
RESEARCH Open Access

Iterative learning control for image feature
extraction with multiple-image blends
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Abstract

In this paper, a novel method of image extraction is proposed. Firstly, the image information is embedded into the
parameters of the chaotic system, and then the image is overlapped and embedded to complete the image hiding.
This process is equivalent to a dynamic system with unknown time-varying parameters. Secondly, the D-type iterative
learning control algorithm is used to extract the information hidden in the image, because iterative learning
can be used to estimate the time-varying parameter system completely in the time interval. Finally, the numerical
simulation shows that the algorithm can effectively extract the hidden information under various attacks.
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1 Introduction
With the rapid development of Internet technology, it
has provided great convenience for the dissemination
of digital information products. On the other hand,
copyright protection has become increasingly import-
ant. Information hiding and digital watermarking as
an important method of intellectual property protec-
tion have attracted more and more attention.
In machine learning, in pattern recognition, and in

image processing, feature extraction starts from an ini-
tial set of measured data and builds derived values (fea-
tures) intended to be informative and non-redundant,
facilitating the subsequent learning and generalization
steps, and in some cases, leading to better human in-
terpretations. Feature extraction is related to dimen-
sionality reduction.
When the input data to an algorithm is too large to

be processed and it is suspected to be redundant (e.g.,
the same measurement in both feet and meters, or the
repetitiveness of images presented as pixels), then it
can be transformed into a reduced set of features (also
named a feature vector). Determining a subset of the
initial features is called feature selection [1]. The se-
lected features are expected to contain the relevant in-
formation from the input data, so that the desired task

can be performed by using this reduced representation
instead of the complete initial data.
Feature extraction involves reducing the amount of

resources required to describe a large set of data.
When performing analysis of complex data, one of the
major problems stems from the number of variables
involved. Analysis with a large number of variables
generally requires a large amount of memory and com-
putation power; also, it may cause a classification algo-
rithm to over fit to training samples and generalize poorly
to new samples. Feature extraction is a general term
for methods of constructing combinations of the
variables to get around these problems while still de-
scribing the data with sufficient accuracy. Many ma-
chine learning practitioners believe that properly
optimized feature extraction is the key to effective
model construction.
One very important area of application is image pro-

cessing, in which algorithms are used to detect and isolate
various desired portions or shapes (features) of a digi-
tized image or video stream. It is particularly import-
ant in the area of optical character recognition.
Results can be improved using constructed sets of

application-dependent features, typically built by an
expert. One such process is called feature engineering.
Alternatively, general dimensionality reduction tech-
niques are used such as (1) independent component
analysis, (2) Isomap, (3) kernel PCA, (4) latent se-
mantic analysis, (5) partial least squares, (6) principal
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component analysis, (7) multifactor dimensionality re-
duction, (8) nonlinear dimensionality reduction, (9)
multilinear principal component analysis, (10) multi-
linear subspace learning, (11) semidefinite embedding,
and (12) autoencoder.
Space technology [2, 3] and transform domain tech-

nology [4, 5] are the main methods of digital image hid-
ing and embedding. From the airspace algorithm point
of view, the LSB (least significant bits) method is a typ-
ical algorithm [6]. The method converts the spatial
pixel values of the original carrier image from binary to
decimalism and replaces each bit of information in the
binary with the least significant bit in the correspond-
ing carrier, and finally, the binary data containing secret
information is converted to decimal pixel, in order to
regain the secret image. Although the method has good
concealment, so that the human eye is difficult to de-
tect, it has poor robustness.
The transform domain method is relatively stable,

and the image hidden by the transform domain
method has a certain resistance to image compression,
filtering, rotation, shearing, and noise. Discrete cosine
transform (DCT) [7], discrete Fourier transform (DFT)
[8], and discrete wavelet transform (DWT) [9, 10] are

