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Abstract

Image denoising is considered a salient pre-processing step in sophisticated imaging applications. Over the decades,
numerous studies have been conducted in denoising. Recently proposed Blockmatching and 3D (BM3D) filtering
added a new dimension to the study of denoising. BM3D is the current state-of-the-art of denoising and is capable of
achieving better denoising as compared to any other existing method. However, there is room to improve BM3D to
achieve high-quality denoising. In this study, to improve BM3D, we first attempted to improve the Wiener filter (the
core of BM3D) by maximizing the structural similarity (SSIM) between the true and the estimated image, instead of
minimizing the mean square error (MSE) between them. Moreover, for the DC-only BM3D profile, we introduced a 3D
zigzag thresholding. Experimental results demonstrate that regardless of the type of the image, our proposed method
achieves better denoising performance than that of BM3D.

Keywords: Image denoising, Image restoration, BM3D, Wiener filter, Structural similarity, Collaborative filtering,
Hard thresholding, Mean square error

1 Introduction
There are different types of noise that can contaminate
a digital image. Depending on the noise type, there are
various algorithms present in the literature for denois-
ing the image. Block matching and 3D (BM3D) filtering
[5] is one such popular algorithm that reduces additive
white Gaussian noise (AWGN) [16] from digital images.
In terms of denoising performance, BM3D is considered
the best denoising filter to date. It exhibits remarkable
results when compared to other existing methods. BM3D
works in two identical steps. In the first step, it generates a
basic estimate of the noisy image using hard thresholding.
Then in the second step, it uses Wiener filter to actually
denoise the noisy image. To do so, BM3D uses the basic
estimate generated from the first step as an oracle (i.e., a
pilot signal) in the Wiener filter.
Wiener filter is an age-old benchmark for image denois-

ing and restoration [23]. This filter needs a degradation
function for denoising or restoration. The better the
degradation function is, the more denoising is achievable
by Wiener filter. BM3D uses the basic estimated image
from the first step as the degradation function of Wiener
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filter. Thus, the ultimate performance of BM3D largely
depends on how good the basic estimate is.
Although BM3D achieves good denoising performance,

it is not sufficient to denoise images contaminated by huge
levels of noise. In other words, the performance of BM3D
decreases with the increase of noise level. Again, among
the different profiles of BM3D (a profile is a specific set
of parameters), the DC-only profile (meaning that the 3D
transform used is the 3D-DCT) generally performs poorer
than the others. Therefore, there is scope to either propose
better denoising technique than BM3D or to make BM3D
perform better than what it can currently do.
TheWiener filter [23] was proposed about half a century

ago. Different researchers attempted to improve the per-
formance of the Wiener filter; however, most studies did
not directly address one persisting problem of the Wiener
filter which is it uses an objective function, called mean
square error (MSE), which is often a misleading measure.
In other words, it is possible to use a better measure than
MSE as the objective function of Wiener filter. Also, if the
Wiener filter can be improved, the performance of BM3D
can also be improved, since it uses theWiener filter as one
of its fundamental components.
In this study, we will primarily focus on the improve-

ment of Wiener filter. Then, we will use this improved
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Wiener filter in BM3D to improve its response as well.
Our objective is to eventually improve the denoising per-
formance of all profiles of BM3D through improving the
Wiener filter. Note that the authors previously published
their preliminary idea of how the Wiener filter can be
improved [9]. In this article, the authors will utilize their
previousWiener improvement idea to further improve the
BM3D filtering scheme. In addition, we will also design
some additional components to improve the performance
of BM3D, especially the performance of BM3D profile.
It is worth mentioning that from now on till the end of
the article, we will refer to Additive White Gaussian Noise
(AWGN) whenever the term noise is used.
The rest of the article is organized as follows. In

Section 2, we will discuss the working procedure and
parameterized setup of BM3D in details. In Section 3, we
will discuss theWiener filter and its variants. In Section 4,
we will address the existing problems of the Wiener filter
and BM3D that we are interested to solve in this study.We
will propose our methodologies in Section 5 and report
their performance in Section 6. Finally, we will conclude
in Section 7 discussing some possible future work.

2 Blockmatching and 3D (BM3D) filtering
In recent years, probably the most discussed denoising
technique is block matching and 3D (BM3D) filtering [5].
It was first suggested by Dabov et al. in 2007. Later, it
was rigorously reviewed by Lebrun [12]. The idea has
become extensively popular in denoising over the last few
years. BM3D achieves excellent performance for reducing
AWGN noise. In this section, we will discuss BM3D and
its different profiles.

