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Abstract

Multiple features are widely used to characterize real-world datasets. It is desirable to select leading features with
stability and interpretability from a set of distinct features for a comprehensive data description. However, most of
existing feature selection methods focus on the predictability (e.g., prediction accuracy) of selected results yet
neglect stability. To obtain compact data representation, a novel feature selection method is proposed to improve
stability, and interpretability without sacrificing predictability (SIP-FS). Instead of mutual information, generalized
correlation is adopted in minimal redundancy maximal relevance to measure the relation between different feature
types. Several feature types (each contains a certain number of features) can then be selected and evaluated
quantitatively to determine what types contribute to a specific class, thereby enhancing the so-called interpretability
of features. Moreover, stability is introduced in the criterion of SIP-FS to obtain consistent results of ranking. We
conduct experiments on three publicly available datasets using one-versus-all strategy to select class-specific features.
The experiments illustrate that SIP-FS achieves significant performance improvements in terms of stability and
interpretability with desirable prediction accuracy and indicates advantages over several state-of-the-art approaches.
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1 Introduction
Nowadays, massive amounts of image data are available
in our daily life, including web images and remote sensing
images. Numerous features have been proposed to char-
acterize an image, such as global features (color, GIST,
shape, and texture) and local features (shape context, and
histograms of oriented gradients). For texture feature, the
total number of texture features is up to 30 types, such
as local binary pattern (LBP) [1] and Gabor textures [2].
For color feature, there also exist several types, such as
color histogram and color correlogram. Generally, images
are always described by multiple features which are com-
plementary to each other, thus selecting effective feature
subset from a set of distinct features is a great challenge
for data representation [3].
To handle this challenge, feature selection [4–8] and

subspace learning [9, 10] have been developed to obtain
suitable feature representations. Feature selection is
commonly used as a preprocessing step for classification,
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so most feature selection algorithms are only designed
for better predictability, such as high prediction accu-
racy. Although many feature selections have taken both
feature relevance and redundancy into account simultane-
ously for predictability [11], they neglect stability [12]. If
a feature selection method has poor stability, the selected
feature subsets change significantly due to the variation of
training data. Therefore, using only predictability to eval-
uate feature selection methods may result in inconsistent
results of ranking for data representation.
On the other hand, each feature type describes image

from a single cue and has its own specific property-
and domain-specific meaning. Different from a scalar
feature, feature types, which can be scalars, vectors, or
matrices, are highly diverse in dimension and expression.
However, existing methods simply ensemble the selec-
tion of each feature type [13] or concatenate all features
types into a single vector [14]. These methods ignore
the relation between different feature types. Moreover,
they often select a common feature subset for all classes,
while the feature subset might not be optimal for each
class. According to ref. [14], one-versus-all strategy is
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employed to select class-specific features. Feature selec-
tion selects a subset from original features rather than
obtain a low-dimensional subspace, thereby maintaining
the physical meaning, which is beneficial for understand-
ing of data [4]. Therefore, how to select a set of feature
types and evaluate the contribution of these types for a
specific class is critical for enhancing their interpretability
of features.
To address the above-mentioned issues, a novel fea-

ture selection method is proposed to improve stabil-
ity and interpretability without sacrificing predictability,
which is the so-called SIP-FS. The main contributions of
this paper are as follows. First, generalized correlation
rather than mutual information is employed in minimal
redundancy maximal relevance to determine what feature
types contribute to a specific class, thereby enhancing the
interpretability of features. Second, stability constraint is
adopted in SIP-FS to select consistent results of ranking in
the case of data variation.
The remainder of this paper is organized as follows.

Section 2 presents the related work of feature selec-
tion including predictability, interpretability, and stability.
Section 3 illustrates the proposed methodology and other
feature selection methods using different criteria based
on predictability, stability and interpretability. SIP-FS is
presented in Section 4. Section 5 discusses the effects
of parameters and performance comparisons of different
methods. Finally, Section 6 concludes this paper

2 Related work of feature selection
2.1 Predictability
As an important technique for handling high-dimensional
data, feature selection plays an important role in pat-
tern recognition and machine learning. It can be divided
into four categories: filter, wrapper, embedded, and hybrid
methods [4]. In this study, we focus on the filter meth-
ods based on different evaluation measures, such as dis-
tance criterion (Relief and its variants ReliefF, IRelief [15]),
separability criterion (Fisher Score [16]), correlation coef-
ficient [17], consistency [18], and mutual information
[11]. More details can refer to ref. [19]. In general, one-
versus-all strategy is becoming increasingly used in fea-
ture selection methods to select class-specific features for
a certain class rather than a common feature subset for all
classes [14].

