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Abstract

The theory of compressed sensing (CS) has been successfully applied to image compression in the past few years,
whose traditional iterative reconstruction algorithm is time-consuming. Fortunately, it has been reported deep
learning-based CS reconstruction algorithms could greatly reduce the computational complexity. In this paper, we
propose two efficient structures of cascaded reconstruction networks corresponding to two different sampling
methods in CS process. The first reconstruction network is a compatibly sampling reconstruction network (CSRNet),
which recovers an image from its compressively sensed measurement sampled by a traditional randommatrix. In
CSRNet, deep reconstruction network module obtains an initial image with acceptable quality, which can be further
improved by residual reconstruction network module based on convolutional neural network. The second
reconstruction network is adaptively sampling reconstruction network (ASRNet), by matching automatically sampling
module with corresponding residual reconstruction module. The experimental results have shown that the proposed
two reconstruction networks outperform several state-of-the-art compressive sensing reconstruction algorithms.
Meanwhile, the proposed ASRNet can achieve more than 1 dB gain, as compared with the CSRNet.
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1 Introduction
In the traditional Nyquist sampling theory, the sampling
rate must be at least twice of the signal bandwidth in
order to reconstruct the original signal losslessly. On
the contrary, compressive sensing (CS) theory is a sig-
nal acquisition paradigm, which can sample a signal at
sub-Nyquist rates but realize the high-quality recovery
[1]. Later, Gan et al. proposed block compresses sens-
ing to reduce the algorithm’s computational complexity to
avoid directly applying CS on images with large size [2].
Due to CS’s excellent performance on sampling, CS has
already been widely used in a great deal of fields, such as
communication, signal processing, etc.
In the past decades, CS theory has advanced consid-

erably, especially in the development of reconstruction
algorithms [3–10]. Compressive sensing reconstruction
aims to recover the original signal x ∈ Rn×1 from the com-
pressive sensing measurement y ∈ Rm×1(m � n). The CS
measurement is obtained by y = �x, where � ∈ Rm×n is a
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CS measurement matrix. The process of reconstruction is
highly ill-posed, because there exist more than one solu-
tions x ∈ Rn×1 that can generate the same CS measure-
ment y. To solve this problem, the early reconstruction
algorithms always assume the original image signal has
the property of lp-norm sparsity. Based on this assump-
tion, several iterative reconstruction algorithms have been
explored, such as orthogonal matching pursuit (OMP)
[3] and approximate message passing(AMP) [4]. Distinc-
tively, the extension of the AMP, denoising-based AMP
(D-AMP) [5], employs denoising algorithms for CS recov-
ery and can get a high performance for nature images.
Furthermore, many works incorporate prior knowledge
of the original image signals, such as total variation spar-
sity prior [6] and KSVD [7], into CS recovery framework,
which can improve the CS reconstruction performance.
Particularly, TVAL3 [8] combines augmented Lagrangian
method with total variation regularization, which is also
a perfect CS image reconstruction algorithm. However,
almost all these reconstruction algorithms require to solve
an optimization problem. Most of those algorithms need
hundreds of iterations, which inevitably leads to high
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Fig. 1 The framework of CSRNet

computational cost and becomes the obstacle for the
applications of CS.
In recent years, some deep learning-based methods

have been introduced into the low-level problems and
get excellent performance, such as image super-resolution
[11, 12], image artifact removal [13], and CS image recon-
struction [14–17]. Recently, some deep network-based
algorithms for CS image reconstruction have been pro-
posed. ReconNet is proposed in [14], which takes CS
measurement of image patch as input and outputs its cor-
responding image reconstruction. Especially, for patch-
based CS measurement, ReconNet, inspired of SRCNN
[11], can retain rich semantic contents at low measure-
ment rate as compared to the traditional methods. In
[15], a framework is proposed to recover images from
CS measurements without the need to divide images into
small blocks, but there is no competitive advantage for
the performance of the reconstruction compared with
other algorithms. In [16, 17], the residual convolutional
neural network is introduced in the image reconstruc-
tion for compressive sensing, which can preserve some
information in previous layers and also can improve the
convergence rate and accelerate the training process. Dif-
ferent from the optimization-based CS recovery methods,
the neural network-based methods often directly learn
the inverse mapping from the CS measurement domain
to original image domain. As a result, it effectively avoids
expensive computation and achieves a promising image
reconstruction performance.
In this paper, two different cascaded reconstruction net-