the main transform domain methods in recent years.
We construct a unified form of the boundary value
solving problem by constructing the matching func-
tion, and finally, using the conventional spectral
method to solve is an important method in the domain
of transform domain [10]. In the process of exploring
image-hiding algorithms, some scholars have proposed
an iterative hybrid image-hiding encryption algorithm
[11]. The main idea of the algorithm is to embed an
image into another image. The image is repeatedly em-
bedded into a set of image, accordingly to adjust the it-
eration parameters to achieve the invisibility of the
image. The algorithm provides a new way for better se-
lection of the mixing parameters, but it shows weak
robustness of the system due to the multiple product
amplification of the mixed image change value. Due to
the weak robustness caused by the error multi-amplifi-
cation in [12], Urvoy [13] proposed an iterative hybrid
algorithm for image modification that uses a partial
image that does not contain a watermark to modify the
image containing the watermark. Thus, we can elimin-
ate the error from the image. However, in the face of
random attacks such as Gaussian noise, the quality of
the watermark we extract is poor. In order to improve

Fig. 1 Image encryption and its embedded process
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the stability of the watermarking system, the literature
[14, 15] proposed JADE blind separation watermark-
ing algorithm. This method used an iterative hybrid
method to embed the image and used the hidden
image and the carrier image as different signals. By
separating the matrix to determine whether there is
hidden information, there is no need to know the
exact location of the embedded image. When the two
signals that need to be separated have a strong correl-
ation, the method cannot separate the related signals
well.
In this paper, we proposed the image extraction

method based on iterative learning algorithm, which is
applied to the full estimation of time-varying parame-
ters in finite time intervals under certain convergence
conditions. For the repeated mixed images, a new
image extraction method is proposed in this paper. It-
erative learning identification technology is used to re-
construct the image information signals. For the class
of chaotic map and iterative hybrid encryption image
system, an iterative learning identification law is con-
structed. Under the conditions of given learning law
and initial state of the system, the sufficient condi-
tions for learning gain convergence are deduced, and
the convergence of the system is proved. Using itera-
tive learning identification method to estimate the time-
varying parameters completely in finite time interval, we
can achieve completely reconstruction of image informa-
tion in digital image watermarking system.
Remarks: Here are some general mathematical sym-

bols used in this paper. L2(Ω) (or short in L2) repre-
sents a kind of Ω function space consisted by all

measureable functions and it is bounded, satisfying up

¼
(Z

Ω

juðxÞjpdx
)1=p

< ∞ ð1≤p≤∞Þ . Lp(Ω)is Banach

space, L2(Ω) is Hilbert space.
For the n dimensional vector u ¼ ðuT1 ; uT2 ;⋯;uTi Þ ,

where the norm of definition is kuk ¼
�P

i¼1

n
u2i

�1=2
. If

ui(x) ∈ L
2, i = 1, 2, ⋯, n then Q(x) = (Q1(x),Q2(x), L,

Qn(x)) ∈ R
n ∩ L2 and kQkL2 ¼

(Z
Ω

ðQT ðxÞQðxÞÞ2dx
)1=2

.

For the function f(x, t) :Ω × [0,T]→ Rn, f(gt) ∈ Rn ∩ L2,

t ∈ [0,T], define its (L2, λ) norm as follows k f kðL2;λÞ
¼ sup

0≤ t ≤T

n�
k f k2L2

�
e−λt
o
.

2 Digital image encryption
Chaotic cryptology includes two integral opposite
parts: chaotic cryptography and chaotic cryptanalysis.
Chaotic cryptography is the application of the math-
ematical chaos theory to the practice of the cryptog-
raphy, the study or techniques used to privately and
securely transmit information with the presence of a
third party or adversary. The use of chaos or random-
ness in cryptography has long been sought after by en-
tities wanting a new way to encrypt messages. However,
because of the lack of thorough, provable security prop-
erties and low acceptable performance, chaotic cryptog-
raphy has encountered setbacks [1, 16–18].
In order to use chaos theory efficiently in cryptog-

raphy, the chaotic maps should be implemented such
that the entropy generated by the map can produce re-
quired confusion and diffusion. Properties in chaotic
systems and cryptographic primitives share unique
characteristics that allow for the chaotic systems to be
applied to cryptography [19]. If chaotic parameters, as