2.2 Interpretability
Most existing feature selection methods focus on pre-
dictability (e.g., prediction accuracy) without consid-
ering the correlation between different feature types,
weakening the interpretability of selected results. How-
ever, different feature types exhibit various information,
including statistical characteristics and domain-specific
meanings. Given a set of distinct feature types, it

remains unclear what feature types contribute to a
specific class.
Haur et al. analyze the influence of feature selection

methods on functional interpretability of the signatures
[20]. Li et al. utilize association rule mining algorithms to
improve the interpretability of the selected result without
degrading prediction accuracy [21]. However, these fea-
ture selections are with less consideration of the correla-
tion between two feature types. For different feature types,
learning a shared subspace for all classes is a popular
strategy to reduce the dimensionality. Although subspace-
based methods are suitable for high-dimensional data, it
learns a linear or non-linear embedding transformation
rather than selects relevant and significant features from
original feature types.
Thus, feature selection is becoming increasingly applied

to obtain compact data representation. For example,
Wang et al. [22] and Somol et al. [23] proposed to select
the most discriminative feature types based on the rela-
tionships between different feature types, both methods
are sparse feature selections rather than filter methods.

2.3 Stability
Feature selections can obtain inconsistent results with
similar prediction accuracies in the case of data varia-
tion. However, a good feature selection method should
be robust to data variation. Therefore, it is necessary
to develop a stability measure for the results of differ-
ent feature selections. To evaluate stability, numerous
stability measures have been proposed. For exam-
ple, Somol et al. [24] proposed a series of stability
measurement, such as feature-focused versus subset-
focused measures, selection-registering versus selection-
exclusion-registering measures, and subset-size-biased
versus subset-size-unbiased measures. At present, a wide
variety of stability measures based on physical proper-
ties are defined for the comparison of feature subsets,
includingHamming distance [25], Tanimoto distance [26],
Average Tanimoto index [27], Ochiai coefficient [28], and
other stability measures for subsets with different sizes
[24]. For example, Spearman’s correlation [26] is used to
measure the stability of two weighting vectors, where the
top ranked features are set higher weights.
Many factors greatly affect the stability of feature selec-

tion, such as the number of samples and the criteria and
complexity of feature selection. Although stability mea-
sures are widely used for evaluating the selected results, it
is seldom incorporated into feature selection methods. To
improve stability, numerous stable feature selection meth-
ods have been developed to deal with different sources
of instabilities. These methods can be divided into four
categories: (1) ensemble methods [29–31], (2) sample
weighting [32], (3) feature grouping [33], and (4) sam-
ple injection method [34]. In general, ensemble feature
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selection is themost popular topic compared with the oth-
ers. An ensemble feature selection method consists of two
steps: (1) creating a set of component feature selectors and
(2) aggregating the results of component feature selectors
into an ensemble output.
However, ensemble feature selection methods com-

bine the selected results according to prediction accu-
racy, which may result in imbalance between stability and
predictability. By contrast, the proposed SIP-FS adopts
stability measure as an additional constrain in selection
criterion to balance predictability and stability. To the
best of our knowledge, both stability and interpretabil-
ity are seldom explored simultaneously in existing feature
selection methods.

3 Methodology
This section presents feature selections and their cor-
responding results using different criteria based on
predictability, stability, and interpretability, as shown
in Fig. 1. Suppose a feature set F with m -dimensional
features fl is extracted using l different types for each
image, denoted by F = [

f1, f2, . . . fm
]
. If the length of

a given feature type G(i) is mi dimensions, denotes
by G(i) =

[
f (i)
1 , f (i)

2 , . . . , f (i)
mi

]
,
∑l

i=1mi = m, then
F can be denoted as FG = [

G(1),G(2), . . . ,G(l)] =[
f (1)
1 , f (1)

2 , . . . , f (1)
ml , . . . f

(2)
1 , f (2)

2 , . . . f (2)
ml , . . . f

(l)
1 , f (l)

2 , . . . f (l)
ml

]
.