works are proposed to meet different sampling methods.
Firstly, we propose a compatibly sampling reconstruc-
tion network (CSRNet), which is employed to reconstruct
high-quality images from compressively sensed measure-
ments sampled by a random sampling matrix. In CSRNet,
deep reconstruction network module can obtain an ini-
tial image with acceptable quality, which can be further
improved by residual network module based on convo-
lutional neural network. Secondly, in order to improve
the sampling efficiency of CS, an automatically sampling
module is designed, which has a fully connected layer

to learn a sampling matrix automatically. In addition,
the residual reconstruction module is presented, which
can match the sampling module. Both the sampling
module and its matching residual reconstruction mod-
ule form a complete compressive sensing image recon-
struction network, named ASRNet. As compared with
CSRNet, ASRNet can achieve more than 1 dB gain. The
experimental results demonstrate the proposed networks
outperform several state-of-the-art iterative reconstruc-
tion algorithms and deep-learning-based approaches in
objective and subjective quality.
The rest of this paper is organized as follows. In

Section 2, two novel networks are proposed for different
sampling methods. In Section 3, the performance of the
proposed networks is examined.We conclude the paper in
Section 4.

2 Themethods of proposed networks
In this section, we describe the proposed two networks
CSRNet in Fig. 1 and ASRNet in Fig. 4. The first net-
work, CSRNet, is designed to reconstruct image from the
CS measurement sampled by a random matrix. The sec-
ond one is a complete compressive sensing image recon-
struction network, ASRNet, consisting of both sampling
and reconstruction module. Here, our sampling module
contains only one fully-connected layer (FC), which is
more powerful to imitate traditional Block-CS sampling
process.

Fig. 2 The framework of deep reconstruction module
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Fig. 3 The framework of residual reconstruction module

2.1 CSRNet
Our proposed CSRNet consists of three modules, initial
reconstruction module, deep reconstruction module, and
residual reconstruction module. The initial reconstruc-
tion module takes the CS measurement y as input and
outputs a B×B-sized preliminary reconstructed image.
As shown in the Fig. 1, the deep reconstruction mod-
ule takes the preliminary reconstructed image as input
and outputs a same-sized image. The deep reconstruc-
tion module contains three convolutional layers, shown in
Fig. 2. The first layer generates 64 feature map with 11×11
kernel. The second layer uses kernel of size 1 × 1 and
generates 32 feature maps. And the third layer produces
one feature map with 7 × 7 kernel, which is the output
of this module. All the convolutional layers have the same
stride of 1, without pooling operation, and appropriate
zero padding is used to keep the feature map size con-
stant in all layers. Each convolutional layer is followed
by a ReLU layer except the last convolutional layer. Here,
deep reconstruction network module can obtain an ini-
tial image with acceptable quality, which is more suitable
to residual network module than cascaded residual net-
work module [16]. The residual reconstruction network
has the similar architecture as the deep reconstruction
network, shown in Fig. 3, which learns the residual infor-
mation between the input data and the ground truth. In
our model, we set B = 32.

In order to train our CSRNet, we need CS measure-
ments corresponding to each of the extracted patches. For
a given measurement rate, we construct a measurement
matrix, �B, by first generating a random Gaussian matrix
of appropriate size, followed by orthonormalizing its rows.
Then, we apply yi = �B × xver−i to obtain the set of CS
measurements, where xver−i is the vectorized version of
an image patch xi. Thus, an input-label pair in the training
set can be represented as {yi, xi}Ni . The loss function is the
average reconstruction error over all the training image
blocks, given by

L({W1,W2,W3})= 1
N

N∑

i=1
‖f3(f2(f1(yi,W1),W2),W3)−xi‖2

where N is the total number of image patches in the
training dataset, xi is the ith patch, and yi is the
corresponding CS measurement. The initial reconstruc-
tion mapping, the deep reconstruction mapping, and the
residual reconstruction mapping are represented as f1, f2,
and f3 respectively. In addition, {W1,W2,W3} are the net-
work parameters which can be obtained in the training.