Fig. 2 Hidden image

Fig. 3 Carrier image
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well as cryptographic keys, can be mapped symmetric-
ally or mapped to produce acceptable and functional
outputs, it will make it next to impossible for an ad-
versary to find the outputs without any knowledge of
the initial values. Since chaotic maps in a real life sce-
nario require a set of numbers that are limited, they
may, in fact, have no real purpose in a cryptosystem if
the chaotic behavior can be predicted. One of the
most important issues for any cryptographic primitive
is the security of the system. However, in numerous
cases, chaotic-based cryptography algorithms are
proved unsecure [17, 20–22]. The main issue in many
of the cryptanalyzed algorithms is the inadequacy of
the chaotic maps implemented in the system [23, 24].
The concept of chaos cryptography or in the other

words chaos-based cryptography can be divided into
two major groups: the asymmetric [25, 26] and sym-
metric [27–29] chaos-based cryptography. The major-
ity of the symmetric chaos-based algorithms are based
on the application of discrete chaotic maps in their
process [27, 30].
Bourbakis and Alexopoulos [31] in 1991 proposed

supposedly the earliest fully intended digital image en-
cryption scheme which was based on SCAN language.
Later on, with the emergence of chaos-based cryptog-
raphy, hundreds of new image encryption algorithms,
all with the aim of improving the security of digital
images, were proposed [21]. However, there were three
main aspects of the design of an image encryption that

was usually modified in different algorithms (chaotic
map, application of the map, and structure of algo-
rithm). The initial and perhaps the most crucial point
was the chaotic map applied in the design of the algo-
rithms [32–36]. The speed of the cryptosystem is
always an important parameter in the evaluation of
the efficiency of a cryptography algorithm; therefore,
the designers were initially interested in using simple
chaotic maps such as tent map, and the logistic map
[19, 37]. However, in 2006 and 2007, the new image
encryption algorithms based on more sophisticated
chaotic maps proved that application of chaotic map
with higher dimension could improve the quality and
security of the cryptosystems [2, 3, 35, 38, 39].
In this paper, we use logistic encryption method to en-

crypt the digital image. The logistic chaotic map is de-
scribed as follows:

x t þ 1ð Þ ¼ μx tð Þ 1−x tð Þð Þ; x tð Þ∈ 0; 1ð Þ ð1Þ
when 3.5699456⋯≤ μ ≤ 4, the unpredictability of the

sequence x(t) generated by logistic chaotic maps. If the
same initial value is given, a random sequence will be
generated, under the mapping of the parameter A. If a
different initial value is given, different data sequences
will be generated, but the correlation between the data
sequences is almost zero. The original image G is
marked as θ(t). In order to achieve the invisibility of the
image, we superpose and mix the known image sequence

Fig. 4 Embedded carrier image and extracted hidden image

Fig. 5 Iterative output error

Zhang et al. EURASIP Journal on Image and Video Processing  (2018) 2018:100 Page 4 of 11



with the parameter μ, namely μ(t) = λ + θ(t); at the same
time, the Eq. (1) can be written as

x t þ 1ð Þ ¼ λþ θ tð Þð Þx tð Þ 1−x tð Þð Þ; x tð Þ∈ 0; 1ð Þ ð2Þ

Thus, the chaotic sequence {x(t), t = 1,2,3,...} is the de-
sired encrypted image G′, denoted here as x(t).