2.1 Algorithm of BM3D
The BM3D algorithm can be simply described in a step by
step fashion. Let us start with Fig. 1 that shows the block
diagram of BM3D [5].
BM3D takes the concept of non-local means (NLM)

published in 2005 [2] in the sense that it also attempts
denoising based on finding similar patches within a given

window. BM3D has two identical steps namely step 1 and
step 2. They are identical in the sense that they have no
operational difference, rather the difference lies in the
component that are used during the two steps. For exam-
ple, the first step uses hard thresholding while the second
step uses Wiener filtering. Other than that, both steps are
identical. BM3D basically tries to denoise the noisy image
in the first step to generate a basic estimate. This basic
estimate is used in Wiener filtering of the second step as
an oracle (i.e., degradation model) [5].

2.1.1 BM3D first step
In step 1, BM3D starts its operation by dividing the noisy
image into a number of blocks or patches. For each patch,
it then generates a window centering the block being pro-
cessed. BM3D defines this center patch as a reference
patch. Then, within this window, BM3D looks for the
patches similar to the reference patch. Usually, a good
number of similar patches are found. BM3D defines a
threshold that decides whether two patches are similar
or not (see Table 1). Once the similar patches are found,
BM3D stacks all the similar patches together thus building
a 3D block, where the first patch is the reference patch and
others patches are sorted according to their distance to
the reference patch. BM3D allows a number of 3D trans-
form techniques to transform the domain from spatial to
frequency (as indicated by the 3D transform in Fig. 1).
After the 3D transform is performed, the most impor-
tant part of the first step, known as hard thresholding,
is executed. Hard thresholding is a filter that allows any
coefficient with absolute value above a certain threshold
to pass through, while converts the remaining coefficients
to zero. This is the only operation in the first step that per-
forms denoising, the rest are only to make a platform for
hard thresholding. After hard thresholding, BM3D tries
to generate a basic estimate. For this, it needs to trans-
form the block coefficients to intensity values in the spatial
domain. This is known as inverse 3D transform. After
performing the inverse 3D transform, what is obtained is
the 3D block that we started working with. But this time,

Fig. 1 BM3D block diagram
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Table 1 Parameterized setup for the wavelet profile of BM3D

Fast profile
Normal profile

Notations Meaning σ ≤ 40 σ > 40

Parameters for τ ht2D 2D transform used 2D-Bior1.5 2D-Bior1.5 2D-DCT

step 1 (ht) Nht
1 Patch size 8 8 12

Nht
2 Maximum number of 16 16 16

similar patches retained

Nht
step Step of ref. patch 6 3 4

Nht
S Size of search window 25 39 39

Nht
FS Exhaustive search window size 6 1 1

Nht
PR Predictive search window size 3 - -

βht Parameters for Kaiser window 2.0 2.0 2.0

λ2D Pre-processing threshold 0 0 2.0

λ3D Hard threshold 2.7 2.7 2.8

τ htmatch Similarity threshold for patches 2500 2500 5000

Parameters for τwie2D 2D transform used 2D-DCT 2D-DCT 2D-DCT

step 2 (wie) Nwie
1 Patch size 8 8 11

Nwie
2 Maximum number of 16 32 32

similar patches retained

Nwie
step Step of ref. patch 5 3 6

Nwie
S Size of search window 25 39 39

Nwie
FS Exhaustive search window size 5 1 1

Nwie
PR Predictive search window size 2 - -

τwiematch Similarity threshold for patches 400 400 3500

βwie Parameters for Kaiser window 2.0 2.0 2.0

Common 1D-Haar 1D-Haar 1D-Haar

it is denoised. Now, for each patch in the 3D block, an
aggregation to estimate the reference patch is made. This
aggregation is simply taking different weights and estimat-
ing each pixel. Once the aggregation is done, the basic
estimate is ready to start the second step.
In theory, it is obvious that the more patches are present

in the 3D block, the better estimates will be found for one
single pixel as well as the better denoised basic estimates.
However, according to Dabov et al. [5], in practice, it is
seen that after a certain number of similar patches, BM3D
does not seem to perform better.

2.1.2 BM3D second step
The second step is similar to the first step with two small
differences. First, the 3D grouping is now performed on a
basic estimate that was obtained from the first step, not on
the noisy image as in step 1. Second, the hard threshold-
ing is not used any more after the 3D transform. Instead,
a Wiener filter is now used. We will discuss in Section 3
that the Wiener filter needs a degradation function H() to
work. In BM3D, the 3D group built on the basic estimate

is considered as the degradation function for BM3D while
the corresponding 3D group of the noisy image is the
degraded image function G().
Equation 1 shows how the Wiener filter works in

BM3D. Here, Pbasic(P)(ξ) is the 3D block from the basic
image and P(P) is the corresponding 3D block from the
noisy image. τwien3D denotes the 3D transformation for the
Wiener filter phase. Once the inverse 3D transform of
Eq. 1 is computed, Pwien(P) is found which is the final
estimate for one block. Once the estimate is obtained,
a weighted aggregation operation, like in step 1, is per-
formed to build the final denoised image.

