value, right variance parameters for horizon-
tal, left variance,vertical, and diagonal pairwise products.

BRISQUE uses a total of 36 features for the evaluation of
quality score.

2.1.2 Gradientmagnitude and Laplacian of
Gaussian-based IQA (GM-LOG)

GM-LOG [30] uses the joint statistical relationship
between the local contrast features of Laplacian of
Gaussian (LoG) and gradient magnitude (GM) for BIQA.
An adaptive procedure called joint adaptive normalization
based on gain control and divisive normalization models
on the local neighborhood is used to remove the spatial
redundancies of GM and LOG coefficients. The technique
follows a two-step approach, i.e., identification of dis-
tortion type and quality score prediction. A total of 40
features are extracted, which describe the structural infor-
mation of the images for assessing the qualityusing SVR.

Fig. 5 Performance comparison of proposed algorithm for each distortion on CSIQ database (median SROCC), a BRISQUE, b GM-LOG, c BLIINDS II,
d SSEQ, e DIIVINE, and f CurveletQA, using original, all features and after proposed feature selection algorithm
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Fig. 6 Overall performance comparison of proposed algorithm on different BIQA techniques for LIVE database, a SROCC, b LCC, c KCC, d RMSE

2.1.3 Blind image integrity notator based in DCT statistics II
(BLIINDS II)

BLIINDS II [39] extracts NSS features in DCT domain
on 17 × 17 patches of image. Each DCT block is divided
into three directional regions and Gaussian fitting is

performed on each region. BLIINDS II extracts four
types of features, namely, coefficients of frequency varia-
tion, generalized energy subband ratio measure, Gaussian
model shape parameters, and orientation model-based
features to obtain 24 features. These features are utilized

Fig. 7 Overall performance comparison of proposed algorithm on different BIQA techniques for CSIQ database, a SROCC, b LCC, c KCC, d RMSE
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Fig. 8 Overall performance comparison of proposed algorithm on different BIQA techniques for TID2013 database, a SROCC, b LCC, c KCC, d RMSE

with a Bayesian inference model for predicting the image
quality.

2.1.4 Spatial-spectral entropy-based quality (SSEQ)
SSEQ [45] extracts features at three scales of image res-
olution. To avoid aliasing, bi-cubic interpolation is used

during down sampling. Each image is partitioned into
subregions consisting of 8 × 8 pixels. Spatial and spec-
tral entropy in DCT domain are computed for each
patch. The spatial and spectral entropies are sorted
in an ascending order, and 60% of the central ele-
ments are selected, which constitute a feature vector of

Fig. 9 Overall performance comparison of proposed algorithm on different BIQA techniques for wild in the LIVE challenge database, a SROCC,
b LCC, c KCC, d RMSE
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length 12 to predict the quality score. These features are
used as input to a pre-trained support vector classifica-
tion (SVC) for identifying the distortion type affecting
the image and then given as input to a SVR model for
predicting the quality score.

2.1.5 Distortion Identification-based Image Verity and
IntegratioN Evaluation (DIIVINE)

DIIVINE [38] uses a loose discrete wavelet transform to
compute five groups of statistical features over two scales
and six orientations by using steerable pyramids and sta-
tistical distribution curve fitting. Five groups of features,
namely scale and orientation selective features, orienta-
tion selective statistics, correlation across scales, spatial
correlation, and across orientation statistics constitute a
feature vector of length 88. The feature vector is given as
input to the SVC for the determination of distortion type,
and SVR is utilized for the computation of image quality
score.

2.1.6 Curvelet Quality Assessment (CurveletQA)
CurveletQA [31] extracts three types of features from
curvelet subbands. Four NSS features are computed on
the finest scale of the curvelet subbands using asymmet-
ric Gaussian distribution, two features are extracted on
the finest detail layer using the mean value of kurto-
sis and the ratio of sample mean and standard deviation
of the non-cardinal orientation energies and six features
are computed for scalar energy distribution by taking the

difference of mean values of logarithmic magnitude of
subbands at adjacent layers. These 12 features are used for
the prediction of distortion type using SVC and prediction
of quality score using SVR respectively.
The extracted features using BIQA techniques are given

as input to the SVC to determine the distortion type D.