3 Method—multiple image blends
Assume that the image F is a pair of M ×N digital im-
ages, G′ needs to be hidden images, then a superim-
posed mixed image S can be described as

S ¼ αFþ 1−αð ÞG0 ð3Þ

α is adjustable mixing parameter, and F is carrier
image. S is an image sequence produced after a super-
position. According to Eq. (3), we know the 1 − α
tends to 0, when mixing parameter α tends to 1, then
the produced image sequence S=F. However, when the
adjustable parameter α tends 0, the image sequence of
superposition S will tend the hidden image G′. From
the Eq. (3), we also know that when the value of the
parameter α is closer to 1, the image G′ is hidden as
much as possible. It is not easy to be detected, but it
also increases the difficulty of the extraction.
Assume that the carrier images Fi(i = 1, 2,⋯, n) are

different M ×N digital images and the mixing parame-
ters are αi ∣ αi ∈ [0, 1], i = 1, 2, ⋯, n. According to the

hybrid algorithm of image, firstly, we mix the image F1,
G′, and α1 to get S1 = α1F1 + (1 − α1)S1; secondly, we
mix the image F2, G′, and α2 to get S2 = α2F2 + (1
− α2) G′, and so on. Finally, mix the images to get Sn
= αnFn + (1 − αn)Sn − 1; Sn is called the digital image
group which is a mixture of N images.
The mixed image satisfies the following relation:

S1 tð Þ ¼ a1 F1 tð Þ þ 1−a1ð Þx tð Þ
S2 tð Þ ¼ a2 F2 tð Þ þ 1−a2ð ÞS1 tð Þ

⋮
Sn tð Þ ¼ anFn tð Þ þ 1−anð ÞSn−1 tð Þ

8>><
>>: ð4Þ

so:

Sn ¼ αnFn þ βnαn−1 Fn−1 þ⋯þ βnβn−1⋯βn−iαn−iFn−i
þ⋯þ βnβn−1⋯β2β1G

0

where βi = 1 − αi, i = 1, 2, ⋯, n. When αi tends to 1, the
better the effect of watermark embedding, the worse the
effect of watermark extraction. We use the logistic map
to produce these iterative parameters. Selected param-
eter μ′ and initial value α1.

αiþ1 ¼ μ0αi 1−αið Þ ð5Þ
According to Eq. (5), we can get a chaotic sequence

αi and use αi as the parameter sequence for each
image superposition and mixing. In order to avoid
the correlation between the mixed images, the initial
value α1 of the parameter μ′ in Eq. (5) cannot be the
same as the parameter μ(t) and the initial value x(0)
in Eq. (1).
Image encryption and its embedded process are shown

in Fig. 1.

4 The iterative learning control for image hidden
with multi-blending
We use the image’s multiple hybrids embedding technol-
ogy to embed image information into the time-varying pa-
rameters of the digital image system and establish a
mathematical model for the digital image system. The

Fig. 6 Hidden image

Fig. 7 Carrier image
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image information is regarded as a finite time, and the it-
erative learning identification method is applied to the
image system. Variable parameters are estimated to achieve
complete reproduction of image information.
We mark the initial image G as θ(t), then the encryp-

tion image G′ as x(t) sequence. Carrier image group
Fi(i = 1, 2,⋯, n) is ωi and the hybrid image Si is y(t); the
system is described as

x t þ 1ð Þ ¼ f x tð Þ; θ tð Þ; tð Þ
y1 tð Þ ¼ h1 x tð Þ; tð Þ
y2 tð Þ ¼ h2 y1 tð Þ; t� �

⋯
yn tð Þ ¼ hn yn−1 tð Þ; t� �

8>>>><
>>>>:

ð6Þ

where t ∈ {0, 1, 2,⋯,N}, x(t) ∈ Rn, θ(t) ∈ R1, y1(t) ∈ R1,
y(t) ∈ R1 are nonlinear function. f(x(t), θ(t), t) is the
function of initial encryption image. The nonlinear
function h1(x(t), t) represents an iterative mixed func-
tion of the encrypted image and carrier image, and
hn(y

n − 1(t), t) represents the mixed function of n
iterations.
The iterative learning control system for estimating