ωp(ξ) =
∣
∣τwien3D P

basic(P)(ξ)
∣
∣
2

∣
∣τwien3D Pbasic(P)(ξ)

∣
∣
2 + σ 2

· τwien3D P(P) (1)

2.1.3 Parameters and profiles of BM3D
The performance of BM3D varies depending on the type
of transformation used in both steps. There are two
major profiles of BM3D, namely: DC-only profile and
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wavelet profile. In DC-Only profile, BM3D uses a three-
dimensional discrete cosine transform as a 3D transform.
For the wavelet profile, on the other hand, BM3D uses a
combination of 2D bi-orthogonal transform and 1D-Haar
or Walsh-Hadamard transform. DC-only profile gener-
ally produces poorer results as compared to its wavelet
counterpart [5, 6]. Wavelet profile may be defined as
the mainstream BM3D since the authors of BM3D [5]
recommended to use Wavelet transform in their pro-
posed denoising method. This is because, the main stream
BM3D has PSNR gain much better than DC-only profile.
For the wavelet profile, we used an exactly same parame-
terized setup as in BM3D [5].We present the basic param-
eterized setup from the original article [5] in Table 1 for
readers’ convenience. We use exactly the same parameters
to ensure the same environment for the experiment. The
wavelet profile uses two sub-profiles called normal pro-
file and fast profile. The only difference between them is
that the denoising performance is compromised in order
to reduce the computational complexity in fast profile.
Another difference between these two profiles is the fast
profile uses predictive searching in order to decrease its
searching time while the normal profile uses only exhaus-
tive searching.

3 Wiener filter revisited
AWiener filter provides an opportunity to deal with both
noises and degradation. This feature makes theWiener fil-
ter unique in both image denoising and restoration. This
filter is also called minimum mean square error. This is
because the core idea behind the Wiener filter is to sat-
isfy an objective function which is the mean square error
(MSE). In other words, this guarantees that the image
restored by the Wiener filter f̂ will have minimum MSE
with respect to original uncorrupted image f. Equation 2
shows that the expectation of a Wiener filter is to have
minimumMSE between f and f̂ .

e2 = E(f − f̂ )2 (2)

TheWiener filter is defined by Eq. 3. Note that all terms
are given in the transformed domain. Here, H(u, v) is the
degradation function, H∗(u, v) is the conjugate complex
of H(u, v), Sn is the power spectrum of noise defined as
Sn = |N(u, v)|2, and Sf is the power spectrum of unde-
graded image defined as Sf = |F(u, v)|2. G(u, v) is the
transform of the degraded image, and F̂(u, v) is the final
estimate for the restored image. Once the inverse trans-
form of F̂(u, v) is computed, f̂ (x, y) is obtained which is
the denoised/restored approximation for original image
f (x, y).

F̂(u, v) = H∗(u, v)
|H(u, v)|2 + Sn

Sf

G(u, v) (3)

Comparing Eq. 1 with Eq. 3, it is evident that both
equations are exactly the same, except that Eq. 1 works
with 3D data. Equation 3 can be solved for G(u, v) as in
Eq. 4 and rewrite Eq. 4 as in Eq. 5.

G(u, v) = H∗(u, v)Sf (u, v))
|H(u, v)|2 Sf (u, v) + Sn(u, v)

(4)

G(u, v) = 1
H(u, v)

⎡

⎣
|H(u, v)|2

|H(u, v)|2 + Sn(u,v)
Sf (u,v)

⎤

⎦ (5)

Now, if the noise is zero, the term inside the square
brackets in Eq. 5 becomes 1, which means the Wiener
filter is reduced to an inverse filter and works for only
restoration. However, if there is noise, the Wiener fil-
ter incorporates itself for removal of noise along with
restoration. This is what makes the Wiener filter unique.

4 Existing problems withWiener filter and BM3D
4.1 Wiener filter objective function
4.1.1 MSE-optimizedWiener filter
As stated in Section 3, a Wiener filter tries to mini-
mize its objective function shown in Eq. 2 while denois-
ing/restoring a degraded image. This function is also
known as mean square error (MSE) as defined in Eq. 6.

