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Abstract

Representing the features of different types of human action in unconstrained videos is a challenging task due to
camera motion, cluttered background, and occlusions. This paper aims to obtain effective and compact action
representation with length-variable edge trajectory (LV-ET) and spatio-temporal motion skeleton (STMS). First, in
order to better describe the long-term motion information for action representation, a novel edge-based trajectory
extracting strategy is introduced by tracking edge points from motion without limiting the length of trajectory; the
end of the tracking is depending not only on the optical flow field but also on the optical flow vector position in
the next frame. So, we only make use of a compact subset of action-related edge points in one frame to generate
length-variable edge trajectories. Second, we observe that different types of action have their specific trajectory. A
new trajectory descriptor named spatio-temporal motion skeleton is introduced; first, the LV-ET is encoded using
both orientation and magnitude features and then the STMS is computed by motion clustering. Comparative
experimental results with three unconstrained human action datasets demonstrate the effectiveness of our method.

Keywords: Human action recognition, Length-variable edge trajectory, Motion clustering, Spatio-temporal
motion skeleton

1 Introduction
Human action recognition (HAR) is an active research
topic in intelligent video analysis, gained extensive atten-
tion in academic and engineering communities [1, 2],
and widely used in the fields of human-computer inter-
action, video surveillance, motion analysis, virtual reality,
etc. [3–7]. Usually, the realization of HAR includes two
steps: the first is feature extraction based on video infor-
mation; the second is the classification according to
feature vectors. However, due to the presence of back-
ground clutter, partial occlusion, varying viewpoints, and
camera movement, it is still a challenging task to obtain
discriminative action representations from realistic
videos.
Recently, the trajectory-based methods were proposed

and utilized in various human action recognition

approaches owing to the promising results of histogram-
based descriptors [8–12]. Different with the method of
extracting the local features directly, the trajectory-based
method is extracting spatio-temporal trajectory by
matching the feature points between adjacent frames to
represent human actions [13–15]. Due to the better de-
scription of motion changing and long-term target dy-
namic information, these methods out-performed than
the local representations significantly. Therefore, this
paper focuses on the trajectory-based method and will
especially emphasize the following two aspects, namely,
the trajectory extraction and trajectory description.
In general, previous studies ignore the motion feature

of the tracking points and the differences between
various types of actions. To address this issue, we
propose the length-variable edge trajectory extracting
method. Moreover, inspired by [16], a model of the
human body is composed of different key skeletons (i.e.,
limbs, trunk, skull, etc.) so is the video. In the video, we
regard the various edge trajectories with analogous
spatio-temporal and motion features as a set of
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skeletons. An overview of the proposed pipeline is
shown in Fig. 1. First, we compute the edges and optical
flow of each frame of an input video. Second, we
generate the length-variable edge trajectories (LV-ET)
according to the detected edge points adaptively. The
tracking is terminated when a feature point moves to a
region with no edge points. Third, we extract spatio-
temporal motion skeleton (STMS) descriptor by regard-
ing the generated trajectories as different skeletons, and
these skeletons are clustered under a novel motion
encoding method. In addition, the descriptors (that is,
HOG, HOF, and MBH), which proved discriminative,
were also extracted from proposed LV-ET. After the
extraction of local descriptors, we adopt fisher vector
(FV) [17] to separately encode these descriptors. Before
encoding, the dimension of each local descriptor was
reduced by principal component analysis (PCA).
Finally, the multi-kernel learning-based support vector
machine (MKL-SVM) [18] is employed to classify the
human actions. As such, the main contribution of this
paper is as follows:

� In this paper, we propose to sample edge points in
each frame in order to adaptively select the
trajectories associated with moving targets. In
addition, we do not fix the length of trajectory, when
the tracking is terminated depending on whether
there is still the edge point in the next frame. So, a
compact set of trajectories (LV-ET) can be obtained
exactly to better represent the motion information
of each action.

