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Abstract

Time series remote sensing image is an important resource for dynamic monitoring of resources and environment,
and its abundant time spectrum information can be used to characterize the dynamic change of vegetation
coverage. This paper proposes a comprehensive clustering and pixel classification method for extracting the
vegetation dynamics based on time series Landsat normalized difference vegetation index (NDVI). This
method uses the time-division algorithm for fitting time-series NDVI firstly. And the Markov random field
optimized (MRF) semi-supervised dynamic time warping (DTW) kernel fuzzy c-means clustering was constructed. Then
the MRF-optimized semi-supervised DTW-kernel fuzzy c-means clustering was combined with the 1-nearest neighbor
(1INN) DTW pixel classification to realize the extraction of vegetation dynamics. Shengli Opencast Coal Mine in The Xilin
Gol Grassland was taken as the study area to analyze the applicability of the different classification methods. The results
showed the fusion algorithm of the MRF-Semi-GDTW-FCM and TNN-DTW generates accurate classification results with
the overall accuracy of 93.8806% and Kappa coefficient of 0.9267, which were 1.7219, 0.0182, and 20.4080% and 0.2916

paper is not only simple but also accurate and effective.

higher than the clustering and pixel classification, respectively. Experiments proof that the method proposed in this
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1 Introduction

The study on changing processes of land use/land cover
is helpful to reveal the response characteristics of envir-
onmental factors to environmental change and human
intervention. Continuous tracking of dynamic changing
information of regional land cover can help reveal the
internal mechanism of land use change [1]. At present,
it is required that the monitoring of land use change not
only can provide the location and direction of the
change but also offer corresponding attribute informa-
tion to the change, namely effectively identifying the dy-
namic land-use category. The remote sensing technology
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is characterized in fast, macroscopic, and simultaneous
monitoring and provides an efficient and rapid technical
method for extracting land-use information. Remote sens-
ing time-series images are important resources for dy-
namic monitoring of resource and environment and their
rich time spectrum information can effectively represent
environmental dynamics [2, 3]. The original images are
transformed to construct exponential time series and their
time spectrums are used to characterize the land-use evo-
lution form, which can help reveal the inherent causes
and mechanisms of land-use evolution [1, 4].

The vegetation growth presents dynamic characteris-
tics due to complex changes of external environmental
factors. The time series of normalized difference vegeta-
tion index (NDVI), which are used to reflect the vegeta-
tion growth status, can effectively record their dynamic
process, and their time spectrum meticulously depict the
land-use evolution information and make it possible to
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identify dynamic vegetation information [5]. Compared
with the traditional two-phase image classification, the
image time-series analysis can improve the accuracy of
information extraction [6]. Huang et al. [7] used Landsat
historical data to express the specific spectral index of a
disturbance state to construct a time series and pro-
posed the Landsat time-series stacks-vegetation change
tracker algorithm (LTSS-VCT) for automatic mapping of
forest disturbances. Kennedy et al. [8] proposed that the
LandTrends time segmentation method was considered
to be able to identify the mutation points and trends in
the time series of the interannual time series. Verbesselt
et al. [9] proposed the breaks for additive season and
trend algorithm (BFAST) for real-time remote sensing of
ecological disturbance information. For the highly dis-
turbed coal mining area, Lei et al. [10] analyzed, with
the MODIS-NDVI time series, the temporal and spatial
evolution characteristics of vegetation under mining ac-
tion in Shendong Mining area. With the deepening of
research, many machine learning methods, such as C5.0
decision tree [11], random forest algorithm (RF) [12],
support vector machine (SVM) [13, 14], and fuzzy
c-means clustering [15], are used for extracting dynamic
information of the time-series images. Due to big
amount of image time-series data, the time spectrum in-
formation is susceptible to noise interference, so that the
data is subject to high uncertainty and is characterized
in seasonality, space-time autocorrelation, etc. [16, 17],
which limits the application of many time-series math-
ematical models, and the effective mining and classifica-
tion methods of image time-series information is still
faced with many challenges [18, 19]. The extraction of
existing time-series information is mostly based on the
pixel time series [20], but further studies are required
for the disturbance of vegetation phenological difference
in different years, the statistical dependence of neighbor-
hood pixel and category marking probability, the sensi-
tivity of similarity measurement, and how to improve
generalization ability of fuzzy classification.