As shown in Fig. 1a, G(i) represents the i-th feature type
with a specific color (green, yellow, red, etc); moreover,
G(i) has its own specific property and dimensionality.

For predictability, numerous filter models have been
developed in feature selection. For example, Min-
Redundancy and Max-Relevance (mRMR) [11], as a pop-
ular filter model, adopts the following criterion:

fopt = argmax(D − R) (1)

where fopt denotes the optimal selected feature, D and
R represent feature-class relevance and feature-feature
redundancy, respectively. In particular, D and R are com-
puted by:

maxD(F , c),D = 1
|F|

∑

fi∈F
I(fi; c) (2)

maxR(F),R = 1
|F|2

∑

fi,fj∈F
I
(
fi; fj

)
(3)

where |F| represents the dimensionality of the feature set,
I
(
fi; c

)
represents mutual information between individual

feature fi in feature set F , and class c , I
(
fi; fj

)
represents

mutual information between two individual features fi and
fj in feature set F. From Eqs. (2) and (3), D and R in (1)
are computed with the mean value of all feature-class rele-
vance and feature-feature redundancy in the feature set F,
respectively. In practice, the selection of the feature set can
be achieved by near-optimal incremental search methods:

¯fm = arg max
fi∈F−F ′

⎡

⎣I
(
fi, c

) − 1
m − 1

∑

fj∈F ′
I
(
fi, fj

)
⎤

⎦ (4)

a

b c d e
Fig. 1 Feature selection criteria based on predictability, stability, and interpretability. a l different types of feature, corresponding to l different colors.
b–d Three criteria with different combinations. e SIP-FS
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where F ′ represents m- 1-dimensional feature subset that
has been already selected from F. Equation (4) aims to
selecting them-th from the candidate feature subset F−F ′
and implements trade-off between high class relevance
and low feature redundancy. As shown in Fig. 1b, the fea-
tures selected from the same feature type are scattering in
terms of ranking, which affects the quantitative evaluation
of multiple features, resulting in the lack of interpretabil-
ity. In addition, the selected resultsmay greatly change due
to data fluctuation.
In addition to predictability, stability is another impor-

tant measure in feature selection. Various stability evalu-
ation indexes are only used to evaluate feature selection
method rather than improve the stability of the method
itself [24]. To the best of our knowledge, stability is seldom
considered in feature selection criteria. Therefore, stabil-
ity constraint is employed in this study to obtain robust
selection results:

fopt = argmax(D − R + k×S) (5)

where S represents existing stability evaluation index. k is
a parameter, which balances prediction factor (D−R) and
stability factor S. Then, the stability evaluation index can
be computed by:

S(f , F) = 1
i − 1

i−1∑

j=1
S

(
Ff , Fj

)
(6)

S
(
Ff , Fj

) = |Ff ∩ Fj|
|Ff ∪ Fj| (7)

where Ff is the union between the selected features and
the optimal feature f to be selected in the current selec-
tion, Fj(j = 1, 2, . . . , i − 1) represents the selected feature
subset, and |Ff ∩Fj| and |Ff ∪Fj| represent the intersection
and union between feature sets Ff and Fj , respectively.
Unlike Eq. (1), both predictability and stability are used in
the the feature selection criterion of Eq. (5). As shown as in
Fig. 1c, stability constraint helps obtain consistent results
of ranking.
Similar to predictability and stability, interpretability is

essential for feature selection [20]. However, mutual infor-
mation fails to measure the correlation between different
types of features, asmultivariate density estimation is hard
to accurately estimate. Both Eqs. (1) and (5) fail to select
interpretive results. Instead of mutual information, gener-
alized correlation coefficient (GCC) is adopted tomeasure
D and R from Eqs. (1) to (5) for preserving predictability.
Given v−1 types of feature F̄G

v−1 = Ḡ(1) ∩ Ḡ(2) ∩ . . . Ḡ(v−1)

selected from the entire feature set of l types FG
v−1 = G(1)∩

G(2) ∩ . . .G(v−1), where Ḡ(x) denotes the x th selected fea-
ture type (x = 1, 2 . . . , v − 1), selecting the v th type Ḡ(V )

from set
{
FG − FG

v−1
}
is based on the following condition:

Ḡ(v−1) =arg max
G(j)∈FG−FG′

v−1

⎡

⎢⎢
⎣ρ

(
G(j),c

)
− 1

v − 1
∑

Ḡ(i)∈F̄Gv−1

ρ
(
G(j) , Ḡ(i)

)
+ k×S

⎤

⎥⎥
⎦

(8)

where ρ represents generalized correlation coefficient
between different feature types, Ḡ(i) the i-th selected fea-
ture type, and G(j) denotes a certain feature type from the
candidate feature set, FG − FG′

v−1. Generalized correlation
coefficient is degraded to Pearson’s correlation coefficient
when the dimensionality of ¯G(i) and G(j) is 1.
In the case of only using GCC in Eq. (8) when k = 0,

the corresponding feature selection takes predictability
and interpretability into account, as shown in Fig. 1d. The
selected features of the same feature type are close to each
other while the corresponding rankingmay greatly change
due to data fluctuation. If k �= 0 in Eq. (8), it means that
the feature selection simultaneously takes predictability,
stability, and interpretability into account, which is the so-
called SIP-FS method in this paper, as shown in Fig. 1e.
From an interpretative point of view, features selected by
SIP-FS method are meaningful class-specific features [35]
with the use of one-versus-all strategy.

4 SIP-FS algorithm
SIP-FS aims to select a reasonable and compact feature
subset for data representation efficiently; thereby, the
selected result should be meaningful and insensitive to
data fluctuation as well as performing well in prediction
accuracy.
SIP-FS is implemented by repeated iteration until sta-

ble and selects the feature subset obtained (uses the
selected/obtained feature subset) at the last iteration as
the final result. For the i-th iteration, k = λ1∗i and the sta-
bility Si is computed by the mean of all stabilities between
Fi and Fj (j = 1, 2, . . . i − 1), where Fi and Fj represent the
i-th and the j-th selected feature subset, respectively.

si = 1
i − 1

i−1∑

j=1
S

(
Fi, Fj

)
(9)

where S
(
Ff , Fj

) = |Ff ∩Fj|
|Ff ∪Fj| . The iteration stops until the

following condition is satisfied:

|Si − Si−1| → 0 (10)

Each iteration consists of two parts: (1) selecting feature
types, corresponding to steps 3 to 6 as shown in Algorithm 1
and (2) removing the redundancy from the selected fea-
ture type, corresponding to steps 7 to 12 as shown in
Algorithm 1. In the first part, feature types are selected
based on Eq. (8) until other feature types can not provide
additional information, as (11).
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∣∣∣
(
D

(
F̄G
v+1, c

)
−R

(
F̄G
v+1

))
−

(
D

(
F̄G
v , c

)
− R

(
F̄G
v

))∣∣∣ → 0

(11)

The first part could obtain the ranking of feature type;
however, in each selected feature type, there may exist
redundancy. Therefore, in the second part, the redun-
dancy of each feature type is further removed by selecting
a subset. Given that m − 1 features are selected from the
v-th feature type, the selection of the m-th feature f̄ (v)

m is
described as follows.

f̄ (v)m = argmax

⎡

⎢
⎣ρ

(
G(v)
m , c

)
− 1

v − 1
∑

Ḡ(i)∈F̄Gv−1

ρ
(
G(v)
m , Ḡ(i)

)
+ k×S

⎤

⎥
⎦

(12)

whereG(v)
m = Ḡ(v)

m−1 ∪ f (v)
m = f̄ (v)

1 ∪ f̄ (v)
2 ∪ ...f̄ (v)

m−1 ∪ f (v)
m−1, f

(v)
m

denotes a certain feature in the candidate feature set. For
the v-th feature type G(v), a subset is obtained until other
features can not provide additional information, as in the
following equation.