� By introducing a spatio-temporal trajectory encoding
method, where the videos are represented as a set of
distinctive trajectory skeletons with latent motion
features, a novel trajectory descriptor named STMS
is designed by making use of spectral clustering with

motion information, where videos are represented as
a set of skeletons.

The remainder of this paper is organized as follows:
we give an overview of the related work in Section 2.
We describe the details of the LV-ET in Section 3. We
explain the process for extracting the STMS descriptor
in and discuss the experimental results in Section 4.
Finally, the conclusion is drawn in Section 5.

2 Related work
Recently, trajectory-based approaches have gained sig-
nificant popularity in video interpretation. As illustrated
in Fig. 2, Sun et al. [19] tracked spatio-temporal context
information between adjacent frames by using SIFT
matching, whereas Matikainen et al. [20] extracted
trajectory by tracking interesting points with Kanade-
Lucas-Tomasi (KLT) feature tracker; interestingly,
Bregonzio et al. [21] combined the SIFT matching and
KLT interesting points tracker so that the trajectory
density was greatly improved. Although the motion
changing and long-term target dynamic information can
be captured by these methods, it still suffers a problem.
These were kinds of sparse tracking method [19–21],
which led to sparse trajectory, since the sparse trajectory
was not sufficient enough to represent human actions
[22]. In consideration of the shortcoming, Wang et al.
[23, 24] used dense optical flow to sample dense feature
points on a regular grid, and the points located at
spatially homogeneous regions were removed to
generate a spatio-temporal dense trajectory (DT) and
improved dense trajectory (iDT). In order to represent
the extracted trajectories, iDT used four descriptors:
histogram of oriented gradients (HOG) [25], histogram
of optical flow (HOF) [26], motion boundary histograms
(MBH) [23], and trajectory shapes (TS) [23], which had

Fig. 1 Overview of the proposed pipeline
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been proved to be very discriminative in representing
actions; Gaidon et al. [27] represented a video as a
hierarchy of trajectories. The hierarchy was first
computed using a divisive clustering algorithm and then
represented a BOF-liked structure where each node was
modeled by a bag-of-feature over MBH descriptors. In
[28], the video was structured using bag of trajectory
groups with latent class variables and employing
multiple instance learning (MIL)-based support vector
machine (SVM) to classification. More recently, Vig et
al. [29] revealed that the HAR performance can be
maintained with as little as 30–40% of descriptors picked
at random within dense trajectory-based approach [23].
It implies that although plenty of information can be
obtained by dense descriptor, most of them are redun-
dant even irrelevant. Therefore, Yi et al. [30] aimed to
deal with the problem of HAR with salient trajectories,
then the salient trajectories were encoded by a hierarch-
ical representation-based method. Iveel et al. [29]
extracted motion trajectories after video segment and
build a bag-of-features (BOF) model based on four
different types of descriptors (i.e., HOG, HOF, MBH,
and TS). Unlike [30, 31] use video saliency to generate
trajectory, Seo et al. [16] introduced a trajectory
rejection technology to avoid generating redundant
trajectories and skip the frames that do not have much
movement information, so the complexity of the
algorithm is reduced.
Previous work shows that the most informative trajec-

tories were extracted from the region of interest (ROI);
motion and shape are two important information
sources from human action videos. It is worthy noted
that we also cannot guarantee that the points inside ROI
are more informative and representative. Besides, we
find that different types of action have its own move-
ment rhythm, in other words, the evolution of different
actions is unequal (e.g., “run” is a high-speed and con-
tinuous action whereas the action of “hug” is relatively
slow and discontinuous between two persons). There-
fore, the use of fixed length trajectories [30, 23, 24, 31]
is not discriminative enough to represent the various
types of human actions. In addition, we observe that the
spatial-temporal features of trajectories are similar in the
same kind of action, whereas those between different

actions are dissimilar. So, the HAR performance may be
improved if we can better consider the phenomenon
aforementioned.

3 Methods
3.1 Proposed length-variable edge trajectory
In this section, we introduce the major components of
the proposed LV-ET extraction, including edge point
sampling and tracking, trajectory generation, and its
pruning strategy.