At present, some countries have specially carried out
monitoring projects on vegetation disturbances. For ex-
ample, as part of the North American Carbon Program
project (NACP), the North American Forest Dynamics
project (NAFD) made use of Landsat images as the data
source and combined ground survey measures to monitor
forest disturbances and recovery conditions [21]. The eco-
logical and environmental problems brought about by coal
mining in China have become increasingly prominent,
and the environmental protection situation has become
more severe. In areas where mineral resources are con-
centrated, land ecological damage and governance have
become one of the important issues for sustainable devel-
opment. The “13th Five-Year” Science and Technology
Development Plan for National Environmental Protection
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states: “The establishment of a highly developed environ-
mental information network, the long-term continuous
observation of environmental factors and the mechanism
of human activities affecting the Earth system is the trend
and demand of current environmental technology devel-
opment.” Therefore, based on the image time series, it is
of great practical significance to establish a dynamic ex-
traction method for the coal mining area.

Shengli Opencast Coal Mine is the Mengdong Coal
Base, one of Chinese 14 large coal bases. The Xilin Gol
Grassland is one of the important grassland areas in
China, where the ecological environment is very fragile
[10]. The exploitation and utilization of coal resources
increases the risk of deterioration of the local ecological
environment. Under mining disturbance, the dynamic
vegetation information under the mining area is not
clear. Although the mining area has undergone eco-
logical reconstruction in recent years, there is no rele-
vant research on the effect. Taking the Shengli Opencast
Mining area as an example, this study is to investigate
the consistency of NDVI time series constructed by dif-
ferent sensors of Landsat, the correction method of
time-series image, and the extraction method of dynamic
vegetation information of the opencast mining area
based on the interannual Landsat NDVI time series. It is
helpful to further enrich the extraction method and the-
ory of image time-series information, provide references
for the application of image time-series analysis in dy-
namic environmental monitoring of the opencast mining
area, and establish the scientific theoretical basis for
identification of risk sources in the opencast mining area
and construction of regional sustainable development
and ecological environment.

2 Research area and data

2.1 Research area

Shengli Mining area is the Mengdong Coal Base, one of
Chinese 14 large coal bases. It is located 2~5 km to the
north of Xilinhot City, Xilin Gol League, Inner Mongolia
Autonomous Region, and in the territory of Shengli
Sumu and Elliott Sumu, and has the geographical coor-
dinates 115° 24" 26" '-116° 26" 30"" E, 43° 54" 15''-44°
13" 52" N and the altitude of 970~1202 m (Fig. 1). The
mining area is located in the typical hinterland of the
temperate bunch grasses. It is typical grassland except
for river beach, inter-mountain depression, and salted
lake basin and lowland. The mining area is in north-east
and south-west stripes with a strike length of 45 km,
average north-south width of 7.6 km, and total area of
342 km?. The mining area is divided into ten shaft areas,
including six opencast coal mines, one opencast germa-
nium mine, and three shaft mines. Among them, West
Opencast Mine 1, West Opencast Mine 3, Opencast
Germanium Mine, and East Opencast Mine 3 have been
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Fig. 1 Diagram for research area
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put into production and the spatial distribution of all
mines is shown in Fig. 1.

2.2 Data and preprocessing

L1T data of Landsat TM/ETM+/OLI images from 2000
to 2015, Path 124, Row29, total 160 scenes, were se-
lected from the data source: United States Geological
Survey (USGS). In order to construct the best image of
the growth period, the MODIS16d synthetic data prod-
uct (MOD13Q1) from 2000 to 2016 was selected to cal-
culate the vegetation growth period in the study area,
and the mid-vegetation growth period was used as the
middle date of Landsat image synthesis, with the source:
National ~Aeronautics and Space Administration
(NASA). In order to improve the fitting accuracy, the
Google Earth historical images with spatial resolution of
3.7 m in 2010-2011 and the China’s GaoFen-1(GF-1)
multi-spectral images in 2013-2014 were used to assist
in judging the time-series trajectory fitting effect. The

spatial location of the mining area boundary, different
land-use areas, and working faces was derived from the
mining permit boundary of the Shengli Coal Mine and
the surface-underground contract plans.