2.2 Distortion-specific feature selection
Natural images are highly structured, which possess prop-
erties that are affected when distortion is introduced in an
image. These properties are known as natural scene statis-
tics (NSS) [22]. BIQA techniques that utilize NSS try to
assess the image quality based on the deviation between
the NSS properties of distorted and natural images.
The features that can effectively represent the devia-
tion between the NSS properties of distorted and natural
images show better performance, and they can predict the
image quality more accurately. The main objective of this
work is to introduce a generalized approach for distortion-
specific feature selection that aim to improve the perfor-
mance of existing BIQA techniques using features that
can effectively represent the deviation in characteristics
of an images from that of a natural image for a particular
distortion type, which is also validated by Fig. 2. There-
fore, second step involves selection of distortion-specific
features based on SROCC and LCC score represented as
FD = {f1, · · ·, fM}, where M ≤ N . Generally, SROCC and
LCC are utilized to assess the similarity between the MOS
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and the quality score predicted using BIQA techniques. A
value close to 1 suggests a superior performance. There-
fore, we select those features that have individual SROCC
and LCC scores greater than the mean SROCC and mean
LCC computed over individual features. The selected fea-
tures have SROCC and LCC values closer to 1 resulting
in enhancement of the prediction score. SROCC and LCC
score is computed for each individual feature as,

SROCC = 1 −
6

T∑

i=1
d2i

T
(
T2 − 1

) ,
(1)

where di is the difference between paired ranks and T is
the total number of samples, and

LCC =

T∑

i=1
(xi − x̄)(yi − ȳ))

√
T∑

i=1
(xi − x̄)2

√
T∑

i=1
(yi − ȳ)

, (2)

where xi and yi are the ith instance in first and sec-
ond dataset, respectively, and x̄ and ȳ are mean values of
datasets x and y, respectively. To perform feature selec-
tion, SROCCi and LCCi, for each individual feature Fi
belonging to a BIQA technique, is computed. The pre-
dicted quality score using each individual feature is cal-
culated using a pre-trained SVR model. Eighty percent of
images in the dataset are used to train the SVR model,
and testing is performed using the remaining 20% images.
Mean score of SROCC (μS) and mean score of LCC
(μL) computed over 1000 iterations are utilized for select-
ing distortion-specific features FD. The proposed feature
selection approach for BIQA is presented as Algorithm 1.

2.3 Support vector regression
In the third step, selected features FD by Algorithm 1 are
given as input to SVR for the prediction of quality score.
Each distortion-specific regression model have different
features as input. SVR is given as,

ψ(FD) = αβ(FD) + b, (3)

where FD is the input feature vector, α is the weight con-
stant, β(·) is the feature space, and b is the bias value.

3 Experimental results and discussion
The proposed methodology is evaluated on four IQA
databases, i.e., LIVE [49], CSIQ [50], TID2013 [51],
and LIVE in the wild image quality challenge database
[52]. LIVE database contains 779 images and five dis-
tortion types, namely fast fading (FF), Gaussian blur
(GB), JPEG2000 compression (JP2KC), JPEG compres-
sion (JPEG), and white noise (WN). The CSIQ databases

Algorithm 1:Distortion-specific feature selection for
BIQA
Input :
1 BIQA features F = f1, · · ·, fN of all images
2 Distortion type D.
3 MOS score of each image.

Output: Distortion-specific features FD = f1, · · ·, fM
1 for i=1 to N do
2 Initialize to zero
3 S = Array of thousand elements
4 L = Array of thousand elements
5 Smedian = Array of N elements
6 Lmedian = Array of N elements
7 for j=1 to 1000 do
8 Randomly Select
9 80% training images

10 20% testing images
11 Q = Predicted quality score using SVR
12 S(1, j) = SROCC(MOS,Q) using Eq. (1)
13 L(1, j) = LCC(MOS,Q) using Eq. (2)
14 end
15 Smedian(1, i) = median(S)
16 Lmedian(1, i) = median(L)
17 end
18 μS = mean(Smedian)
19 μL = mean(Lmedian)
20 ind = 1;
21 for k = 1 to N do
22 if Smedian(1, k) ≥ μS and Lmedian(1, k) ≥ μL then
23 FD(1, ind) = F(1, k);
24 ind + +;
25 end
26 end
27 return FD;