3.1.1 Edge point sampling
The key to edge trajectory extraction is to select the
tracking points exactly. In general, spatio-temporal inter-
est point sampling [9, 10] and dense sampling [23, 24]
have been successfully applied to various occasions.
However, such approach often involves some irrelevant
interest points like the background points with high
complexity, which seriously affect the final recognition
accuracy and reduce the efficiency of the algorithm.
Unlike the sampling approach mentioned above, we
utilize Canny detector to detect edge points. Moreover,
in order to better obtain human action motion informa-
tion and edge trajectories, we also leverage optical flow
to track edge points across video frames to extract
trajectories.
Given a video sequence F = (F1,F2,F3,…,Ft), where Ft is

the frame at time t, we first compute the optical flow
frame to frame using Farnebäck dense optical flow simi-
lar to [32], for each frame Ft, its dense optical flow field
ωt ¼ ðutjðxt ;ytÞ; vt jðxt ;ytÞÞ is computed with regarding to

the next frame Ft + 1, where ut jðxt ;ytÞ and vt jðxt ;ytÞ are

respectively the horizontal and vertical components of
the optical flow of Ft. More specifically, we smooth both
components by using a median filtering:

ut j xt ;ytð Þ ¼ ut j xt ;ytð Þ �M3�3 ð1Þ

vt j xt ;ytð Þ ¼ vt j xt ;ytð Þ �M3�3 ð2Þ

Where M is a median filtering kernel with 3 × 3 pixels.
We also perform the same mean filtering for too long
optical flow displacements in order to further reduce the
errors caused by the drift in the tracking process. In

Fig. 2 Illustration of the trajectory-based approaches in chronological order
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addition, we remove the displacement lower than 0.3
empirically to mitigate the impact of noise. Since back-
ground points have less contribution to HAR, whereas a
large amount of action information tends to be concen-
trated in the regions with gradients changing acutely. So,
we detect edge points in each frame using Canny
detector to distinguish the edge and none edge regions.
The result E = (E1,E2,E3,…,Et) represents the edge points
according to each frame, where Et is a binary matrix,
Et(xt,yt) = 1 represents the point (xt,yt) in Ft as an edge
point. As illustrated in Fig. 3, where in Fig. 3a, b, the
points are sparsely and densely sampled as the same as
in [20, 23], we can observe that no matter the points are
in foreground or background, they are all sampled by
the tracker, so the background noises may be brought
into tracking process. Through the edge-based sampling
strategy as shown in Fig. 3c, the noises from background
areas are greatly reduced. But we can also find that the
sampled points are too sparse, which leads to tracking
failure. In order to make the tracking process more
effective and informative, after edge point detection, the
edge images per frame Et are dilated by a 3 × 3 square-
shaped structuring element. So, the succeeding candi-
date points may have more chance to be found as valid.
Therefore, the tracking loss is alleviated and the
completeness and continuity of the edge trajectory are
guaranteed.

3.1.2 Tracking and edge trajectory generation
In the following, the LV-ET in the video is extracted
through a tracking process. To begin with, for each

frame Ft, the edge points Et are sampled as the start
point of an edge trajectory, given an edge point (xt,yt),
the trajectory’s succeeding tracking point (xt + 1,yt + 1) in
the net frame Ft + 1 is simply decided by the horizontal
and vertical components of the optical flow ðut jðxt ;ytÞ;
vtjðxt ;ytÞÞrespectively:

xtþ1 ¼ xt þ ut j xt ;ytð Þ ð3Þ

ytþ1 ¼ yt þ vt j xt ;ytð Þ ð4Þ

By observing the computational process, it is not diffi-
cult to find that if we compute the trajectory and only
use (3) and (4), the succeeding tracking points may have
a high-risk drifting to none informative regions, no
matter whether the initial edge points are stipulated or
not. In consideration of this, we utilize a novel tracking
strategy that when computing the succeeding trajectory
point, we prejudge whether the succeeding candidate
point is an edge point. In other words, we compute
every frame’s edge information Et and use it to deter-
mine whether the round position (xt + 1,yt + 1) is an edge
point in Ft + 1. If so, we regard it as the valid sampled
point in Ft + 1. Otherwise, we consider the succeeding
sampled point (xt + 1,yt + 1) is not a valid trajectory point
and terminated the tracking process at (xt,yt). In the next
step, for each edge point in Ft + 1, if it is not a succeeding
sampled point of Ft, we use it as the initial point of a
new trajectory. This frame-by-frame tracking process is
iterated until the last sampling points are found in the
last frame.

Fig. 3 Comparison between different sampling strategies: a interest points sampling, b dense sampling, c edge-based sampling, and d edge-
based sampling after dilating
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Based on the process aforementioned, we can ob-
tain all the trajectories frame-by-frame from begin to
end. Namely, the subsequent sampling point positions
are concatenated orderly to form the edge trajectory:
Trat = (Pt,Pt + 1,Pt + 2,…). We compute the trajectory
length according to the number of the frames it goes
through. It is worth noting that we do not stipulate
the length of one trajectory, whether the tracking is
terminated depending on the round position of suc-
ceeding sampling point that is an edge point or not.
We think there are several reasons to do so. First,
different types of action have different motion infor-
mation, or we may call it motion speed. Some actions
are changing at a constant velocity whereas some
involve drastic changes. For instance, “run” is a high-
speed, continuous, and uniform action whereas the
action of “hug” is a relatively slow and discontinuous
action between two persons. Figure 4 illustrates the
differences of trajectory length histogram between
“run” and “hug,” where the length of trajectories are
normalized by dividing every video clips’ frame num-
bers. In Fig. 4a, long trajectories make up a large part
of all trajectories in the histogram of “run,” but the
histogram of trajectories length in Fig. 4b does not
appear this tendency; the trajectories’ length in action
“hug” is relatively shorter than that in “run.” This
phenomenon exactly illustrates the discrimination of
proposed LV-ET.

3.1.3 Trajectory pruning strategy
To sum up, the fixed length trajectory cannot fully
represent the diversity of different actions and may also
bring down the discrimination of the trajectory-based
feature descriptors. Moreover, considering the continuity
and completeness of a trajectory is crucial to represent
some long-term non-periodic actions. Although the
optical flow vector has been smoothed to eliminate the
vector displacement drifting and the edge-based sam-
pling strategy reduces the number of the trajectories
while retaining the discrimination information, we have
to admit that some problems still exist during this
process. First, edge-based sampling strategy may lead to
tapping in local minima and also may lead to a very
long trajectory with point drifting. Meanwhile, the
static edge points may overlap and generate trajector-
ies which are too short and contain little useful infor-
mation. Considering the displacement of these static
point trajectories is slight, we remove these trajector-
ies by introducing coefficient of variation (var) as
follows:

var Tratð Þ ¼ 1
2L

XL
i¼t

xt−xð Þ2 þ yt−yð Þ2
" #

ð5Þ

where L is the length of a trajectory, x and y , re-
spectively, represent the mean value of horizontal and
vertical coordinates of a trajectory. For a trajectory

a

b

Fig. 4 Comparison of LV-ET length histogram between two sample actions after normalization: a run and b hug
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Trat, the coordinate series with var smaller than 10 is
pruned. Second, camera motion is a very common
phenomenon in unconstrained datasets. Both action-
related points and background points are moving
together in such videos, like dive and football match.
It is hard to distinguish motion trajectories and back-
ground trajectories. In this paper, an effective technol-
ogy is utilized to solve the problem. We observe that
the trajectories generated by camera motion are
always uniform than those of motion trajectories, in
other words, there is no obvious changing of direc-
tion for the trajectories caused by camera motion. So,
we empirically prune the trajectories with mean
curvature (mc) smaller than 30°. The mc for every
trajectory is computed according to formula (6).