2.2 ASRNet
Our proposed ASRNet contains three modules, sam-
pling module, initial reconstruction module, and residual
reconstructionmodule, as shown in Fig. 4. In the sampling

Fig. 4 The framework of ASRNet
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Table 1 PSNR valves in dB for testing image by different algorithms at the ratio MR = 0.25, 0.1, 0.04, and 0.01

Image name Algorithm
PSNR (without applying BM3D/with using BM3D)

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

Barbara TVAL3 24.19 / 24.20 21.88 / 22.21 18.98 / 18.98 11.94 / 11.96

D-AMP 25.08 / 25.96 21.23 / 21.23 16.37 / 16.37 5.48 / 5.48

ReconNet 23.25 / 23.52 21.89 / 22.50 20.38 / 21.02 18.61 / 19.08

DR2-Net 25.77 / 25.99 22.69 / 22.82 20.70 / 21.30 18.65 / 19.10

CSRNet 26.17 / 26.34 22.94 / 22.95 21.27 / 21.49 19.10 / 19.21

ASRNet 26.30 / 26.43 24.34 / 24.35 23.48 / 23.54 21.40 / 21.52

Fingerprint TVAL3 22.70 / 22.71 18.69 / 18.70 16.04 / 16.05 10.35 / 10.37

D-AMP 25.17 / 23.87 17.15 / 16.88 13.82 / 14.00 4.66 / 4.73

ReconNet 25.57 / 25.13 20.75 / 20.97 16.91 / 16.96 14.82 / 14.88

DR2-Net 27.65 / 27.75 22.03 / 22.45 17.40 / 17.47 14.73 / 14.95

CSRNet 27.22 / 27.49 21.64 / 21.91 17.59 / 17.68 15.11 / 15.18

ASRNet 28.82 / 29.23 26.25 / 26.83 20.98 / 21.45 16.20 / 16.21

Flinstones TVAL3 24.05 / 24.07 18.88 / 18.92 14.88 / 14.91 9.75 / 9.77

D-AMP 25.02 / 24.45 16.94 / 16.82 12.93 / 13.09 4.33 / 4.34

ReconNet 22.45 / 22.59 18.92 / 19.18 16.30 / 16.56 13.96 / 14.08

DR2-Net 26.19 / 26.77 21.09 / 21.46 16.93 / 17.05 14.01 / 14.18

CSRNet 25.46 / 25.47 20.52 / 20.82 17.29 / 17.41 14.32 / 14.39

ASRNet 26.93 / 27.40 24.01 / 24.56 19.78 / 20.08 16.30 / 16.39

Lena TVAL3 28.67 / 28.71 24.16 / 24.18 19.46 / 19.47 11.87 / 11.89

D-AMP 28.00 / 27.41 22.51 / 22.47 16.52 / 16.86 5.73 / 5.96

ReconNet 26.54 / 26.53 23.83 / 24.47 21.28 / 21.82 17.87 / 18.05

DR2-Net 29.42 / 29.63 25.39 / 25.77 22.13 / 22.73 17.97 / 18.40

CSRNet 29.55 / 29.70 25.72 / 25.97 22.89 / 23.17 19.11 / 19.20

ASRNet 30.65 / 30.89 28.54 / 28.78 25.74 / 25.93 21.74 / 21.93

Monarch TVAL3 27.77 / 27.77 21.16 / 21.25 16.73 / 16.73 11.09 / 11.11

D-AMP 26.39 / 26.55 19.00 / 18.96 14.57 / 14.57 6.20 / 6.20

ReconNet 24.31 / 25.06 21.10 / 21.51 18.19 / 18.32 15.39 / 15.49

DR2-Net 27.95 / 28.31 23.10 / 23.56 18.93 / 19.23 15.33 / 15.50

CSRNet 27.98 / 28.37 22.99 / 23.25 19.41 / 19.60 15.42 / 15.46

ASRNet 29.29 / 29.60 27.17 / 27.50 23.23 / 23.49 17.74 / 17.85

Parrots TVAL3 27.17 / 27.24 23.13 / 23.16 18.88 / 18.90 11.44 / 11.46

D-AMP 26.86 / 26.99 21.64 / 21.64 15.78 / 15.78 5.09 / 5.09

ReconNet 25.59 / 26.22 22.63 / 23.23 20.27 / 21.06 17.63 / 18.30

DR2-Net 28.73 / 29.10 23.94 / 24.30 21.16 / 21.85 18.01 / 18.41

CSRNet 28.86 / 29.05 24.79 / 25.01 22.16 / 22.31 19.50 / 19.61

ASRNet 29.61 / 29.80 27.68 / 27.85 24.52 / 24.67 21.87 / 22.01

Boats TVAL3 28.81 / 28.81 23.86 / 23.94 19.20 / 19.20 11.86 / 11.88

D-AMP 29.26 / 29.26 21.90 / 21.87 16.01 / 16.01 5.34 / 5.34
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Table 1 PSNR valves in dB for testing image by different algorithms at the ratio MR = 0.25, 0.1, 0.04, and 0.01 (Continued)

Image name Algorithm
PSNR (without applying BM3D/with using BM3D)