θ(t) is:

xk t þ 1ð Þ ¼ f xk tð Þ; θk tð Þ; tð Þ
y1k tð Þ ¼ h1 xk tð Þ; tð Þ
y2k tð Þ ¼ h2 y1k tð Þ; t� �

⋯
ynk tð Þ ¼ hn yn−1k tð Þ; t� �

8>>>><
>>>>:

ð7Þ

where k is iterative times and we use the same initial
value. We suppose there exist f partial derivative Ak(t),
Bk(t) about x, θ, h1 partial derivative Ck(t) about x and hi
partial derivative Dki(t) about y.
We use the D-type learning law:

θk tð Þ ¼ sat ϑk tð Þð Þ
ϑkþ1 tð Þ ¼ sat ϑk tð Þð Þ þ L tð Þ

h
ek t þ 1ð Þ−ek tð Þ

i(
ð8Þ

where sat(∙) is the saturation function, L(t) is the learning
gain, and ekðtÞ ¼ yn−ynk .
Theorem 1 For the system (7) and learning law, if

there exist

1k −L tð Þ
Yn

i¼2
Dki t þ 1ð ÞCk t þ 1ð ÞBk tð Þ ≤k ρ < 1 ð9Þ

then when k→∞ , θ(t) converges to θk(t) interval {0,
1,⋯, N}.

Fig. 8 Embedded carrier image and extracted hidden image

Fig. 9 Iterative output error
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Proof
Remark δxk(t) = xd(t) − xk(t), δθk(t) = θd(t) − θk(t)

δxk tð Þ ¼ f xd t−1ð Þ; θd t−1ð Þ; t−1ð Þ− f xk t−1ð Þ; θk t−1ð Þ; t−1ð Þ
þ f xd t−1ð Þ; θk t−1ð Þ; t−1ð Þ− f xd t−1ð Þ; θk t−1ð Þ; t−1ð Þ

According to the differential mean value theorem, we
have

f xd t−1ð Þ; θd t−1ð Þ; t−1ð Þ− f xk t−1ð Þ; θk t−1ð Þ; t−1ð Þ
¼ Ak t−1ð Þδxk tð Þ f xd t−1ð Þ; θd t−1ð Þ; t−1ð Þ− f xd t−1ð Þ; θk t−1ð Þ; t−1ð Þ
¼ Bk t−1ð Þδθk tð Þδxk tð Þ ¼ Ak t−1ð Þδxk t−1ð Þ þ Bk t−1ð Þδθk t−1ð Þ

ð10Þ

Taking the norm of Eq. (9)

δk xk tð Þ≤ctA δk xk 0ð Þ þk ct−1A cB δk θk 0ð Þ þk ct−2A cB δk θk 1ð Þ
þk ⋯þ cB δk θk t−1ð Þ

ð11Þ

Because the initial state is the same at each iteration,
δxk(0) = 0. The (10) can be written

δk xk tð Þ ≤k
Xt−1

j¼0
ct− j−1A cB δk θk jð Þk ð12Þ

Multiplied by the two sides c−λtA , yields

δxk tð Þk kλ≤ sup
Xt−1

j¼0
cBc

t− j−1
A c−λtA δθk jð Þk k

� �
≤

cB
cA cλ−1A −1
� �

ð13Þ

Suppose c > maxfcA; 1g, yields

δxk tð Þk kλ≤
cB

cA cλ−1−1ð Þ δθk tð Þk kλ ð14Þ

By (8), we have

δϑkþ1 tð Þ ¼ δθk tð Þ−L tð Þ ek t þ 1ð Þ−ek tð Þð Þ

¼ δθk tð Þ−L tð Þ
("

hn
�
yn−1ð t þ 1Þð ; t þ 1

�
−hnyn−1k t þ 1ð Þ; t þ 1

�#
−

"
hnðyn−1 tð Þ; tð Þ

−hnyn−1k tð Þ; tÞ
#)