mc Tratð Þ ¼ 1
L−1

XL−1
t¼1

arctan
yt−ytþ1

xt−xtþ1

� �����
����

� xt≠xtþ1ð Þ ð6Þ

Considering the rigor of the process, when the adja-
cent horizontal coordinate xt is equal to xt + 1, we
deem the curvature of this part is 0°. In addition, we
remove the L < 5 trajectories because most of them
are caused by outliers and uncertain noises. In this
section, we report three sample actions (brush hair,
riding horse, and diving) from the datasets. The

actions of brush hair and riding horse are relatively
static actions with slightly background movement.
While the action of diving involves drastic camera
motion, many points are moving together in each
frame. Figure 5 illustrates the edge-based trajectory
and the pruning of irrelevant trajectories. We can
find that trajectories caused by camera motion are
removed, and the trajectories produced by action-
related edge are well kept.

3.2 Proposed spatio-temporal motion skeleton
In this section, we introduce the trajectory descriptors
and the generation of spatio-temporal motion skeleton,
including trajectory encoding-based similarity measure-
ment and motion clustering.

3.2.1 Trajectory descriptors
In order to well describe the motion information of each
trajectory, four descriptors are calculated in our method,
namely, HOF, MBH, HOG, and the proposed STMS.
The first two descriptors capture the motion information
from optical flow, the HOG descriptor capture the local
appearance information, and the STMS represents the
relationship of trajectories between different types of
action.
Similar to other trajectory-based methods, the descrip-

tors HOG, HOF, and MBH of the LV-ET are also

Fig. 5 Visualization of proposed LV-ET. From top to bottom: brush hair, riding horse, and diving. The above two rows correspond the case of
relatively static action with slight camera motion. The bottom row corresponds to the drastic camera motion case, lots of points moving together
in one frame. From left to right: a frame of an action video, the trajectories unpruned and the trajectories pruned
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acquired from a spatio-temporal volume centered along
the trajectory, which is usually divided into spatio-
temporal cells to embed structure information. In our
work, we use a volume of 24 × 24 × L pixels for each
trajectory, where L is the length of LV-ET, and divide
the volume into 4 × 4 × 1 cells. Then, the three above
descriptors are calculated with the same parameters
which are used in [24]. The detailed information of
proposed STMS descriptor is introduced in the next
section.

3.2.2 Trajectory encoding
For a certain type of action, there are always some
specific trajectories existing to describe the specified
action. How to represent these specific trajectories in
a proper way is a crucial problem in HAR process. In
this paper, our goal is to learn discriminative spatio-
temporal trajectory clusters from a video that are
most relevant to a specific type of action and to en-
code the trajectory as motion skeleton for each action
class. Our descriptor, STMS, is extracted by using
spectral clustering algorithm under a novel trajectory
encoding method. The illustration of extraction STMS
is presented in Fig. 6. First, LV-ET can be considered
as time series of 2D coordinates with different lengths
Trat = [(xt,yt),(xt + 1,yt + 1),…,(xt + L,yt + L)]. We first
encode every trajectory into proposed trajectory
motion histogram (TMH) according to the motion
information. Then, the TMH is clustered by spectral
clustering algorithm, the number of the clustering
centers k is discussed in detail in Section 4.3.2. Then,
we regard each cluster center as the skeleton of this
action and obtain the STMS by counting the numbers
of trajectories belonging to each type of skeleton to
gain video level representation.
For a LV-ET, there are two aspects essential to

compute the similarity, namely, displacement magni-
tude and orientation. In this work, each LV-ET is
considered as a spatio-temporal series composed of
above two aspects, and we expect to extract such a
compact representation to depict the motion informa-
tion of each trajectory. Process to trajectory encoding
and motion similarity computing is illustrated in