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

ReconNet 27.30 / 27.35 24.15 / 24.10 21.36 / 21.62 18.49 / 18.83

DR2-Net 30.09 / 30.30 25.58 / 25.90 22.11 / 22.50 18.67 / 18.95

CSRNet 30.14 / 30.36 25.65 / 25.80 22.38 / 22.55 18.99 / 19.09

ASRNet 31.28 / 31.64 28.86 / 29.17 25.52 / 25.72 21.53 / 21.69

Cameraman TVAL3 25.69 / 25.70 21.91 / 21.92 18.30 / 18.33 11.97 / 12.00

D-AMP 24.41 / 24.54 20.35 / 20.35 15.11 / 15.11 5.64 / 5.64

ReconNet 23.15 / 23.59 21.28 / 21.66 19.26 / 19.72 17.11 / 17.49

DR2-Net 25.62 / 25.90 22.46 / 22.74 19.84 / 20.30 17.08 / 17.34

CSRNet 25.85 / 26.15 22.29 / 22.53 20.23 / 20.38 17.75 / 17.90

ASRNet 26.46 / 22.66 25.00 / 25.13 22.74 / 22.88 19.77/ 19.89

Foreman TVAL3 35.42 / 35.54 28.69 / 28.74 20.63 / 20.65 10.97 / 11.01

D-AMP 35.45 / 34.04 25.51 / 25.58 16.27 / 16.78 3.84 / 3.83

ReconNet 29.47 / 30.78 27.09 / 28.59 23.72 / 24.60 20.04 / 20.33

DR2-Net 33.53 / 34.28 29.20 / 30.18 25.34 / 26.33 20.59 / 21.08

CSRNet 34.89 / 35.10 30.96 / 31.35 27.78 / 28.18 23.12 / 23.32

ASRNet 35.85 / 36.19 33.79 / 34.09 30.56 / 30.78 25.77 / 26.14

House TVAL3 32.08 / 32.13 26.29 / 26.32 20.94 / 20.96 11.86 / 11.90

D-AMP 33.64 / 32.68 24.55 / 24.53 16.91 / 17.37 5.00 / 5.02

ReconNet 28.46 / 29.19 26.69 / 26.66 22.58 / 23.18 19.31 / 19.52

DR2-Net 31.83 / 32.52 27.53 / 28.40 23.92 / 24.70 19.61 / 19.99

CSRNet 32.46 / 33.05 28.24 / 28.68 24.55 / 24.85 20.67 / 20.79

ASRNet 33.44 / 33.84 31.47 / 31.87 27.82 / 28.21 23.13 / 23.31

Peppers TVAL3 29.62 / 29.65 22.64 / 22.65 18.21 / 18.22 11.35 / 11.36

D-AMP 29.84 / 28.58 21.39 / 21.37 16.13 / 16.46 5.79 / 5.85

ReconNet 24.77 / 25.16 22.15 / 22.67 19.56 / 20.00 16.82 / 16.96

DR2-Net 28.49 / 29.10 23.73 / 24.28 20.32 / 20.78 16.90 / 17.11

CSRNet 28.58 / 29.19 24.35 / 24.65 21.18 / 21.51 17.61 / 17.67

ASRNet 29.72 / 30.18 27.03 / 27.37 24.03 / 24.32 20.17 / 20.33

Mean PSNR TVAL3 27.84 / 27.87 22.84 / 22.86 18.39 / 18.40 11.31 / 11.34

D-AMP 28.17 / 27.67 21.14 / 21.09 15.49 / 15.67 5.19 / 5.23

ReconNet 25.54 / 25.92 22.68 / 23.23 19.99 / 20.44 17.27 / 17.55

DR2-Net 28.66 / 29.06 24.32 / 24.71 20.80 / 21.29 17.44 / 17.80

CSRNet 28.83 / 29.11 24.55 / 24.81 21.52 / 21.74 18.25 / 18.35

ASRNet 29.85 / 30.17 27.65 / 27.96 24.40 / 24.65 20.51 / 20.66

“MEAN PSNR” is the mean PSNR values among all 11 testing images

module, we use a fully connected layer to imitate the tra-
ditional compressed sampling process. And the process of
compressed sampling is expressed as yi = �Bxi in tradi-
tional Block-CS. If the image is divided into B×B blocks,
the input of the fully connected layer is a B2×1 vector. For

the sampling ratio α, we can obtain nB = B2 × α sampling
measurements.
The initial reconstruction module and residual recon-

struction module are matching with the sampling module.
The initial reconstruction module takes those sampling
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Table 2 SSIM valves in dB for testing image by different
algorithms at the ratio MR = 0.25, 0.1, 0.04, and 0.01

Image name Algorithm
SSIM (without applying BM3D)