ð15Þ
Remark

Ak tð Þ ¼ ∂ f xk tð Þ; θk tð Þ; tð Þ
∂xd tð Þ j xk tð Þ ¼ ξk tð Þ

where ξk(t) = (1 − σ3)x(t) + σ3xk(k), 0 < σ3 < 1

Bk tð Þ ¼ ∂ f xk tð Þ; θk tð Þ; tð Þ
∂θk tð Þ j θk tð Þ ¼ ηk tð Þ

where ηk(t) = (1 − σ4)x(t) + σ4xk(k), 0 < σ4 < 1

Fig. 10 Attacked with Gaussian noise and extracted hidden image (Example 1)

Fig. 11 Attacked with salt and pepper noise and extracted hidden image (Example 1)
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DknðtÞ ¼ ∂hnðy;tÞ
∂y j y ¼ ξknðtÞ

where ξkn(t) = (1 − σn)y
n − 1(t) + σny

n − 1(t), 0 < σn < 1

hnðyn−1 t þ 1ð Þ; t þ 1ð Þ−hn yn−1k t þ 1ð Þ; t þ 1
� �

¼ Dkn t þ 1ð Þðhn−1ðyn−2 t þ 1ð Þ; t þ 1ð Þ−hn−1

yn−2k t þ 1ð Þ; t þ 1
� ��

ð16Þ
hn yn−1 tð Þ; t� �

−hn yn−1k tð Þ; t� �
¼ Dkn tð Þðhn−1

�
yn−2 t þ 1ð Þ; t þ 1ð Þ−hn−1

yn−2k tð Þ; t� ��
ð17Þ

δϑkþ1 tð Þ ¼ δθk tð Þ−L tð Þ½Qn
i¼2Dki t þ 1ð ÞCk t þ 1ð ÞBk tð Þ�

f xd tð Þ; θd tð Þ; tð Þ− f xk tð Þ; θk tð Þ; tð Þ−
Yn

i¼2
Dki tð ÞCk tð Þ

δxk tð Þ�
ð18Þ

By definition of Ak(t) and Bk(t), (18) can be written

δϑkþ1 tð Þ ¼ 1−L tð Þ
Yn

i¼1
Dki t þ 1ð ÞCk t þ 1ð ÞBk tð Þ

h i
δθk tð Þ−L tð ÞYn

i¼1
Dki tð ÞCk tð Þ−

Yn

i¼1
Dki t þ 1ð ÞCk t þ 1ð ÞAk tð Þ

h i
δxk tð Þ

ð19Þ
From Eq. (7), we have

δϑkþ1 tð Þ ¼ ρδθk tð Þ þ L

	Yn

i¼1
Dki tð ÞCk tð Þ−

Yn

i¼1
Dki t þ 1ð Þ

Ck t þ 1ð ÞAk tð Þ


δxk tð Þ

ð20Þ
Remark

MkðtÞ ¼ L

	Q
i¼1

n
DkiðtÞCkðtÞ−

Q
i¼1

n
Dkiðt þ 1ÞCkðt þ 1ÞAkðtÞ



So (19) can be written

δϑkþ1 tð Þ ¼ ρδθk tð Þ þMk tð Þδxk tð Þ ð21Þ
Suppose Mk(t) ≤M, we take λ norm of (21).

δϑkþ1 tð Þ�� ��
λ≤ρ δθk tð Þk kλ þM δxk tð Þk kλ ð22Þ

Introducing (14) into (22), yields

δϑkþ1 tð Þ�� ��
λ≤ρ δθk tð Þk kλ þ

McB
cA cλ−1−1ð Þ δθk tð Þk kλ

ð23Þ
If there exist enough λ, then
lim
k→∞

kδθkðtÞkλ ¼ 0

The steps of using an iterative learning method to re-
produce the hidden images are as follows:

1. We find the superimposed mixed image y(t), and the
initial estimate θ0(t) with the given arbitrary image
sequence of multiple carrier wi(t) (i = 1,2,…,n), where
t∈ {1, 2, ,N}.