MSE = 1
m × n

m−1
∑

i=0

n−1
∑

j=0
[ I(i, j) − Î(i, j)]2 (6)

In this Equation, I and Î are considered as the true
(or noise free) image and the reconstructed (or denoised)
image, respectively. As the difference between these two
gets smaller the closer the images are. Also, increased
closeness indicates a more accurately denoised image.
With this fundamental property, MSE is being used as an
image quality metric [13].
The Wiener filter (Eq. 3) guarantees that the

denoised/restored image is the closest image possible to
the true undegraded image, since this filter is optimized
for MSE. We might conclude at this point that in the best-
case scenario the Wiener filter may reconstruct an image
whose MSE with respect to the true image is zero. That is,
both images are exactly the same. However, there are still
problems with the typical use of MSE that prevent the
Wiener filter from achieving more accurate and perfect
results.

4.1.2 Structural similarity
Wang et al. [20] showed that althoughMSE is a good qual-
ity measure, it is sometimes seriously misleading. This
is because MSE does not consider anything other than
the point-to-point distance [21]. For example, if we add a
constant value to all the pixel values of an image just to
increase its brightness, the images are visually exactly the
same; however, MSE still generates a huge error because
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of point-to-point distance measurement. Figure 2 shows
such an example of misleading of MSE measure. In this
figure, we used the well-known Lena image in Fig. 2a and
added a constant 30 to all of its pixel values in order to
increase its brightness. The brightened image is shown in
Fig. 2b. Although there is no visual distortion in the image,
the calculated MSE between them is 900. This value is not
negligible, and hence MSE cannot be considered as a true
error measure.
Now, let us also consider Fig. 2c. This is similar to Fig. 2b

except that nowwe have not just added a positive constant
to all brightness levels, instead, if the brightness value is
less than 150, we subtracted 30 from it; otherwise, we
added 30. Due to the presence of the square term in Eq. 6,
the MSE still generates the same error value (900) as in
Fig. 2, even though the image in Fig. 2c is greatly distorted,
if it is compared with the image in Fig. 2b.
To avoid such misleading error situations, Wang et al.

[20] proposed that modern image quality measurement
metrics should not depend only on point-to-point dis-
tances, it should also consider the geometric or structural
similarity between the images. Otherwise, there is a pos-
sibility to have the same error results for different images
as depicted above. Thus, they proposed a new error mea-
surement metric called structural similarity (SSIM). Their
proposed error measure, SSIM, is defined in Eq. 7.

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)
(

μ2
x + μ2

y + c1
) (

σ 2
x + σ 2

y + c2
) (7)

In this Equation, x and y denote two blocks of the same
position from the true image and the reconstructed image.
μx and μy denote the arithmetic mean or average of x and
y blocks, respectively. σ 2

x and σ 2
y indicate the variance of

x and y blocks, respectively, while σxy is the co-variance
between x and y. c1 and c2 are two constants to stabi-
lize the division with weak denominator and their values
are calculated using Eqs. 8 and 9, respectively. Here, L is
the dynamic range of the image while k1 and k2 are two

constants whose values are k1 = 0.01 and k2 = 0.03,
respectively [20, 21].

c1 = (k1L)2 (8)

c2 = (k2L)2 (9)
This measure is calculated block by block. Therefore, a

mean SSIM of all blocks is used to represent the final SSIM
index value for the whole image. The SSIM index generally
varies between − 1 to + 1 which is often taken as abso-
lute to avoid a negativity value. Thus, the SSIM index is
a fractional number between 0 and 1 (inclusive), where a
0 indicates no similarity and a 1 indicates exact similarity
between two images. Using this measure, we have 0.9650
and 0.7850 for Fig. 2b, c, respectively, which indicates that
Fig. 2c is muchmore distorted than Fig. 2b. This distortion
was overlooked by MSE.
There are other misleading measures of MSE; however,

we will not cover them in this study. For a detail list of
misleading characteristics of MSE, we refer the reader to
the literature [10, 20–22].

4.2 Existing problems of BM3D
4.2.1 Higher noise levels
BM3D has poor denoising performance to images cor-
rupted by higher levels of noise as compared to its
response to images corrupted by lower levels of noise. In
other words, BM3D’s performance decreases as the noise
level increases.