∣∣∣
(
D

((
F̂G
sel ∪ Ĝv

m+1

)
, c

)
− R

((
F̂G
sel ∪ Ĝv

m+1

)))

−
(
D

((
F̂G
sel ∪ Ĝv

m

)
, c

)
− R

((
F̂G
sel ∪ Ĝv

m

)))∣
∣∣ → 0

(13)

where F̂G
sel = Ĝ(1)∪Ĝ(2)∪...∪Ĝ(v−1), Ĝ(v)

(m+1) = Ĝ(v)
(m)∪ f̄ (v)

m+1

5 Results and discussions
In this section, extensive experiments are conducted
to illustrate the effectiveness of SIP-FS in terms of
predictability, stability, and interpretability. Four fea-
ture selection methods, mRMR, ReliefF, En-mRMR,
and En-Relief, are used for performance comparisons
on three publicly available datasets (two web image
datasets named MIML [36] and NUS-WIDE-LITE [37],
a remote sensing image dataset named USGS21 [38]).
mRMR, ReliefF are commonly used filter methods,

Algorithm 1: SIP-FS via feature type selection and
stability constraint
Input: Training sampleM, each sample consists of l

types of feature,FG = [
G(1),G(2), ...,G(l)], λ1,

λ2
Output: F̂G =

[
Ĝ(1), Ĝ(2), ..., Ĝ(t)

]

1 i = 1;
2 while Equation 10 is not satisfied do
3 generating subsample according to λ2;
4 while Equation 11 is not satisfied do
5 selecting t types of feature using Eq. 8;
6 end
7 obtaining the i-th ranking result of feature type

F̄G
sel = Ḡ(1) ∪ Ḡ(2) ∪ . . . ∪ Ḡ(t) ;

8 form = 1 to t do
9 while Equation 13 is not satisfied do

10 selecting feature set Ĝ(m) from the m-th
feature type Ḡ(m) using Eq. 12;

11 end
12 end
13 obtaining the i-th selected result

F̂G =
[
Ĝ(1), Ĝ(2), . . . , Ĝ(t)

]
;

14 i = i + 1;
15 end

while En-mRMR, and En-Relief are two ensemble meth-
ods. One versus all strategy is adopted to select class-
specific features for SIP-FS as well as other comparison
methods.
For the three datasets, different types of feature are

used followed by normalization individually. Libsvm [39]
is used for training and classification. The images in each
dataset are divided into two equal parts, in which one
for training and the other for testing. Experiments are
randomly repeated 10 times to report the average results.

Fig. 2MIML
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Fig. 3 NUS-WIDE-LITE

Fig. 4 USGS21

Fig. 5 Effects of λ1 and λ2 on stability for three specific classes. a “trees” in MIML. b “flowers” in NUS-WIDE-LITE. c “building” in USGS21
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Table 1 Stability comparisons on MIML

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Desert 0.165 0.113 0.179 0.230 0.410

Mountains 0.153 0.139 0.194 0.284 0.399

Sea 0.217 0.144 0.236 0.267 0.353

Sunset 0.224 0.187 0.202 0.245 0.344

Trees 0.161 0.199 0.152 0.184 0.447

Average 0.184 0.156 0.193 0.242 0.391

The top performance in each row is highlightened in boldface

5.1 Datasets
MIML consists of five classes, which are desert, mountain,
sea, sunset, and trees. The number of five classes is 340,
268, 341, 261, and 378, respectively. Figure 2 shows sam-
ple images of this dataset. Eight types of feature (a total of
638 dimensions), color histogram, color moments, color
coherence, textures, tamura-texture coarseness, tamura-
texture directionality, edge orientation histogram, and
SBN colors are used in experiments. The dimension of
these features is 256, 6, 128, 15, 10, 8, 80, and 135,
respectively.
NUS-WIDE-LITE contains images from Flickr.com col-

lected by the National University of Singapore. In experi-
ments, the images with zero label or more than one labels
are removed, resulting in a single label dataset which con-
tains nine classes: birds, boats, flowers, rocks, sun, tower,
toy, tree, and vehicle, as shown in Fig. 3. Five types of
feature (a total of 634 dimensions), color histogram, block-
wise color moments, color correlogram, edge direction
histogram, and wavelet texture are used for experimental
evaluation. The dimension of these features is 64, 225, 144,
73, and 128, respectively.
USGS21 contains 21 classes: agricultural, airplane, base-

ball diamond, beach, buildings, chaparral, dense resi-
dential, forest, freeway, golf course, harbor, intersection,
medium density residential, mobile home park, overpass,
parking lot, river, runway, sparse residential, storage tanks,

Table 2 Stability comparisons on NUS-WIDE-LITE

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Birds 0.119 0.065 0.147 0.132 0.410