consists of 900 images and six distortion types, i.e., GB,
JP2KC, JPEG, WN, global contrast (GC), and pink noise
(PN). TID2013 database consists of 3000 images and 24
distortion types.
Figure 2 shows the normalized histograms of features

averaged over all the distortion types and three databases,
i.e., LIVE, TID2013, and CSIQ. Most BIQA techniques
assess the quality of a distorted image by measuring the
deviation of image characteristics from the characteris-
tics of non-distorted images. Therefore, BIQA techniques
should performwell if the deviation in the characteristic of
images is represented by the extracted features. It can be
observed that the deviation in characteristics of features of
the distorted images are increased from the non-distorted
image when the proposed feature selection is performed
as compared to using all the features.
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3.1 Performance comparison
For estimation of results, support vector machine requires
pre-trained models for determining the distortion type
and prediction of quality score. Therefore, we divide the
dataset into two non-overlapping disjoint sets, i.e., train-
ing and testing. Eighty percent of the images are selected
for training, whereas 20% of images are utilized for test-
ing. The training and testing is repeated 1000 times with
random disjoint set of images to predict the quality score.
The SVR parameters c and γ used in this paper are the
same as those mentioned by respective BIQA techniques.
Median scores of SROCC, LCC, Kendall correlation

constant (KCC), and root mean squared error (RMSE) are
reported for the performance evaluation of the proposed
approach. The SROCC, LCC, and KCC scores measure
the similarity between mean observer score and predicted
quality score, whereas RMSE measure the error.
Figures 3, 4, and 5 show the performance of the pro-

posed distortion-specific feature selection algorithm for
selected BIQA techniques over each distortion type for
TID2013, LIVE, and CSIQ IQA databases, respectively.
The horizontal axis in Fig. 3 represents the distortion
type label as given in the TID2013 database. It is evi-
dent from the results that the distortion-specific feature
selection algorithm improves the SROCC score for major-
ity of distortion types on selected BIQA techniques. It
can be observed from Fig. 3 that the proposed technique
consistently outranks the BIQA techniques and the pro-
posed algorithm shows better or at par performance on
15, 18, 14, 15, 14, and 17 out of a total of 24 distortion
types as compared to using all the features for BRISQUE
[41], BLIINDS II [39], GM-LOG [30], SSEQ [45], DIIVINE
[38], and CurveletQA [31], respectively, on the TID2013
database. Similarly, the proposed technique shows better
or at par performance on 4, 4, 4, 4, 3, and 4 out of a total of
five distortion types as compared to using all the features
for BRISQUE [41], BLIINDS II [39], GM-LOG [30], SSEQ
[45], DIIVINE [38], and CurveletQA [31], respectively, on
the LIVE database. On the CSIQ database, the proposed
technique shows better or at par performance on 6, 3, 4, 4,
6, and 3 out of a total of 6 distortion types as compared to
using all the features for BRISQUE [41], BLIINDS II [39],
GM-LOG [30], SSEQ [45], DIIVINE [38], and CurveletQA
[31], respectively.
Figures 6, 7, 8, and 9 shows the overall performance

comparison of each BIQA technique along with the
proposed distortion-specific feature selection algorithm
and feature selection algorithm given in [48] on four
IQA databases, i.e., LIVE [49], CSIQ [50], TID2013 [51],
and LIVE, in the wild image quality challenge database
[52], respectively. It can be observed that the proposed
distortion-specific feature selection algorithm improves
the overall performance of all the six state-of-the-art
BIQA techniques as compared to using all the features,

and by using feature selection algorithm of [48], the per-
formance is worse than the original BIQA technique. The
proposed algorithm also improves the performance of
BIQA techniques on real images. The performance on
LIVE in the wild image quality challenge database shows
that the proposed algorithm can be used in real-time sce-
narios with real images taken in daylight and night time
conditions.
The performance of proposed algorithm can be vali-