4.2.2 Poor performance of BM3D for DC-only profile
BM3D requires the hard thresholding to be performed in a
transform domain, after the 3D transform is performed on
the similar image blocks. This 3D transform can be either
a 2D+1D transform or a 3D transform. In BM3D, usually
a 3D Wavelet is used as 3D transform or a combination
of 2D-DCT plus a 1D wavelet transform. However, the
transform choice is not restricted. If the 3D-DCT is used,
this profile is called DC-only profile. Note that, a profile

Fig. 2 The MSE effect on brightness increase: a Original Lena image. b Lena image after adding a constant value of 30 to all pixel values to increase
the brightness. c Lena image after subtracting a constant value of 30 from any pixel value less than 150 and adding a constant value of 30 otherwise;
the MSE between the images in a and b is equal to 900, while the MSE between the images in a and c is also 900
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is basically a set of parameters that is used in BM3D. In
the DC-only profile, coefficients are categorized into two
categories: DC and AC coefficients, where the DC coeffi-
cient preserves the average of the block intensity, which is
a significant piece of block information. It is worth men-
tioning that the DC coefficient might also possess some
noise. When BM3D uses hard thresholding to get rid of
the noise in the transform domain, it does not really treat
the AC and the DC coefficients differently. As a result of
this, the final outcome of DC-only profile is poorer than
other profiles (e.g., wavelet profiles).

5 Proposedmethod
5.1 SSIM-optimizedWiener filter
From the discussion in Section 4.1, it is evident that the
MSE is not adequate for assessing the closeness between
two images, it is rather good at assessing the distance
between them. Instead, the SSIM is a more acceptable
alternative. This is because, MSE deals with image data
while SSIM deals with image information.
It should be noted that the idea of optimizing the

Wiener filter with other quality measurement objective
functions were tested by a number of objective functions
such as sum of absolute difference (SAD) and median of
absolute difference (MAD). However, since most of the
similarity measures are rather closeness measures based
on differences of pixels’ intensities and not on visual
similarities, they could not actually further optimize the
Wiener filter. Therefore, the choosing of SSIM as an objec-
tive function was logical.

The optimization of a denoising filter by SSIM instead
of MSE is not very recent. Channappayya et al. in
[3, 4] showed that any linear filter can be optimized by
SSIM. They compared their proposed SSIM-optimized fil-
ter’s result with the MSE-optimized Wiener filter. Their
reported results showed that they were able to achieve
a higher SSIM value compared to the MSE-optimized
Wiener filter; however, their PSNR gain was still poorer
than the MSE-optimized Wiener filter.
An SSIM-optimized Wiener filter, which we proposed

earlier [9], considers the structural similarity between the
reconstructed image and the true image. Since higher
SSIM index indicates more similar images, our proposed
Wiener filter’s target is to estimate an image which has
maximum SSIM possible. In this case, the expectation
function of the Wiener filter becomes Eq. 10 which now
needs to be maximized. In Eq. 10, E is the expecta-
tion and f and f̂ are the true and reconstructed images,
respectively.

e = E{ssim(f , f̂ )} (10)

Having defined the expectation function, our target is
to ensure that our designed Wiener filter maximizes our
expectation. Taking a careful look at Eq. 3, we realize that
replacing the term Sn

Sf by a variable K is reasonable and
finding a suitable value of K is possible [7]. Therefore,
for our proposed case, we can start with the lowest pos-
sible value of K and loop through the highest possible
value of K. For each K, we record the SSIM error measure

Fig. 3 Test image set: a Lena, b Barbara, c Boat, d Living room, e Goldhill, f Baboon, g Pirate, and h Peppers
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Table 2 Performance comparison of normal profile and proposed method

Noise BM3D Proposed PSNR % PSNR BM3D Proposed SSIM % SSIM
level PSNR PSNR gain gain SSIM SSIM gain gain

10 34.17 34.16 – 0.01 – 0.029% 0.903 0.903 0.000 0.000%

20 31.04 31.10 0.06 0.002% 0.843 0.844 0.001 0.119%

30 29.08 29.28 0.20 0.688% 0.789 0.795 0.006 0.760%

40 27.42 27.87 0.45 1.641% 0.731 0.751 0.020 2.736%

50 26.79 27.05 0.26 0.971% 0.702 0.719 0.017 2.422%

60 25.85 26.28 0.43 1.663% 0.656 0.690 0.034 5.183%

70 25.06 25.65 0.59 2.354% 0.615 0.664 0.049 7.967%

80 24.37 25.11 0.74 3.037% 0.575 0.641 0.066 11.478%

90 23.70 24.59 0.89 3.755% 0.534 0.617 0.083 15.543%

100 23.15 24.18 1.03 4.449% 0.500 0.600 0.100 20.000%

in a vector and then restore the image using that K for
which the error has been recorded maximum. Thus, for a
given range of noise level, it is guaranteed that our pro-
posed Wiener filter should be SSIM optimized. Likewise,
it should also provide better denoising and restoration.
Since the core of our proposed improvement over

BM3D is the SSIM-optimized Wiener filter, interested
readers may want to compare the performance given by
both SSIM- and MSE-optimized Wiener filter. We refer
the reader to our previously published work [9].