Boats 0.113 0.080 0.152 0.133 0.333

Flowers 0.211 0.096 0.213 0.188 0.594

Rocks 0.172 0.090 0.124 0.109 0.491

Sun 0.259 0.165 0.264 0.251 0.501

Tower 0.158 0.066 0.166 0.152 0.449

Toy 0.260 0.113 0.276 0.232 0.457

Trees 0.134 0.061 0.138 0.131 0.302

Vehicle 0.172 0.107 0.150 0.193 0.402

Average 0.178 0.094 0.181 0.169 0.441

The top performance in each row is highlightened in boldface

and tennis courts, as shown in Fig. 4. Each class consists
of 100 256 × 256-pixels images with the spatial reso-
lution of one foot. Five types of feature (a total of 809
dimensions), color moment, HOG, Gabor, LBP, and Gist,
extracted by [40] are used for evaluation. The dimension
of these features is 81, 37, 120, 59, and 512, respectively.

5.2 Effects of λ1 and λ2 on stability
In the proposed method, two parameters, λ1 and λ2, have
influence on the performance of stability. λ1 determines
the k value, which balances predictability and stability,
while λ2 determines the proportion of subsample genera-
tion in iterative feature selection. Suitable combination of
λ1 and λ2 is beneficial for obtaining consistent results.
The parameter tuning is conducted for each class indi-

vidually. Figure 5 shows the influence of λ1 and λ2 on
stability for three different classes, where λ1 is in the range
of 0.0001, 0.001, 0.01, 0.1, 1, 10, and λ2 is in the range
of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
In general, high stability can be obtained using moderate
λ1 value (e.g., 0.001, 0.01, and 0.1 ) and large λ2 (0.8 or
0.9), compared with other parameter combinations. The
smaller λ1 value corresponds to better stability, yet the
computational complexity is significantly increased. Small

Table 3 Stability comparisons on USGS21

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Agricultural 0.152 0.152 0.127 0.187 0.278

Airplane 0.142 0.038 0.179 0.170 0.220

Baseballdiamond 0.138 0.074 0.130 0.078 0.186

Beach 0.117 0.094 0.141 0.169 0.788

Buildings 0.147 0.099 0.208 0.250 0.568

Chaparral 0.149 0.232 0.182 0.402 0.513

Denseresidential 0.059 0.102 0.065 0.286 0.175

Forest 0.099 0.098 0.157 0.345 0.431

Freeway 0.152 0.048 0.182 0.076 0.191

Golfcourse 0.073 0.073 0.119 0.059 0.173

Harbor 0.190 0.153 0.224 0.239 0.654

Intersection 0.058 0.056 0.080 0.104 0.200

Mediumresidential 0.058 0.069 0.072 0.323 0.115

Mobilehomepark 0.042 0.162 0.036 0.233 0.298

Overpass 0.096 0.044 0.135 0.086 0.210

Parkinglot 0.058 0.084 0.067 0.140 0.273

River 0.049 0.024 0.071 0.129 0.313

Runway 0.108 0.107 0.087 0.216 0.256

Sparseresidential 0.109 0.062 0.093 0.191 0.207

Storagetanks 0.076 0.039 0.108 0.090 0.203

Tenniscourt 0.089 0.065 0.068 0.206 0.239

Average 0.103 0.089 0.121 0.189 0.309

The top performance in each row is highlightened in boldface
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Fig. 6 Relative contribution ratios of features for each class of MIML

λ2 may result in high fluctuation of subsamples, leading to
inconsistent selected results.

5.3 Stability analysis
Tables 1, 2, and 3 show the stability comparisons of five
methods on the three datasets. The stabilities of each class
and the entire dataset (average) are given in these tables.
The stability value ranges from 0 to 1, whereas, “0” and
“1” represent the ranking of the selected results are com-
pletely inconsistent and consistent in randomly repeated
feature selections, respectively.
For Tables 1, 2, and 3, compared with other methods,

SIP-FS significantly achieves stability improvement for each
class (except for “dense residential” and “medium residential”
shown in Table 3) as well as the entire dataset, indicating
that SIP-FS helps select much more stable features.

In general, mRMR combined with ensemble strategy
does not indicate significant improvement in terms of
stability. Though ensemble strategy indicates slightly sta-
bility advantage for ReliefF, En-ReliefF performs worse
than SIP-FS. Overall, SIP-FS performs best on the three
datasets in terms of stability.