The L1T-level Landsat images provided by the USGS
were geometrically corrected by the system up to
sub-pixel accuracy without further geometric correction
[22]. The Landsat ecosystem disturbance adaptive pro-
cessing system (LEDAPS) was carried out for atmos-
pheric correction of all Landsat images, to obtain the
true reflectivity of the surface and eliminate the
pseudo-changes in reflectivity caused by the time-phase
difference between the images [23, 24]. As for the
consistency, difference between the OLI sensor and TM/
ETM+ data, the relative radiation normalization based
on ETM+ images was carried out for OLI images in
2013-2014 [25]. In addition, in order to reduce the
anomalies of vegetation indices in time-series trajector-
ies caused by factors such as cloud, rain and shadow, the
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function of mask algorithm (FMASK) was used to iden-
tify and mask cloud, rain, and shadow [26]. The MODIS
NDVI was used to calculate the vegetation growth
period in the study area and the middle date (in
mid-July) of the growth period was taken as the tie for
reflectivity data fusion during the optimal growth period
of the vegetation. Then, the time-series trajectory was
constructed based on the reflectance data calculation
NDVL

3 Methods

3.1 MRF-optimized semi-supervised DTW-kernel fuzzy c-
means clustering

3.1.1 Fuzzy c-means clustering algorithm

Due to the combination of various factors, the time
spectrum of the NDVI fitting time series was diverse
and had certain uncertainty with the time category. The
time spectrum of some types was progressive rather than
changing significantly, and the time-spectrum differ-
ences between different categories were small, so that
the boundaries between classes were fuzzy. The fuzzy
c-means clustering algorithm (FCM) introduced the
fuzzy membership function into the c-means clustering,
to automatically determine the fuzzy partition matrix ac-
cording to the relationship between the data. By opti-
mizing the objective function, the membership degree of
each data to the class center was determined so as to de-
cide data attribution [27]. The objective function of the
FCM algorithm is:

C n
min/ (U, V) =Y > " uld;
=1 j=1
c ' ! n (1)
s.t. Z u; = 1,u;€[0,1], Z u;;€(0, 1]
=1 =1

where u;; indicates the membership degree that x; be-
longs to class I, U is the membership matrix composed
of u; V is the class-center matrix formed by cluster cen-
ter v;, and d is the Euclidean distance.

3.1.2 DTW Gaussian kernel function

The kernel function is a general method for converting
linear classifiers into nonlinear classifiers and the Gauss-
ian kernel functions are often used for time series classi-
fication. It expresses the similarity between the input
time series by calculating the Euclidean distance be-
tween the time series of the paired inputs. The scaling
between time series and the offset on the time axis cause
a certain deviation in the measurement of conventional
Euclidean distance, which in turn causes a certain error
when the Gaussian kernel function is applied to the time
series [28]. The dynamic time warping distance (DTW)
allows the time series to be unequal in length and to not
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correspond with each other and can be used to effect-
ively measure the similarity of the asynchronous time
series [29]. Compared with Euclidean distance, DTW is
more suitable for expressing time series structures.
Therefore, the DTW Gaussian kernel is used as a kernel
function [30] and recorded as DTW kernel (GDTW).

K(x,y) = exp (%) (2)

Where D,(x,y) is Sakoe-Chiba-DTW distance of x, y
series.

3.1.3 Semi-supervised DTW-kernel fuzzy c-means clustering
The results of the original FCM clustering are signifi-
cantly affected by the initial clustering center. Under the
condition of the known number of classifications, the
semi-supervised fuzzy c-means clustering is constructed
by adding a small amount of prior information to guide
the clustering process. According to the optimization
theory, the objective function is modified based on the
penalty function method, and the DTW kernel metric is
used as the measure means of time series similarity to
construct the semi-supervised DTW kernel fuzzy
c-means clustering [31].

3.1.4 Spatial optimization of membership function based on
Markov random field

The fuzzy c-means clustering considers only the time di-
mension information of the time-series image, but not
the statistical dependencies between the neighborhood
pixels and the category label probabilities. The Markov
random field (MRF) converts Markov property into a
planar structure, which combines spatial structures to
define probabilistic models on neighborhood systems
[32]. Therefore, the spatial optimization scheme of the
Markov random field can improve the clustering
precision.