5.2 3D zigzag thresholding
In the discrete cosine transform, the first coefficient is
basically the average of all pixel values within a given
block [17]. Therefore, for a precise inverse transforming
result, the accurate DC coefficient is crucial. In order to
make sure that the inverse transformation result is the
product of vital block information, our proposed method
does not apply hard thresholding on the DC coefficient.
Instead, it only applies hard thresholding on AC coeffi-
cients. The AC coefficients carry various block frequency
information [1, 7, 17]. This information varies from low-
frequency to high-frequency information. Thresholding
all AC coefficients in the same manner might lead to los-
ing some significant information, while preserving some
other insignificant information.
In order to keep the most meaningful block information

and just reduce the noise, we should use a zigzag thresh-
olding, instead of a hard thresholding. Zigzag threshold-
ing is realized by applying little or no thresholding on
the DC coefficient and first few AC coefficients and then
applying an increasingly higher thresholding on the rest
of the AC coefficients (the higher the frequency, the more
thresholding is applied). Determining the actual zigzag
thresholding value can be chosen using a gamma curve.
A gamma curve is as simple as λ3D = κγ , where κ is the
coefficient value, γ is a positive value ≥ 1 that is directly

proportional to the coefficient number, and λ3D is the
thresholded value. When γ = 1, the relation becomes lin-
ear. Using this thresholding scheme, we gradually increase
the thresholding effect with the increase of the coefficient
number. Note that this 3D zigzag thresholding proposal
applies to only DC-only profile of BM3D and not to the
actual wavelet profile.

6 Results and discussion
6.1 Data set and parameterized setup
We used eight standard gray scale test images for our
experiment. The images used are shown in Fig. 3.

Fig. 4 Subjective assessment between the normal profile of BM3D
and the proposed method. a Original image. b Noisy image at noise
level σ = 50, PSNR = 14.60 and SSIM = 0.1163. c Output using the
normal profile of BM3D, PSNR = 28.29 and SSIM = 0.7455. d Output
using the proposed method, PSNR = 28.97 and SSIM = 0.7972
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Table 3 Performance comparison of fast profile and the proposed method

Noise BM3D Proposed PSNR % PSNR BM3D Proposed SSIM % SSIM
level PSNR PSNR gain gain SSIM SSIM gain gain

10 34.18 34.17 –0.01 –0.029% 0.904 0.903 –0.001 –0.111%

20 31.04 31.09 0.05 0.161% 0.844 0.844 0.000 0.000%

30 29.07 29.27 0.20 0.688% 0.789 0.795 0.006 0.760%

40 27.45 27.91 0.46 1.676% 0.732 0.752 0.020 2.732%

50 26.81 27.06 0.25 0.932% 0.703 0.720 0.017 2.418%

60 25.89 26.30 0.41 1.583% 0.658 0.690 0.032 4.863%

70 25.07 25.63 0.56 2.234% 0.614 0.663 0.049 7.980%

80 24.38 25.11 0.73 2.994% 0.575 0.641 0.066 11.478%

90 23.76 24.64 0.88 3.704% 0.534 0.621 0.087 16.292%

100 23.14 24.17 1.03 4.451% 0.500 0.600 0.100 20.000%

For all these images, we recorded the responses of a
MSE-optimized Wiener filter and our proposed SSIM-
optimized Wiener filter. All performance comparison
tables reported in this article are based on the average per-
formance on these eight test images for each noise level.
The noise level is generated using Eq. 11 where the value
of σ is varied from 0 (minimum) to 100 (maximum) with
μ = 0 (zero-mean). Here, σ is known as noise standard
deviation. All other parameters are used with their default
values as suggested by Dabov et al. [5] and presented in
Table 1.

p(z) = 1√
2πσ

e−
(x−μ)2
2σ2 (11)

Experimental results presented in this article are
reported in both subjective and objective forms. We used
peak signal to noise ratio (PSNR) and structural similar-
ity (SSIM) as our objective measure. As for the subjec-
tive assessment, the output from BM3D and from our
proposed method is used to visually comapre the per-
formance. While we present the result of all noise level
experiments in the objectivemeasure, we only present one
noise level in the subjective assessment.We did so in order
to keep the number of pages within the allowable limit.

6.2 Performance analysis of wavelet profile
6.2.1 Normal profile
Since the Wavelet profile itself exploits higher perfor-
mance as compared to the DC-only profile, even a small
increase in PSNR/SSIM indicates a reasonable improve-
ment. The experimental results for this profile are given in
Table 2. The subjective measure is given in Fig. 4 for Lena
image with σ = 50.