dated by Fig. 10 that represents the comparison between
the performance using all features against the proposed
feature selection algorithm in terms of box plots for each
BIQA technique. Box plots measure the dispersion or
variance in data utilizing interquartile range and standard
deviation represented by a five-number summary that
includes the minimum value, first quartile (Q1), median
value, third quartile (Q3), and maximum value of samples.
The interquartile range is computed using the difference
between Q1 and Q3. Q1 in box plots denotes the 25 per-
centile of the SROCC values, i.e., 25% of the SROCC
values lie below Q1, and Q3 denotes the 75 percentile
of SROCC values, i.e., 75% SROCC values lie below Q3.
The box plots are computed for SROCC scores computed
over 1000 runs averaged over all the IQA databases. It can
be observed that the predicted quality score using BIQA
techniques shows higher correlation with MOS when fea-
ture selection is performed. The interquartile range of the
box plot for SROCC is reduced when feature selection is
applied, which depicts the reduction in standard deviation
of quality score prediction for BIQA techniques.
Table 1 shows the overall performance of the proposed

feature selection algorithm for cross-database validation
when training is performed on one database and testing
is performed on the other two databases. Four common
type of distortions, i.e., GB, JP2KC, JPEG,WN, are consid-
ered for cross database evaluation. It can be observed that
the proposed feature selection algorithm performs better
than using all the features over all the BIQA techniques
considered in this work. The cross database evaluation
results show that the proposed feature selection algorithm
is database independent and the proposed distortion-
specific feature selection algorithm improves the overall
performance of BIQA techniques irrespective of database.
Table 2 shows the comparison of the overall pro-

posed feature selection algorithm with BIQA techniques
in terms of number of features and total processing time
using a core i7 processor with 8 GB of RAM operat-
ing at 2.3 GHz. It can be observed that the proposed
distortion-specific feature selection algorithm outper-
forms all BIQA techniques by reducing the number of
features and improving the performance of existing BIQA
techniques. The proposed feature selection also shows
slight reduction in total processing time since reduction in
number of features leads to reduced training and testing
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Table 2 Reduction in number of features by using proposed
algorithm for different BIQA techniques on LIVE database

BIQA
technique

Total
number
of
features

Proposed feature selection Total processing time

FF GB JP2KC JPEG WN All
features

Proposed
feature
selection

BRISQUE
[41]

36 22 23 17 19 24 0.2215 0.2184

BLIINDS II
[39]

24 12 14 13 12 15 70.459 70.450

GM-LOG
[30]

40 22 20 24 24 25 0.2246 0.2180

SSEQ [45] 12 5 5 4 6 6 2.0634 2.0627

DIIVINE
[38]

88 50 39 38 33 57 23.083 23.038

CurveletQA
[31]

12 6 6 6 6 10 2.8965 2.8938

The italic values signify the least execution time for a particular BIQA technique
when all features are used or proposed feature selection is applied

time for the SVR. The time taken for computation of
SROCC and LCC score over individual features is not
added as it is performed once to indicate, which features
are selected, and therefore, it will be unfair to add it to the
processing time for prediction of quality score, each time
a test image is given as an input. The largest reduction in
processing time of 2.94% is obtained for GM-LOG, and
the lowest reduction of 0.013% is obtained for BLINDS-II
IQA technique.

4 Conclusion
BIQA techniques proposed in literature use the same set
of features for all the distortion types to evaluate the
quality score of images. Each distortion type affects the
individual BIQA feature in a distinct manner because each
type of distortion exhibits different characteristics. There-
fore, using the same set of features for all the distortion
type will not yield optimum results. This paper presents
a distortion-specific feature selection algorithm based on
mean values of SROCC and LCC scores for blind image
quality assessment. All features having individual SROCC
and LCC scores greater than the mean values of SROCC
and LCC computed over all the features are selected for
the specific distortion type. The proposed algorithm is
tested on six BIQA techniques and over most commonly
used four IQA databases. The experimental results show
that the proposed approach not only improves the per-
formance of existing BIQA techniques but also reduces
number of features that result in reduction of processing
time. The proposed distortion-specific feature selection
algorithm can be used with any BIQA technique that
follows a two-step approach. Results on cross database
evaluation show that the proposed algorithm is robust and

database independent. Furthermore, experimental results
on the LIVE in the wild image quality challenge database
shows that the proposed algorithm is also valid for real
images.