2. Set initial state xk(0) = x0, substituting θk(t) into the
iterative learning control system, and obtain Sk(t)
by solving.

3. Calculate the output error ek(t).
4. Using the iterative learning law to calculate θk + 1(t).
5. The given error J k ¼ supt∈f0;1;2;⋯NgkδθkðtÞk, if

ek(t) < Jk, then the system will stop iteration;
otherwise, set k = k + 1, go to step 2).

The image information is hidden in time-varying par-
ameter θk(t) obtained by the iterative learning method.
A set of image sequences is known, and then the hid-
den images are restored according to the pixel ratio of
the image.

5 Results and discussions
For mixed images and restored hidden images, we can
use the peak signal-to-noise ratio PSNR and normalized
cross-correlation coefficient NC to measure the object-
ive fidelity of the image. The peak signal-to-noise ratio
of the original carrier image F and image S containing
hidden information is measured.
PSNR is:

PSNR ¼ 101g
M � N � 2552PM

i¼1

PN
j¼1 F i; jð Þ−S i; jð Þð Þ2

 !
ð24Þ

The peak signal-to-noise ratio PSNR is used as a
measure of the objective fidelity of the image. The larger
the value, the higher the fidelity of the image mixture.
Normalized cross correlation (NC) measures the de-

gree of similarity between the extracted image and the
original image. It is defined as:

Table 1 Adding the Gaussian noise attack with Example 1

Gaussian noise VGN = 0.001 VGN = 0.01 VGN = 0.02

NC 0.9935 0.9781 0.9680

PSNR 25.673 24.823 22.081

Table 2 Adding the salt and pepper noise attack with Example
1

Salt and pepper noise INSP = 0.001 INSP = 0.01 INSP = 0.02

NC 0.9932 0.9721 0.9603

PSNR 26.543 25.829 22.321
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NC ¼
PM�M

i¼1 x tð Þ � x̂ tð ÞPM�M
i¼1 x tð Þ2 ð25Þ

where x(t) and x̂ðtÞ denote pixel value sequence of the
original image and pixel value sequence of extracted
image.
In this experiment, we use Camera (256*256) and Lena

(256*256) as the two carrier images, and the binary
image “true” (32*32) as the image to be hidden.
The state of the digital image embedding system is as

follows:
xðt þ 1Þ ¼ ðλþ θðtÞÞxðtÞð1−xðtÞÞ

y1ðtÞ ¼ α1w1ðtÞ þ ð1−α1ÞxðtÞ
y2ðtÞ ¼ α2w2ðtÞ þ ð1−α2Þy1ðtÞ
yðtÞ ¼ y2ðtÞ

8>><
>>:
Example 1. In the experiment, the hidden image

“true” is first embedded in the carrier image Lena.
Then, the mixed image is embedded into the carrier
image Camera again, and finally we obtain the mix-
ture images. Taking λ = 3.568, the initial xk(0) = 0.5.
Original image θ(t) is binary image, the carrier image
w1(t) and w2(t) are two pixel points of the same gray
image, and the images obtained after two times of
superposition and mixing are y (t).
Taking λ = 3.568, α1 = 0.52, according to the chaotic se-

quence generated by the Eq. (5), {αi}, we choose the re-
quired experimental parameter sequence {α1,α2}., the
given learning gain is:
LkðtÞ ¼ 1