6.2.2 Fast profile
The fast profile is similar to the normal profile, except
that this profile is faster, as the identification of similar
blocks is predicted. The performance of the fast profile

is slightly lower than normal profile. The experimental
results obtained for fast profile is presented in Table 3.
Figure 5 shows a subjective measure for the Lena image
with σ = 50.

6.3 Extension of wavelet profile for color image denoising
One approach to employ Color BM3D (CBM3D) to 24-bit
true color images is to apply BM3D separately on each of
its channels. However, correct grouping is one of the key
properties of BM3D and it largely depends on the noise
level. Again, grouping is a time consuming operation,
doing it thrice makes the algorithm considerably slower.

Fig. 5 Subjective assessment between the fast profile of BM3D and
the proposed method. a Original image. b Noisy image at noise level
σ = 50, PSNR = 14.60, and SSIM = 0.1163. c Output using the normal
profile of BM3D, PSNR = 28.28 and SSIM = 0.7438. d Output using
the proposed method, PSNR = 28.93 and SSIM = 0.7967
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Table 4 Performance comparison of color profile (normal) and proposed method

Noise BM3D Proposed PSNR % PSNR BM3D Proposed SSIM % SSIM
level PSNR PSNR gain gain SSIM SSIM gain gain

10 34.11 34.11 0.00 0.000% 0.937 0.937 0.000 0.000%

20 31.29 31.35 0.06 0.192% 0.896 0.897 0.001 0.112%

30 29.56 29.70 0.14 0.474% 0.860 0.864 0.004 0.465%

40 27.92 28.14 0.22 0.788% 0.818 0.824 0.006 0.733%

50 27.61 27.80 0.19 0.688% 0.798 0.806 0.008 1.003%

60 26.81 27.06 0.25 0.932% 0.768 0.781 0.013 1.693%

70 26.07 26.43 0.36 1.381% 0.737 0.757 0.020 2.714%

80 25.47 25.93 0.46 1.806% 0.710 0.737 0.027 3.803%

90 24.89 25.42 0.53 2.129% 0.682 0.717 0.035 5.132%

100 24.23 24.85 0.62 2.558% 0.649 0.692 0.043 6.626%

Moreover, three channels should generate three different
groupings with sparsity of image information which lead
to erroneous hard thresholding. BM3D extension to color
image denoising is realized by converting a noisy RGB
image into a luminance and chrominance transformed
space. In this transformed space, the luminance signal
contains most of the image information while the chromi-
nance signals contain low-frequency information. There-
fore, CBM3D performs grouping on luminance channel
only and uses exactly the same grouping for chrominance
channels. The idea behind this form of grouping is that if
the luminance of two blocks are mutually similar, then the
chrominance of these blocks are also mutually similar [5].
We used the same concept for color image denoising as

in CBM3D except that in step 2, we used our improved
Wiener filter instead of the existing Wiener filter. The
experiments are performed for both normal and fast pro-
files. The experimental results for normal color profile are
presented in Table 4. For visual inspection of denoised
color images of normal profile of Lena image with σ = 50,
we refer the reader to Fig. 6.
For the fast color profile, the experimental results are

shown in Table 5. The output is shown in Fig. 7 for Lena
image with σ = 50 for a visual inspection of the reader.
Since the fast profile compromises the performance in
order to reduce time, the output is poorer than the normal
profile. Therefore, for the image presented for σ = 50 in
Fig. 7, it may not depict a visible difference; however, this
will be evident at higher noise levels.

6.4 Performance analysis of DC-only profile
Figure 8 shows a comparison between the performance
of the proposed zigzag thresholded result and that of
BM3D for DC-only profile, where Fig. 8a is the origi-
nal image, Fig. 8b is the noisy image (σ = 20), and Fig.
8c, d are the output produced by BM3D (DC-only) and
the proposed method, respectively. The results show an

improvement in the quality of the denoised image when
the proposed method is applied, especially at the face and
shoulder areas. For further experimental results on the
performance of DC-only profile, readers are referred to
Hasan [8].