Abbreviations
BIQA: Blind image quality assessment; BLIINDS II: Blind image integrity notator
based in DCT statistics II; BRISQUE: Blind/referenceless image spatial quality
evaluator; CurveletQA: Curvelet Quality Assessment; DCT: Discrete cosine
transform; DIIVINE: Distortion Identification-based Image Verity and IntegratioN
Evaluation; FF: Fast fading; FR: Full reference; GB: Gaussian blur; GC: global
contrast; GM: Gradient magnitude; GM-LOG: Gradient magnitude and Lapl
acian of Gaussian-based IQA; IQA: Image quality assessment; JP2KC: JEPEG2000
compression; JPEG: JPEG compression; KCC: Kendall correlation constant; LCC:
Linear correlation constant; LOG: Laplacian of Gaussian; MOS: Mean observer
score; NSS: Natural scene statistics; PN: pink noise 301; RMSE: root mean
squared error; RR: Reduced reference; SROCC: Spearman’s rank ordered
correlation constant; SSEQ: Spatial-spectral entropy-based quality; SVC:
support vector classification; SVR: support vector regression; WN: white noise

Acknowledgements
There are no acknowledgements.

Funding
No funding is available for this work.

Availability of data andmaterials
Please contact author for data request.

Authors’ contributions
All authors have contributed equally towards this paper. IFN and MM came up
with the research idea for this work. IFN and WM performed the simulations.
MM, KK, and BJ analyzed the results. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Electrical Engineering and Computer Science, National University of
Sciences and Technology, Islamabad, Pakistan. 2Department of Computer
Engineering, University of Engineering and Technology, Taxila, Pakistan.
3Department of Computer Engineering, Bahria University, Islamabad, Pakistan.
4College of Information and Communication Engineering, Sungkyunkwan
University, Seoul, South Korea.

Received: 22 March 2018 Accepted: 13 December 2018

References
1. W. Hou, X. Gao, D. Tao, X. Li, Blind image quality assessment via deep

learning. IEEE Trans. Neural. Netw. Learn. Syst. 26(6), 1275–1286 (2015)
2. M. Oszust, Full-reference image quality assessment with linear

combination of genetically selected quality measures. PloS ONE. 11(6),
0158333 (2016)

3. H. Khosravi, M. H. Hassanpour, Model-based full reference image
blurriness assessment. Multimed. Tools Appl. 76(2), 2733–2747 (2017)

4. Z. Chen, J. Lin, N. Liao, C. W. Chen, Full reference quality assessment for
image retargeting based on natural scene statistics modeling and
bi-directional saliency similarity. IEEE Trans. Image Process. (2017)

5. A. Saha, Q. J. Wu, Full-reference image quality assessment by combining
global and local distortion measures. Signal Process. 128, 186–197 (2016)

6. Y. Ding, S. Wang, D. Zhang, Full-reference image quality assessment using
statistical local correlation. Electron. Lett. 50(2), 79–81 (2014)

7. S. Rezazadeh, S. Coulombe, A novel discrete wavelet transform
framework for full reference image quality assessment. Signal. Image
Video Process. 7(3), 559–573 (2013)



Nizami et al. EURASIP Journal on Image and Video Processing         (2019) 2019:19 Page 13 of 13

8. A. Nafchi, H. Z. Shahkolaei, R. Hedjam, M. Cheriet, Mean deviation
similarity index: efficient and reliable full-reference image quality
evaluator. IEEE Access. 4, 5579–5590 (2016)

9. J. Yang, Y. Lin, B. Ou, X. Zhao, Image decomposition-based structural
similarity index for image quality assessment. EURASIP J. Image Video
Process. 2016(1), 31 (2016)

10. G. Yang, D. Li, F. Lu, Y. Liao, W. Yang, RVSIM: a feature similarity method for
full-reference image quality assessment. EURASIP J. Image Video Process.
2018(1), 6 (2018)

11. Y. Liu, G. Zhai, K. Gu, X. Liu, D. Zhao, W. Gao, Reduced-reference image
quality assessment in free-energy principle and sparse representation.
IEEE Trans. Multimedia. 20, 379–391 (2017)

12. D. Liu, F. Li, H. Song, Regularity of spectral residual for reduced reference
image quality assessment. IET Image Processing. 11, 1135–1141 (2017)

13. S. Golestaneh, L. J. Karam, Reduced-reference quality assessment based
on the entropy of DWT coefficients of locally weighted gradient
magnitudes. IEEE Trans. Image Process. 25(11), 5293–5303 (2016)