3.2 Synthesis of clustering information and pixel
classification information

As for clustering, the homogeneous region is achieved by
maximizing the sample similarity of the same cluster and
minimizing the sample similarity of different clusters. For
the above-mentioned MRF-optimized semi-supervised
DTW-kernel fuzzy c-means clustering, the DTW kernel
function is introduced into the c-means clustering to
make the algorithm effectively solve the scaling between
time series and the offset on the time axis based on the
fuzzy set theory. In addition, the local continuity between
neighboring pixels is considered to improve the segmenta-
tion effect so as to obtain the mean region. Related re-
searches show that, although the DTW distance can
achieve higher measurement accuracy than the Euclidean
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distance, the classification result has greater uncertainty
due to the failure to satisfy the conditions of the kernel
function [33, 34].

The MRF-optimized semi-supervised DTW-kernel
fuzzy c-means clustering constructed above is used to
fuse with the pixel classification results to realize the
synthesis of time spectrum and spatial information, re-
move noise, and improve classification homogeneity.
The k-nearest neighbor algorithm (KNN) is widely used
in information extraction based on similarity measure,
but it is more highly sensitive to similarity measure.
Many studies have shown that the first neighbor sample
has a significant impact on classification accuracy and
the 1-nearest neighbor (1INN) algorithm is superior to
most complex machine learning algorithms [35]. Based
on the KNN algorithm, the INN-DTW algorithm uses
the DTW distance as the similarity measure and takes k
as 1, namely, the first neighbor sample is used to define
the pixel label to be classified. Some studies have shown
that the INN-DTW algorithm is more stable than the
KNN algorithm, and has higher stability and classifica-
tion accuracy than the DTW Gaussian kernel SVM [20].
Its classification accuracy is even better than most ma-
chine learning algorithms [36]. Therefore, the pixel clas-
sification is performed by the INN-DTW classifier and
the Sakoe-Chiba global constraint condition is set for
the DTW to prevent the curved path from greatly devi-
ating from the diagonal to cause ill-adjustment and
affect the classification accuracy. The process for
extracting dynamic vegetation information by the fusion

(2018) 2018:113

Page 5 of 10

algorithm of the MIR-optimized semi-supervised
DTW-kernel fuzzy c-means clustering and the 1NN-
DTW pixel classification is shown in Fig. 2.

4 Results and discussion

4.1 Vegetation type division rules

Vegetation changes in coal mining area are affected by
multiple factors such as coal mining disturbances, min-
ing reclamation, ecological restoration, and so forth.
During the monitoring period (2000-2015), the land use
in the experimental area gradually changed from natural
pasture to industrial and mining land. The large-scale
development and construction of the mining area caused
a large number of pastures to be disturbed and some
areas were restored due to effective reclamation mea-
sures. The NDVI time series of the experimental area
were divided into six planting dynamic types: continuous
disturbance, disturbance-stability, disturbance-stability-
recovery, disturbance-recovery, smooth-recovery, and
continuous recovery. The area of the stable zone in the ex-
perimental area was small, of which the stability was not
considered. Each type recorded the dynamic evolution
process of vegetation under the influence of human fac-
tors in the experimental area. Manual samples were cali-
brated by visual interpretation and the time spectrum and
description of each type is as shown in Table 1 and Fig. 3.

4.2 Comparison of clustering accuracy
In order to verify the effectiveness of DTW kernel
function (GDTW) and MRF space optimization for
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Fig. 2 Diagram for fusion of cluster information and pixel classification information

_ Majority voting ]




Xu et al. EURASIP Journal on Image and Video Processing

Table 1 Description of vegetation dynamic types
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Vegetation dynamic types Description

Continuous disturbance
Disturbance-stabilization
Disturbance-stabilization recovery
Disturbance-recovery
Stabilization-recovery

Continuous-recovery

Vegetation is continuously disturbed during the monitoring period.

Human activities lead to severe damage to vegetation and there is almost no vegetation cover after disturbance.
Vegetation is damaged by human disturbance, there is no vegetation, and gradual recovering is carried later.
During the monitoring period, the vegetation began to recover gradually after being disturbed.

During the monitoring period, the vegetation changed from no obvious change to recovery state.