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

Barbara ReconNet 0.6829 0.5732 0.4803 0.3712

DR2-Net 0.7991 0.6364 0.5133 0.3822

CSRNet 0.8024 0.6312 0.5275 0.3957

ASRNet 0.8075 0.7086 0.6213 0.4665

Fingerprint ReconNet 0.9505 0.8026 0.4918 0.1656

DR2-Net 0.9672 0.8576 0.5491 0.1843

CSRNet 0.9635 0.8259 0.5278 0.1802

ASRNet 0.9797 0.9579 0.7938 0.1818

Flinstones ReconNet 0.8553 0.6889 0.4947 0.2758

DR2-Net 0.9279 0.7942 0.5536 0.2959

CSRNet 0.9174 0.7765 0.5743 0.2965

ASRNet 0.9516 0.9262 0.7735 0.4408

Lena ReconNet 0.7784 0.6546 0.5650 0.4390

DR2-Net 0.8540 0.7303 0.6244 0.4529

CSRNet 0.8632 0.7508 0.6471 0.4872

ASRNet 0.8871 0.8398 0.7440 0.5684

Monarch ReconNet 0.7808 0.6494 0.5199 0.3767

DR2-Net 0.8682 0.7401 0.5783 0.3899

CSRNet 0.8691 0.7419 0.5896 0.4032

ASRNet 0.8974 0.8618 0.7506 0.4769

Parrots ReconNet 0.8099 0.7142 0.6315 0.5324

DR2-Net 0.8677 0.7709 0.6741 0.5615

CSRNet 0.8868 0.8032 0.7180 0.6097

ASRNet 0.9019 0.8730 0.7989 0.6790

Boats ReconNet 0.7838 0.6454 0.5277 0.4063

DR2-Net 0.8612 0.7281 0.5876 0.4256

CSRNet 0.8628 0.7198 0.5784 0.4365

ASRNet 0.8842 0.8266 0.6937 0.5054

Cameraman ReconNet 0.7165 0.6193 0.5317 0.4495

DR2-Net 0.7935 0.6872 0.5906 0.4777

CSRNet 0.8043 0.6846 0.6048 0.5053

ASRNet 0.8213 0.7932 0.7014 0.5696

Foreman ReconNet 0.8469 0.7698 0.6802 0.5810

DR2-Net 0.9028 0.8360 0.7506 0.6220

CSRNet 0.9172 0.8598 0.7813 0.6541

ASRNet 0.9280 0.9048 0.8470 0.7247

House ReconNet 0.7832 0.6933 0.6121 0.5286

Table 2 SSIM valves in dB for testing image by different
algorithms at the ratio MR = 0.25, 0.1, 0.04, and 0.01 (Continued)

Image name Algorithm
SSIM (without applying BM3D)

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

DR2-Net 0.8459 0.7617 0.6753 0.5540

CSRNet 0.8593 0.7785 0.6943 0.5805

ASRNet 0.8751 0.8434 0.7695 0.6296

Peppers ReconNet 0.7488 0.6351 0.5315 0.4222

DR2-Net 0.8232 0.7042 0.5832 0.4365

CSRNet 0.8271 0.7219 0.6195 0.4747

ASRNet 0.8605 0.8386 0.7549 0.5607

Mean SSIM ReconNet 0.7942 0.6769 0.5515 0.4135

DR2-Net 0.8646 0.7497 0.6073 0.4348

CSRNet 0.8703 0.7540 0.6239 0.4567

ASRNet 0.8904 0.8522 0.7499 0.5276

“MEAN SSIM” is the mean SSIM values among all 11 testing images

measurements as input and outputs a B×B-sized pre-
liminary reconstructed image. Similar to sampling mod-
ule, we also use a fully connected layer to imitate the
traditional initial reconstruction process, which can be
presented by x̃j = φ̃B × yj. In our design, the φ̃B can