14. J. Wu, W. Lin, Y. Fang, L. Li, G. Shi, I. Niwas, Visual structural degradation
based reduced-reference image quality assessment. Signal Process.
Image Commun. 47, 16–27 (2016)

15. J. Wu, W. Lin, G. Shi, L. Li, Y. Fang, Orientation selectivity based visual
pattern for reduced-reference image quality assessment. Inf. Sci. 351,
18–29 (2016)

16. S. Bosse, Q. Chen, M. Siekmann, W. Samek, T. Wiegand, in Image Processing
(ICIP), 2016 IEEE International Conference On. Shearlet-based reduced
reference image quality assessment (IEEE, Piscataway, 2016),
pp. 2052–2056

17. Y. Zhang, T. D. Phan, D.M. Chandler, Reduced-reference image quality
assessment based on distortion families of local perceived sharpness.
Signal Process. Image Commun. 55, 130–145 (2017)

18. Q. Wu, H. Li, F. Meng, B. Ngan, K. N. Luo, C. Huang, B. Zeng, Blind image
quality assessment based on multichannel feature fusion and label
transfer. IEEE Trans. Circ. Syst. Video Technol. 26(3), 425–440 (2016)

19. Q. Li, W. Lin, J. Xu, Y. Fang, Blind image quality assessment using statistical
structural and luminance features. IEEE Trans. Multimedia. 18(12),
2457–2469 (2016)

20. W. Lu, T. Xu, Y. Ren, L. He, Statistical modeling in the shearlet domain for
blind image quality assessment. Multimedia Tools Appl. 75(22),
14417–14431 (2016)

21. Y. Zhang, J. Wu, X. Xie, L. Li, G. Shi, Blind image quality assessment with
improved natural scene statistics model. Digit. Signal Process. 57, 56–65
(2016)

22. M. Nizami, I. F. Majid, H. Afzal, K. Khurshid, Impact of feature selection
algorithms on blind image quality assessment. Arab. J. Sci. Eng. 43, 1–14
(2017)

23. S. Du, Y. Yan, Y. Ma, Blind image quality assessment with the histogram
sequences of high-order local derivative patterns. Digit. Signal Process.
55, 1–12 (2016)

24. Y. Zhang, A. K. Moorthy, D. M. Chandler, A. C. Bovik, C-diivine: No-reference
image quality assessment based on local magnitude and phase statistics
of natural scenes. Signal Process. Image Commun. 29(7), 725–747 (2014)

25. G. Yang, Y. Liao, Q. Zhang, D. Li, W. Yang, No-reference quality assessment
of noise-distorted images based on frequency mapping. IEEE Access. 5,
23146–23156 (2017)

26. M. Nizami, I. F. Majid, K. Khurshid, in Applied Sciences and Technology
(IBCAST), 2017 14th International Bhurban Conference On. Efficient feature
selection for blind image quality assessment based on natural scene
statistics (IEEE, Piscataway, 2017), pp. 318–322

27. L. Li, Y. Yan, Z. Lu, J. Wu, K. Gu, S. Wang, No-reference quality assessment
of deblurred images based on natural scene statistics. IEEE Access. 5,
2163–2171 (2017)

28. K. Panetta, A. Samani, S. Agaian, A robust no-reference, no-parameter,
transform domain image quality metric for evaluating the quality of color
images. (IEEE, Piscataway, 2018)

29. H. R. Sheikh, A. C. Bovik, L. Cormack, No-reference quality assessment
using natural scene statistics: Jpeg2000. IEEE Trans. Image Process. 14(11),
1918–1927 (2005)

30. W. Xue, X. Mou, L. Zhang, X. Bovik, A. C. Feng, Blind image quality
assessment using joint statistics of gradient magnitude and Laplacian
features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

31. L. Liu, H. Dong, H. Huang, A. C. Bovik, No-reference image quality
assessment in curvelet domain. Signal Process. Image Commun. 29(4),
494–505 (2014)

32. D. Ghadiyaram, A. C. Bovik, Perceptual quality prediction on authentically
distorted images using a bag of features approach. J. Vis. 17(1), 32–32
(2017)

33. E. Siahaan, A. Hanjalic, J. A. Redi, Semantic-aware blind image quality
assessment. Signal Process. Image Commun. 60, 237–252 (2018)