ðβ1β2ÞxkðtÞð1−xk ðtÞÞ
where βi = 1 − αi, i = 1, 2

Figure 2 is the hidden image “true” used during the
experiment, and Fig. 3 is the carrier image Camera
and Lena. Firstly, the hidden image “true” needs to be
embedded in the first carrier image Lena, and then
the resulting mixed image is further embedded into
the second carrier image Camera. Figure 4 is the final
mixed image Camera and extracted hidden image
using an iterative learning method. Experimental re-
sults show that this method can completely recover
hidden images.
To verify the performance of the algorithm, we define

the index function as

Jk ¼ sup
t∈ 1;2;⋯;Nf g

δθk tð Þj j

We reconstruct the error convergence process of
hidden image “true” by iterative learning algorithm.
From Fig. 5, it can be seen that when the iterative
times reach to 3000, the identified image and original
image error has reached 10−12. The experimental re-
sults show that the method effectively reconstructs the
finite length information.
Example 2. In the experiment 2, the “wrong” is hid-

den image. Cherry and Lena are carrier images, then
we take the hidden image embeds into the carrier im-
ages and obtain the mixture images finally. Taking λ =
4.256, the initial xk(0) = 0. The rest of the conditions
are the same as the Example 1.

Fig. 12 Attacked with Gaussian noise and extracted hidden image (Example 2)

Fig. 13 Attacked with salt and pepper noise and extracted hidden image (Example 2)
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By the chaotic sequence produced by Eq. (5), {αi}, the
required experimental parameter sequences that we
choose are {α1,α2} and the given learning gain is:
LkðtÞ ¼ 1

ðβ1β2ÞxkðtÞð1−xk ðtÞÞ
where βi = 1 − αi, i = 1, 2
Figure 6 is the hidden image “wrong” used during the

experiment, and Cherry and Lena are the carrier images
in Fig. 7. Firstly, we embed the “wrong” image into the
Cherry and obtain a mixed image. Secondly, we embed
the mixed image into the Lena image. Figure 8 is the
final mixed image Cherry and extracting hidden image
by the iterative learning way. Experimental results illus-
trate that the way that we use can completely recon-
struct the hidden image.
We use the same index function as experiment 1:

Jk ¼ sup
t∈ 1;2;⋯;Nf g

δθk tð Þj j

We use the same algorithm to reconstruct the conver-
gence process of hidden image “wrong.” We know the it-
erative error has reached 10–14 with the iterative times
reach to 3000 from Fig. 9. The simulation shows the al-
gorithm can effectively reconstruct the finite length
information.
The anti-attack results of the test algorithm are as

follows:

1. Anti-attack test adding Gauss noise and salt and
pepper noise

Adding Gauss noise and salt and pepper noise to the
mixed image, the Gauss noise variance VGN is 0.001,
0.01, and 0.02, respectively. Noise intensity of salt and
pepper (INSP) is 0.001, 0.01, and 0.02.
Figures 10 and 11 show the mixed image and the ex-

tracted image after the attack. The similarity NC
between the original image and the extracted image
after the attack are shown in Table 1. The peak signal-to-
noise ratio PSNR of the original mixed image and the
mixed image after the attack is shown in Table 2.

2. Anti-attack test with compressed

The JPEG image compression method is a compres-
sion attack for the mixed image. The smaller the com-
pression factor Q, the higher the compression, that is,
the greater the pixel loss. In Experiment 1 and Experi-
ment 2, we separately select different compression fac-
tors Q to extract the hidden images respectively. When
Q = 10, the compression ratio is already very large. From
Figs. 10, 11, 12, and 13, it can be seen that the “true”
image proposed by the iterative learning identification
method still has a high correlation NC (0.78) and better
PSNR. It shows that the algorithm has better robustness
for JPEG compression attack. The robustness of
algorithms for JPEG compression attack are shown in
(Tables 3 and 4).

6 Conclusions
In this paper, we proposed the image extraction problem
by using iterative learning algorithm. This method is to
embed the hidden image into several different carrier
images. Finally, the iterative learning is used to fully
track the parameters of the image information, and the
hidden image is reproduced. The parameters of the
iterative learning law are updated with the change of
time, which shows that the algorithm has better self-
adaptability. Both experimental results show that
when the mixed image with hidden information is
attacked, the iterative learning recognition method
can still recover the hidden image, and the ordinary
reversible image solving method cannot restore the
hidden image. The experimental data also proves the
anti-attack of the algorithm.
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