be learned automatically instead of computing by the
complicatedMMSE linear estimation. The residual recon-
struction module is similar as the residual reconstruction
module in CSRNet, shown in Fig. 3. The output of the
residual reconstruction module is the final output of the
network.
Given the original image xi , our goal is to obtain the

highly compressed measurement yj with the compressed
sampling module and then accurately recover it to the
original image xj with reconstruction module. Since the
sampling module, the initial reconstruction module, and
the residual reconstruction module form an end-to-end
network, they can be trained together and do not need
to be concerned with what the compressed measure-
ment is in training. Therefore, the input and the label
are all the image itself for training our ASRNet. Fol-
lowing most of deep learning-based image restoration

Table 3 Time(in seconds) for reconstruction a single 256 × 256
image

Models MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

ReconNet 0.5376 0.5366 0.5415 0.5508

DR2-Net 1.2879 1.2964 1.3263 1.3263

CSRNet 0.5355 0.5375 0.5464 0.5366

ASRNet 0.3038 0.2984 0.3005 0.3025
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Fig. 5 The reconstruction results of Parrots at the measurement rate of 0.1 without BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet.
f ASRNet

methods, the mean square error is adopted as the cost
function of our network. The optimization objective is
represented as

L({W4,W5,W6})= 1
N

N∑

i=1
‖f6(f5(f4(xi,W1),W2),W3)−xi‖2

where {W4,W5,W6} are the network parameters needed
to be trained, f4 is the sampling, and f5 and f6 corre-
spond the initial reconstruction mapping and residual

reconstruction mapping respectively. It should be noted
that we train the compressed sampling network and the
reconstruction network together, but they can be used
independently.

3 Results and discussion
In this section, we evaluate the performance of the pro-
posed methods for CS reconstruction. We will firstly
introduce the details during our training and testing.

Fig. 6 The reconstruction results of Parrots at the measurement rate of 0.1 with BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet. f ASRNet
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Fig. 7 The reconstruction results of Monarch at the measurement rate of 0.1 without BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet.
f ASRNet

Then, we show the quantitative and qualitative compar-
isons with four state-of-the-art methods.