6.5 Discussion
So far, we have presented a portion of our objective and
subjective results from our experimentation.We have also
compared our proposed method with the original BM3D.
Objectively, our proposed method was able to produce

Fig. 6 Subjective assessment between the color normal profile of
BM3D and the proposed method. a Original image. b Noisy image at
noise level σ = 50, PSNR = 14.81, and SSIM = 0.5495. c Output using
the normal profile of BM3D, PSNR = 29.55 and SSIM = 0.9741. d
Output using the proposed method, PSNR = 29.89 and
SSIM = 0.9759
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Table 5 Performance comparison of color profile (fast) and proposed method

Noise BM3D Proposed PSNR % PSNR BM3D Proposed SSIM % SSIM
level PSNR PSNR gain gain SSIM SSIM gain gain

10 33.95 33.96 0.01 0.029% 0.936 0.936 0.000 0.000%

20 31.00 31.09 0.09 0.290% 0.893 0.894 0.001 0.112%

30 29.05 29.28 0.23 0.792% 0.852 0.857 0.005 0.589%

40 27.32 27.59 0.27 0.988% 0.804 0.811 0.007 0.871%

50 27.38 27.54 0.16 0.584% 0.795 0.802 0.007 0.881%

60 26.50 26.77 0.27 1.019% 0.765 0.775 0.010 1.307%

70 25.78 26.12 0.34 1.319% 0.738 0.752 0.014 0.543%

80 25.13 25.57 0.44 1.751% 0.710 0.730 0.020 2.817%

90 24.42 24.96 0.54 2.211% 0.681 0.707 0.026 3.818%

100 23.69 24.22 0.53 2.237% 0.648 0.676 0.028 4.321%

higher PSNR and SSIM values than that of the original
BM3D method. Tables 2, 3, 4, and 5 show that as the
amount of noise increases, the proposed method man-
aged to produce better denoising output, when compared
to the original BM3D. For monochrome images, the SSIM
gain by the proposed method was as high as 20% while
the PSNR gain was as high as 4.49%. For color images, we
achieved slightly less, as the maximum SSIM and PSNR
gain were 6.63 and 2.56%, respectively. Subjectively, the
quality of the denoising by the proposed method was bet-
ter than that by the original BM3D. This was especially

Fig. 7 Subjective assessment between the color fast profile of BM3D
and the proposed method. a Original image. b Noisy image at noise
level σ = 50, PSNR = 14.81, and SSIM = 0.5495. c Output using the
fast profile of BM3D, PSNR = 29.29 and SSIM = 0.9724. d Output
using the proposed method, PSNR = 29.57 and SSIM = 0.9740

visible in the flat areas of the images, e.g., Lena’s shoulder
and face. It is evident from the results that our pro-
posed method achieved better objective and subjective
denoising quality.

7 Conclusions
In this study, we rigorously reviewed the current state-
of-the-art image denoising scheme (BM3D) as well as
its core component, the Wiener filter. We proposed an
improved Wiener filter optimized for SSIM that has
essentially improved the performance of BM3D. Through

Fig. 8 Subjective assessment between the DC-only profile of BM3D
and the proposed method. a Original image. b Noisy image at noise
level σ = 20, PSNR = 22.13, and SSIM = 0.3402. c Output using the
DC-only of BM3D, PSNR = 28.21 and SSIM = 0.7883. d Proposed
Method’s Output, PSNR = 29.65 and SSIM = 0.8155
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a number of experiments, we proved that our pro-
posed Wiener filter, when used in BM3D, is capable of
achieving high-quality image denoising. Our idea works
for both monochrome (gray scale) and color images.
As a brief summary, our novel contributions in this
study are the following: (1) reviewing the state-of-the-
art image denoising method BM3D with its components
and profiles, (2) finding its existing shortcomings, (3) sug-
gesting an improved Wiener filter optimized for SSIM
[9], (4) using the SSIM-optimized Wiener in BM3D as
its core component, and (5) thereby proving that the
performance of original BM3D has been significantly
improved in our proposed method (through detailed
comparative studies via calculating a number of perfor-
mance measurement metrics). (6) In addition, we have
also proposed a technique named 3D zigzag threshold-
ing for improving the poor performance of DC-only
profile of BM3D. All the innovations are discussed in
detail in Section 5 while the performed tests, mea-
surement metrics, and obtained results are discussed in
Section 6.

7.1 Future direction
There are other variants of recently proposed SSIM called
multi-scale structural similarity (MS-SSIM) [19]. Also,
there are other image quality measurement metrics such
as image quality index (IQI) [18], Normalized Correlation
[11], Sum of Absolute Differences, and many others [15].
A possible future work will test our proposed method
by using all of these measures. Recently, BM3D has been
extended for video denoising. Also there is BM4D [14].
Since our idea is to change the core of BMxD in general,
a study of assessing our method in all BMxD versions will
be considered. In addition, there are recent works such as
finding visually similar images using a convolutional deep
neural network [24], it would be interesting to study if
finding a similarity between images with deep neural net-
works helps in forming a qualitymetric that can eventually
be used in a Wiener filter. Also, applying our improved
denoising method could help in reducing noise for appli-
cations such as text extraction from complex background
images [25].
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