Fig. 7. For two points P and P’ between two adjacent
frames along the same LV-ET, we denote the displace-
ment between them as a vector PP’ = (Δx,Δy). To
perform a reasonable quantization on PP’, we take
both magnitude and orientation into consideration.
There are two quantization uniform levels for magni-
tude, where ||PP’|| is normalized by its max value in
each trajectory. This normalization guarantees that
this quantization method is scale invariant. For orien-
tation, we divide the 360° into eight intervals, each of
which is 45°. The representation of magnitude and
orientation quantization results in 16 bins in polar
coordinates. Moreover, we set an additional bin for
horizontal displacement of the trajectory. That is to
say, the LV-ET is encoded into a TMH and the
dimension of each TMH is 1 × 17 equally. Finally,
the motion similarity is computed by Euclidean
distance between two TMH.

3.2.3 Motion clustering and skeleton extraction
From the above analysis, we can obtain the motion simi-
larity of LV-ET, which is the foundation for the motion
clustering and motion skeleton extraction. In recent
years, spectral clustering has become one of the most
popular clustering algorithms. In this paper, we adopt
this clustering similar to [33] to get the cluster center as
motion skeleton. Spectral clustering algorithm is based
on graph theory, we regard every TMH as a node in an
undirected graph V = (v1,v2,…,vn), the proposed motion
similarity between trajectories is quantified as the edge
weight between nodes. Therefore, we can transform the
motion clustering problem into the sub-graph partition-
ing problem.
Given a set of trajectories T = {Tra1,Tra2,…,Tran} in

Rl, each with its own TMH = {TMH1,TMH2,…,TMHn}
and that we want to cluster them into k motion
skeletons:

1. Form the affinity matrix W∈ Rn × n defined by
the proposed motion similarity between two
trajectories, where if i ≠ j, Wij = ΔMsij, and the
elements on the diagonal is 0.

Fig. 6 Illustration of the proposed STMS descriptor based on motion similarity
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2. Define D to be the diagonal matrix which
diagonal element is the sum of W’s i-th row, and
construct the Laplacian matrix L = D−1/2 AD−1/2.

3. Calculate the first k eigenvalues x1, x2,…,xk of L
and form the matrix X = [x1x2…xk]∈ Rn × k by
stacking the eigenvectors in columns.

4. Form the matrix Y from X by normalizing every
X’s row to a unit length, where Yij = Xij/(∑jX

2
ij)
1/2.

5. Regarding each row of Y as a point in Rk, cluster them
into k cluster C1, C2,…,Ck via K-means algorithm.

6. The clustering centers are regarding as the motion
skeleton of this action. Then, each trajectory type is
assigned to its nearest cluster centroid using
Euclidean distance. The STMS descriptor with a
dimension of k is constructed for each type of
trajectories to represent the video. In general, once
we have extracted the LV-ET, we can obtain the
STMS by applying the following algorithm:

4 Experimental results and discussion
In this section, we evaluate the performance of the pro-
posed LV-ET and STMS descriptor on three challenging
unconstrained HAR datasets including UCF Sports [34],
YouTube [35], and HMDB51 [36]; Fig. 8 shows some
examples from these datasets.

4.1 Datasets
UCF Sports [34] dataset contains ten human actions:
diving, golf, swinging, kicking, weight lifting, horseback
riding, running, skating, swinging bench, swinging side,
and walking. For most action classes, there is consider-
able variation inaction performance, human appearance,
camera movement, viewpoint, illumination, and back-
ground. Besides, due to its high resolution, we resize
each video in it to half its original spatial to reduce the
time consumption. Similar to [23], we add a horizontally
flipped version of each sequence to the dataset to