5.4 Interpretability analysis
Given a certain class, the prediction accuracy varies with
feature types. How to select feature types and measure
their effectiveness for a specific class are essential for
interpretability analysis. In particular, one-versus-all strat-
egy are combined with SIP-FS to select feature types
(each contains a certain number of features) for a spe-
cific class. The effectiveness of these feature types for
each class are measured by the relative contribution

Fig. 7 Relative contribution ratios of features for each class of NUS-WIDE-LITE
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Fig. 8 Relative contribution ratios of features for each class of USGS21

ratio, which are normalized by the respective maximum
contribution [14].
Figures 6, 7, and 8 show the selected feature types for

each class with the respective relative contribution ratio.
For example, the selected feature types for “mountain” in
MIML are shape and color features, as shown in Fig. 6.
According to the relative contribution ratios, the selected
feature types are edge orientation histogram, color coher-
ence, color histogram, and SBN color. The most dis-
criminative feature type is shape and the other three are
color features (color coherence, color histogram, and SBN
colors). However, some texture features (textures, tamura-
texture coarseness, and tamura-texture) and redundant
color feature (color moments) are removed. As shown
in Fig. 7, color correlogram, edge direction (oriented)
histogram, and wavelet texture provide complementary
information for describing each class in NUS-WIDE-
LITE dataset. In addition, block-wise color moments pro-
vide less information for most of classes in this dataset,

Table 4 Predictability comparisons on MIML

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Desert 0.735 0.704 0.729 0.727 0.743

Mountains 0.873 0.869 0.834 0.862 0.837

Sea 0.812 0.811 0.786 0.799 0.794

Sunset 0.868 0.829 0.826 0.745 0.859

Trees 0.875 0.839 0.856 0.857 0.854

Average 0.833 0.810 0.806 0.798 0.817

The top performance in each row is highlightened in boldface

while color moments are useless because of the infor-
mation redundant. In USGS21 dataset, take the big class
road (including freeway, overpass, and runway) and water
(including bench and river) as two examples, as shown
in Fig. 8. LBP is the most discriminative feature type for
“road” while color moment is the most discriminative fea-
ture type for “water”. Furthermore, as a subclass of water,
a river need additional complementary information pro-
vided by the other four feature types (LBP, Gabor, HOG
and Gist) besides color moment. In general, SIP-FS pro-
vides a more interpretive data representation than other
comparison methods.
In short, the proposed SIP-FS method provides a more

interpretable means for data representation than that of
the existing feature selections. More useful information

Table 5 Predictability comparisons on NUS-WIDE-LITE

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Birds 0.733 0.686 0.717 0.625 0.725

Boats 0.694 0.653 0.673 0.628 0.702

Flowers 0.834 0.804 0.834 0.808 0.824

Rocks 0.732 0.666 0.735 0.688 0.754

Sun 0.820 0.827 0.807 0.801 0.825

Tower 0.760 0.652 0.749 0.652 0.739

Toy 0.726 0.710 0.733 0.698 0.714

Trees 0.701 0.660 0.688 0.654 0.699

Vehicle 0.761 0.745 0.754 0.687 0.773

Average 0.751 0.711 0.743 0.693 0.751

The top performance in each row is highlightened in boldface
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Table 6 Predictability comparisons on USGS21