Vegetation is in a state of continuous recovery during the monitoring period.

semi-supervised fuzzy c-means clustering, four cluster-
ing methods of the semi-supervised FCM (Semi-FCM),
the semi-supervised DTW distance (Semi-DTW-FCM),
the semi-supervised Gaussian kernel function FCM
(Semi-Gaussian-FCM), and the semi-supervised DTW
kernel function FCM (Semi-GDTW-FCM) were selected
in turn to carry out the clustering for the above test

area. Among the others, the semi-supervised coefficient
a was unified to 5, the iterative exit condition & was
unified to 0.0001, and the initial value of the
Semi-GDTW-FCM kernel parameter was 300. The clus-
tering results before and after optimization with MRF
space are shown in Fig. 4. The classification results of
different models were used to calculate the confusion
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matrix to obtain overall classification accuracy (OA),
Kappa coefficient (Fig. 5), and the differences among
classification results of each model were expressed by
error comparison.

As shown in Fig. 4, the spatial information of four
semi-supervised clustering results before and after MRF
space optimization is relatively complete, indicating that
the semi-supervised clustering model is suitable for the ex-
traction of time-series dynamic information. It can be seen
from Fig. 5 that the overall accuracy and Kappa coefficient
of four models, namely semi-FCM, semi-DTW-FCM,

semi-Gaussian-FCM, and semi-GDTW-FCM, are gradually
increasing. Among them, the clustering accuracy of
semi-DTW-FCM is higher than that of semi-FCM, which
indicates that the similarity measure of time series with
DTW distance is better than the traditional Euclidean dis-
tance. Semi-Gaussian-FCM and semi-GDTW-FCM have
higher clustering accuracy than semi-FCM and semi-
DTW-ECM, respectively. Therefore, the kernel metrics is
used as the measure of similarity to introduce FCM to ef-
fectively improve clustering accuracy. In general, the
semi-GDTW-FCM has the highest accuracy, indicating that

-
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Fig. 5 Comparison of clustering accuracy before and after MRF spatial structure optimization
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DTW kernel metrics can be used for FCM algorithm to
achieve better clustering results.

The comparison of the results of four models before
and after MRF space optimization (Fig. 5) shows that the
OA and Kappa coefficients after MRF optimization are
higher than those before MRF optimization. Among
them, the MRF optimization effect of Semi-DTW-FCM
and Semi-Gaussian-FCM is more obvious. After MRF
optimization, the number of cluster plaques is greatly re-
duced while compared with that before optimization and
the spatial information expression is more complete
than that before MRF optimization. The results show
that the MRF spatial structure optimization can effect-
ively remove fine plaques, reduce the salt and pepper
effect, and improve the classification accuracy by
expanding the time dimension to the neighborhood.
MRF optimization is more effective in optimizing
Semi-DTW-FCM and Semi-GDTW-FCM. After MRF
optimization, Semi-GDTW-FCM can achieve the highest
clustering accuracy and its OA and Kappa coefficients
are 92.1587% and 0.9085, respectively.

4.3 Extraction results and analysis of fusion clustering

and pixel classification information

The same experimental data was selected for fusion of
clustering and pixel classification information. The MRF-
Semi-GDTW-FCM model was used for cluster classifica-
tion. The classification accuracy after the fusion of three
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typical pixel classification methods based on time series
similarity measure (INN-DTW, Mahalanobis, and spectral
angle mapping(SAM)) and MRF-Semi-GDTW-FCM were
compared, respectively, and marked as (INN-MRF-Se-
mi-GDTW-FCM, Mahalanobis-MRF-Semi-GDTW-FCM,
and SAM-MRE-Semi-GDTW-FCM), and the degree of in-
fluence of different pixel classification accuracy on the clas-
sification accuracy after fusion was analyzed. The
classification results of INN-DTW, Mahalanobis, and SAM
and their fusions with MRF-Semi-GDTW-FCM were
shown in Fig. 6, and the confusion matrix was calculated
according to the classification results of different models, to
obtain overall accuracy (OA) and Kappa coefficient (Table 2)
after classification.