3.1 Training
The dataset used in our training is the set of 91 images
in the [14]. The set 5 from [14] constitutes to be our
validation set. We only use the luminance component of
the images. We uniformly extract patches of size 32 × 32

from these images with a stride equal 14 for training
and 21 for validation to form the training dataset of
22,144 patches and the validation dataset which con-
tains 1112 patches. Both CSRNet and ASRNet use the
same dataset. We train the proposed networks with
different measurement rates (MR) = 0.25, 0.10, 0.04,
and 0.01. The Caffe is used to train the proposed
model.

Fig. 8 The reconstruction results of Monarch at the measurement rate of 0.1 with BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet.
f ASRNet
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Fig. 9 The reconstruction results of House at the measurement rate of 0.1 without BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet.
f ASRNet

3.2 Comparison with existing methods
3.2.1 Objective quality comparisons
Our proposed algorithm is compared with four repre-
sentative CS recovery methods, TVAL3 [8], D-AMP [5],
ReconNet [14], and DR2-Net [16]. The first two belong
to traditional optimization-based methods, while the last
two are recent network-based methods. For the simu-
lated data in our experiments, we evaluate the proposed
methods on the same test images as in [14], which con-
sists of 11 grayscale images. Here, nine images have size

of 256 × 256 and two images are 512 × 512. We compute
the PSNR value for total 11 images, and the results are
shown in Table 1. We use the BM3D [18] as the denoiser
to remove the artifacts resulting due to patch processing.
It is obvious to see that ASRNet can achieve more than
1 dB gain, as compared with CSRNet. We add SSIM
comparison between our proposed networks and
network-based methods, ReconNet and DR2-Net, as
shown in Table 2. From Tables 1 and 2, it can be found
that our proposed CSRNet and ASRNet outperform other

Fig. 10 The reconstruction results of House at the measurement rate of 0.1 with BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet. f ASRNet
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Fig. 11 The reconstruction results of Boats at the measurement rate of 0.1 without BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet.
f ASRNet

algorithms under each measurement rates, especially
at 0.04 and 0.01. In addition, the performance of our
methods decreases slowly compared to other algorithms
with the measurement rate down.

3.2.2 Time complexity
The time complexity is a key factor for image compressive
sensing. In the progress of reconstruction, the network-
based algorithms are much faster than traditional iterative
reconstruction methods, so we only compare the time

complexity with ReconNet and DR2-Net. Table 3 shows
the average time for reconstructing nine sized 256 × 256
images of those network-based methods.
From the Tables 1, 2, and 3, we can observe that the

proposed CSRNet and ASRNet outperform the Recon-
Net and DR2-Net in terms of PSNR, SSIM, and time
complexity. And our ASRNet obtains the best perfor-
mance in all objective quality assessments. Notably, ASR-
Net run fastest which is very important for real-time
applications.

Fig. 12 The reconstruction results of Boats at the measurement rate of 0.1 with BM3D. a TVAL3. b DAMP. c ReconNet. d DR2-Net. e CSRNet. f ASRNet
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Fig. 13 The reconstruction results of Barbara at the measurement rate of 0.25, 0.1, 0.04, and 0.01 without BM3D

Fig. 14 The reconstruction results of Barbara at the measurement rate of 0.25, 0.1, 0.04, and 0.01 with BM3D
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Fig. 15 The reconstruction results of Flinstones at the measurement rate of 0.25, 0.1, 0.04, and 0.01 without BM3D

3.2.3 Visual quality comparisons
Our proposed algorithm is compared with four rep-
resentative CS recovery methods, TVAL3, D-AMP,
ReconNet, and DR2-Net in visual. Figures 5 and 6 show
the visual comparisons of Parrots in the case of measure-
ment rate = 0.1 with and without BM3D respectively.
It is obvious that the proposed CSRNet and ASRNet
are able to reconstruct more details and sharper, which
offers better visual reconstruction results than other
network-based algorithms. The other three groups are
shown in Figs. 7, 8, 9, 10, 11, and 12. The test images
under different rates with or without BM3D are shown in
the Figs. 13, 14, 15, and 16. We can see that our proposed
CSRNet and ASRNet outperforms ReconNet and
DR2-Net at each measurement rate.