Algorithms mRMR ReliefF En-mRMR En-ReliefF SIP-FS

Agricultural 0.960 0.901 0.956 0.905 0.963

Airplane 0.823 0.849 0.848 0.820 0.864

Baseballdiamod 0.882 0.873 0.887 0.886 0.842

Beach 0.960 0.965 0.973 0.940 0.949

Buildings 0.778 0.793 0.766 0.813 0.834

Chaparral 0.967 0.973 0.976 0.956 0.955

Denseresidential 0.785 0.783 0.800 0.666 0.788

Forest 0.965 0.956 0.953 0.929 0.948

Freeway 0.872 0.917 0.910 0.910 0.864

Golfcourse 0.877 0.834 0.900 0.824 0.835

Harbor 0.904 0.832 0.920 0.852 0.869

Intersection 0.794 0.815 0.811 0.785 0.807

Mediumresidenial 0.873 0.779 0.870 0.705 0.837

Mobilehomepak 0.842 0.748 0.852 0.750 0.824

Overpass 0.867 0.812 0.885 0.796 0.848

Parkinglot 0.894 0.855 0.885 0.865 0.846

River 0.795 0.793 0.791 0.795 0.844

Runway 0.896 0.880 0.891 0.875 0.893

Sparseresidentil 0.816 0.795 0.813 0.703 0.791

Storagetanks 0.724 0.697 0.711 0.700 0.724

Tenniscourt 0.772 0.667 0.763 0.642 0.755

Average 0.859 0.834 0.865 0.768 0.851

The top performance in each row is highlightened in boldface

will become available, deepening the understanding of
data.

5.5 Predictability analysis
Tables 4, 5 and 6 show the prediction accuracy of each
class on the three datasets to evaluate the predictability,
respectively. The predictability value ranges from 0 to 1,
whereas, “0” and “1” represent completely misclassifica-
tion and completely correct classification, respectively.

From Table 4, the predictability of mRMR four classes
(e.g., mountains, sea, sunset, and trees) of MIML per-
forms better than that of other methods. Although SIP-FS
performs worse than mRMR in terms of average perfor-
mance, it shows advantages than the other three methods.
From Table 5, mRMR and SIP-FS perform best among all
methods in terms of average performance. The compar-
ison of mRMR and SIP-FS indicates that both methods
have their own accuracy advantages on some classes. For
example, the prediction accuracies of SIP-FS on boats,
rocks, sun, and vehicle indicate advantages over that of
mRMR. From Table 6, the average predictability perfor-
mances of mRMR, En-mRMR and SIP-FS indicate sig-
nificantly advantages over that of the others (ReliefF and
En-ReliefF). It is worth noting that although En-ReliefF
obtains the highest stability on “dense residential” and
“medium residential” (as shown in Table 3), it has the
lowest prediction accuracy (as shown in Table 6).
In general, SIP-FS and mRMR perform best among all

comparison methods on the three datasets, demonstrat-
ing that it can maintain good predictability.
To further investigate the effect of the number of

selected features on predictability performance, Fig. 9
shows the prediction accuracy of five feature selection
methods on three different classes. In general, the predic-
tion accuracy of the five methods tends to increase with
the number of selected features increases. Desirable pre-
diction results can be obtained by selecting the leading
features, such as 20 (trees), 30 (flowers), and 20 (building)
features, corresponding to Fig. 9a–c.

5.6 Trade-off between stability and predictability
In the section, stability-predictability tradeoff (SPT) is
used to provide a formal and automatic way of jointly eval-
uating the trade-off between stability and predictability, as
in ref. [29]. The definition of SPT is as follows.

SPT = 2 × stability × predictability
stability + predictability

(14)

where stability (Tables 1, 2 and 3) and predictability
(Tables 4, 5 and 6) denote the average performance. SPT

Fig. 9 The number of selected features on predictability performance. a “trees” in MIML. b “flowers” in NUS-WIDE-LITE. c “building” in USGS21
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Fig. 10 SPT comparisons for three datasets

ranges from 0 to 1, the higher the SPT, the better the per-
formance. The SPTs for the three datasets are shown in
Fig. 10. Several conclusions can be drawn from Fig. 10: (1)
Compared with other methods, SIP-FS can obtain better
tradeoff between stability and predictability. (2) mRMR
and ReliefF combined with ensemble strategy indicates
higher SPT than that without ensemble strategy.

6 Conclusions
In this study, a novel feature selection method called SIP-
FS is proposed to explore the stability and interpretability
simultaneously while preserving predictability. Given a set
of distinct feature types, the relation between different
feature types is measured by minimal redundancy max-
imal relevance based on generalized correlation. Several
feature types can then be selected and used to determine
what types contribute to a specific class by quantita-
tive evaluation. Furthermore, consistent results of ranking
can be achieved through incorporating stability into the
criterion of SIP-FS. The experiments on three datasets,
MIML, NUS-WIDE-LITE, andUSGS21, demonstrate that
the performances of stability and interpretability are
significantly improved without sacrificing predictability,
compared with other filter and their respective ensemble-
based methods. In future work, we intend to further
investigate the selection of multi-modal information using
SIP-FS.
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