It can be seen from Fig. 6a—c that three classifiers pro-
duce a significant “salt and pepper effect” in space. The
INN-DTW classification accuracy is higher than those of
Mabhalanobis and SAM, and its classification results main-
tain most of the spatial information and are relatively close
to MRF-Semi-GDTW-FCM. It is shown in Table 2 that
the classification accuracy of Mahalanobis and SAM is
lower, and the results of MRF-Semi-GDTW-FCM cluster-
ing show obvious local misclassification while compared
with the above two classifiers. From comparative analysis
of Fig. 6 and Table 2, it can be seen that the classifi-
cation accuracy after the fusion of three pixel classifi-
cation methods of 1INN-DTW, Mahalanobis, and
SAM with MRF-Semi-GDTW-FCM fusion has been

d “_,Ai*

(e) Mahalanobis-MRF-Semi-GDTW-FCM. (f) SAM-MRF-Semi-GDTW-FCM

Continuous disturbance [JJljf Disturbance-stabilization [N Disturbance-stabilization-recovery
Il Disturbance-recovery [ ] Stabilization-recovery [l Continuous recovery
Fig. 6 Fusion of cluster information and pixel classification information. (@) TNN-DTW. (b) Mahalanobis. (c) SAM. (d) TNN-MRF-Semi-GDTW-FCM.
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Table 2 Comparison of classification accuracy for fusion of
different pixel classifications and MRF-Semi-GDTW-FCM

Classification method OA (%) Kappa coefficient
INN-DTW 734726 06351
Mahalanobis 56.5299 0.386

SAM 48.1200 02718
MRF-Semi-GDTW-FCM 92.1587 0.9085
TNN-MRF-Semi-GDTW-FCM 93.8806 0.9267
Mahalanobis-MRF-Semi-GDTW-FCM 87.0378 0.7725
SAM-MRF-Semi-GDTW-FCM 81.9891 0.8369

greatly improved, and OA has increased by 20.4080,
30.5079, and 33.8691%, respectively, and Kappa coeffi-
cient has increased by 0.2916, 0.3865, and 0.5651,
respectively.

By comparing three pixel classifications fused with
MRF-Semi-GDTW-FCM and MRF-Semi-GDTW-FCM
(Table 2), it can be seen that the classification accuracy of
INN-DTW pixel classification and MREF-Semi-GDTW-
FCM fusion is significantly higher than MRF
-Semi-GDTW-FCM clustering, and its OA and Kappa co-
efficients are increased by 1.7219% and 0.0182, respectively,
while the classification results of Mahalanobis-MRE-
Semi-GDTW-FCM and SAM-MREF-Semi-GDTW-FCM
have spatially significant “distortion,” the classification ac-
curacy is relatively lower than MRF-Semi-GDTW-FCM be-
fore fusion, the OA is reduced by 5.1209 and 10.1696%,
respectively, and the Kappa coefficient is reduced by 0.1360
and 0.0716, respectively.

In summary, the classification accuracy of the
INN-DTW  pixel classification and MRF-Semi-
GDTW-FCM fusion is higher than that of other classifi-
cation methods. The classification accuracy after fusion
is more sensitive to pixel classification and the appropri-
ate pixel classification is helpful to improve the classifi-
cation accuracy of time series. Compared with SAM and
Mahalanobis, INN-DTW has higher applicability to time
series pixel classification.

5 Conclusions

In allusion to rich local features, noise interference sus-
ceptibility, multiple time spectrum shapes, blur inter-class
boundary, and other features of the NDVI time series, the
fusion of clustering and pixel classification methods can
realize the dynamic vegetation information classification
in the mining area. The experimental results show that
the extraction algorithm of the dynamic vegetation infor-
mation of the integrated MRF-optimized semi-GDTW-
FCM and the INN-DTW pixel classification realizes the
integration of time spectrum and spatial information,
solves the stretching of time series and the offset of the
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time axis, removes fine plaques and noise, improves
classification homogeneity, and reduces the “salt and pep-
per effect”; compared with other clustering or pixel classi-
fication methods, it can improve classification accuracy.
The fusion algorithm of the MRF-optimized Semi-
GDTW-FCM and the INN-DTW pixel classification pro-
vides a reliable method and basis for extracting the dy-
namic change information of the vegetation in the future
and exploring the mechanism of coal resource exploit-
ation on the vegetation change in coal mining area.
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