3.3 Evaluation on our proposed architectures
In order to verify the innovation and rationality of our net-
works’ architectures in more detail, we add a comparison

between the intermediate outputs and the final outputs
of our methods in objective and subjective quality. Apart
from the above four MR, we additionally train the models
of CSRNet and ASRNet at the MR = 0.2 and 0.15. We
calculate the mean PSNR and SSIM values of the total 11
test images at eachmeasurement rate, as shown in Table 4.
The CSRNet-i means the intermediate output of the deep
reconstruction module in the CSRNet, and the ASRNet-i
represents the intermediate output of the initial recon-
struction module in the ASRNet. From the results shown
in Table 4, the final outputs of CSRNet and ASRNet both
perform better than their intermediate outputs at each
measurement rate. As shown in Figs. 17 and 18, we respec-
tively give the intermediate and final CSRNet subjective
evaluation of Cameraman, House, Monarch, and Parrots
at MR = 0.20 and 0.10. Figures 19 and 20 show the inter-
mediate and final ASRNet subjective evaluation of Boats,
Cameraman, Peppers, and Monarch at MR = 0.04 and
0.10. Compared to intermediate results, our final results
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Fig. 16 The reconstruction results of Flinstones at the measurement rate of 0.25, 0.1, 0.04, and 0.01 with BM3D

express more natural textures and details. All final results
outperform previous intermediate results substantially in
terms of image quality. It is intuitively confirmed that our
proposed networks are reasonable, stable, and reliable.

4 Conclusion
In this paper, two cascaded reconstructed networks are
proposed for different CS sampling methods. In most
previous works, the sample matrix is a random matrix
in CS process. And the first network is a compatibly

sampling reconstruction network (CSRNet), which can
reconstruct high-quality image from its compressively
sensed measurement sampled by a traditional random
matrix. The second network is adaptively sampling recon-
struction network (ASRNet), by matching automatically
samplingmodule with corresponding residual reconstruc-
tion module. And the sampling module could perfectly
solve the problem of sampling efficiency in compres-
sive sensing. Experimental results show that the pro-
posed networks, CSRNet and ASRNet, have achieved the

Table 4 The mean PSNR/SSIM values of 11 test images without applying BM3D

Models MR = 0.25 MR = 0.20 MR = 0.15 MR = 0.10 MR = 0.04 MR = 0.01

CSRNet-i 27.53/0.8322 24.70/0.7554 24.32/0.7405 23.57/0.7068 21.27/0.6085 18.24/0.4401

CSRNet 28.83/0.8703 25.42/0.7847 25.27/0.7818 24.55/0.7540 21.52/0.6239 18.25/0.4567

ASRNet-i 28.48/0.8527 27.39/0.8343 26.81/0.8208 26.76/0.8262 23.89/0.7240 20.37/0.5187

ASRNet 29.85/0.8904 29.19/0.8842 28.30/0.8668 27.65/0.8521 24.40/0.7499 20.51/0.5276
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Fig. 17 The intermediate and final reconstruction results of CSRNet at the measurement rate 0.20

Fig. 18 The intermediate and final reconstruction results of CSRNet at the measurement rate 0.10
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Fig. 19 The intermediate and final reconstruction results of ASRNet at the measurement rate 0.04

Fig. 20 The intermediate and final reconstruction results of ASRNet at the measurement rate 0.10
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significant improvements in reconstruction results over
the traditional and neural network-based CS reconstruc-
tion algorithms both in terms in quality and time com-
plexity. Furthermore, ASRNet can achieve more than 1 dB
gain, as compared with CSRNet.

Abbreviations
ASRNet: Adaptively sampling reconstruction network; CS: Compressive
sensing; CSRNet: Compatibly sampling reconstruction network
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