34. B. Appina, S. Khan, S. S. Channappayya, No-reference stereoscopic image
quality assessment using natural scene statistics. Signal Process. Image
Commun. 43, 1–14 (2016)

35. W. Hachicha, M. Kaaniche, A. Beghdadi, F. A. Cheikh, No-reference stereo
image quality assessment based on joint wavelet decomposition and
statistical models. Signal Process. Image Commun. 54, 107–117 (2017)

36. T. Zhu, L. Karam, A no-reference objective image quality metric based on
perceptually weighted local noise. EURASIP J. Image Video Process.
2014(1), 5 (2014)

37. M. Shahid, A. Rossholm, B. Lövström, H.-J. Zepernick, No-reference image
and video quality assessment: a classification and review of recent
approaches. EURASIP J. Image Video Process. 2014(1), 40 (2014)

38. A. K. Moorthy, A. C. Bovik, Blind image quality assessment: from natural
scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12),
3350–3364 (2011)

39. M. A. Saad, A. C. Bovik, C. Charrier, Blind image quality assessment: a
natural scene statistics approach in the DCT domain. IEEE Trans. Image
Process. 21(8), 3339–3352 (2012)

40. M. A. Saad, A. C. Bovik, C. Charrier, A DCT statistics-based blind image
quality index. IEEE Signal Process. Lett. 17(6), 583–586 (2010)

41. A. Mittal, A. K. Moorthy, A. C. Bovik, No-reference image quality assessment
in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

42. A. Mittal, R. Soundararajan, A. C. Bovik, Making a “completely blind” image
quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

43. C. Zhang, J. Pan, S. Chen, T. Wang, D. Sun, No reference image quality
assessment using sparse feature representation in two dimensions spatial
correlation. Neurocomputing. 173, 462–470 (2016)

44. Y. Li, X. Po, L.-M. Xu, L. Feng, No-reference image quality assessment using
statistical characterization in the shearlet domain. Signal Process Image
Commun. 29(7), 748–759 (2014)

45. L. Liu, B. Liu, H. Huang, A. C. Bovik, No-reference image quality assessment
based on spatial and spectral entropies. Signal Process. Image Commun.
29(8), 856–863 (2014)

46. A. K. Moorthy, A. C. Bovik, A two-step framework for constructing blind
image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

47. L. He, D. Tao, X. Li, X. Gao, in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference On. Sparse representation for blind image
quality assessment (IEEE, Piscataway, 2012), pp. 1146–1153

48. Y. Lu, F. Xie, T. Liu, Z. Jiang, D. Tao, No reference quality assessment for
multiply-distorted images based on an improved bag-of-words model.
IEEE Signal Process. Lett. 22(10), 1811–1815 (2015)

49. H. R. Sheikh, M. F. Sabir, A. C. Bovik, A statistical evaluation of recent full
reference image quality assessment algorithms. IEEE Trans. Image
Process. 15(11), 3440–3451 (2006)

50. E. C. Larson, D. M. Chandler, Most apparent distortion: full-reference
image quality assessment and the role of strategy. J. Electron. Imaging.
19(1), 011006–011006 (2010)

51. N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B.
Vozel, K. Chehdi, M. Carli, F. Battisti, et al, Image database tid2013:
Peculiarities, results and perspectives. Signal Process. Image Commun. 30,
57–77 (2015)

52. D. Ghadiyaram, A. C. Bovik, Massive online crowdsourced study of
subjective and objective picture quality. IEEE Trans. Image Process. 25(1),
372–387 (2016)


	Abstract
	Keywords

	Introduction
	Proposed methodology
	Feature extraction for BIQA
	Blind/referenceless image spatial quality evaluator (BRISQUE)
	Gradient magnitude and Laplacian of Gaussian-based IQA (GM-LOG)
	Blind image integrity notator based in DCT statistics II (BLIINDS II)
	Spatial-spectral entropy-based quality (SSEQ)
	Distortion Identification-based Image Verity and IntegratioN Evaluation (DIIVINE)
	Curvelet Quality Assessment (CurveletQA)

	Distortion-specific feature selection
	Support vector regression

	Experimental results and discussion
	Performance comparison

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