Fig. 7 Illustration of the process to trajectory encoding and motion similarity computing
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increase data samples and use the leave-one-out setup,
i.e., testing on each original sequence while training on all
other sequences except the flipped version of the tested
sequence. We report average accuracy over all classes.
YouTube [35] dataset includes 11 action categories:

basketball shooting, biking, diving, golf swinging, horse-
back riding, soccer juggling, swinging, tennis swinging,
trampoline jumping, volleyball spiking, and walking with
a dog. This dataset is very challenging due to large varia-
tions in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, illumin-
ation conditions, etc. For each category, the videos are
grouped into 25 groups. In total, 1168 videos are used in
the experiment. Leave-one-out setup is utilized, and
average accuracy over all classes is reported as the
performance measure.
HMDB51 [36] dataset is collected from a variety of

sources. There are a total of 6766 videos distributed in
51 action categories. The action categories can be
grouped in five types: general facial actions, facial
actions with object manipulation, general body move-
ments, body movements with object interaction, and
body movements for human interaction. For evaluation,
there are three distinct training and testing splits. We
follow the original protocol using three train-test splits
and report average accuracy over these splits.

4.2 Experimental setup
The experiment is divided into two parts: the first part is
feature extraction to represent the videos, and the

second part is video classification. In the first part,
Farnebäck’s optical flow algorithm [32] is employed to
estimate optical flow field. During LV-ET extraction, we
adopt Canny operator to detect frame edges and a
square-shaped structuring element with 3 × 3 pixels is
used to compute the dilated edge image. The LV-ET can
be obtained through the above steps, which is also
reused later to compute motion-related descriptors like
HOF and MBH. Moreover, in order to extract STMS
descriptor, we introduce a novel trajectory encoding
method and based on the proposed encoding method,
the motion similarity is computed under Euclidean
distance. Then, the spectral clustering algorithm is
employed to construct the motion skeleton within
256 dimensional, so the video can be represented by
a 256-dimension STMS descriptor. We also extract
three baseline descriptors (i.e., HOG, HOF, and MBH)
from the trajectories. Empirically, we use a volume of
24 × 24× L pixels and divide it into 4 × 4 × 1 cells for
each trajectory when extracting the three baseline descrip-
tors. In order to fairly compare with the baseline trajectory
DT [23] and iDT [18], the same parameters are utilized to
extract the descriptors as used in [23]. Note that iDT uses
human detection to detect the targets from the back-
ground. In contrast, the proposed method does not make
use of human detection.
After the trajectory descriptors are computed, the

principle component analysis (PCA) is individually
applied to reduce the dimensionality of each descriptor
(i.e., HOG, HOF, MBH, and STMS) by a factor of two as

Fig. 8 Sample frames from the three unconstrained HAR datasets used in our experiments. From top to bottom: UCF Sports, YouTube,
and HMDB51

Weng and Guan EURASIP Journal on Image and Video Processing  (2018) 2018:8 Page 9 of 15



suggested in [24] so as to better mitigating the impact of
noise. Then, the fisher vector (FV) model [18] is adopted in
this paper. For each type of descriptor extracted from trajec-
tory, these PCA-reduced vectors are separately encoded into
a signature vector by the FV model. Similar to [24], the pro-
jection matrix of PCA is learned using 256,000 descriptors
randomly sampled from the training set. Then, we use a
Gaussian mixture models (GMM) with 256 components to
encode the projected descriptors as the same in [24] and
apply ℓ2 normalization [18] to each type of descriptor to
obtain the video-level representation. For each video, four
types of video-level representations are computed.
In the second part, after gaining the high-level video

representations, we use multi-kernel learning-based sup-
port vector machine to predict action class [37], where
four linear kernels are used, and each corresponds to
one type of representations [38]. The one-against-all ap-
proach is adopted, and the predicted class is selected
with highest score.

4.3 Evaluation of parameters
In this subsection, we compare and analyze different edge
detectors and the numbers of motion skeletons for HAR.

4.3.1 Evaluation of edge detectors
As the default setting is introduced in Section 4.2, we
use Canny operator as the default edge detector when
extracting LV-ET. In order to evaluate the impact of
edge detectors on the performance of HAR, the edge
information is also detected by Sobel and Log edge
detectors. Then, we compare the HAR performances
between these three detectors on UCF Sports and
YouTube datasets. Figure 9 illustrates the comparison
result on the two datasets and some example frames
from different edge detectors. It is obvious that on UCF
Sports, all three edge detectors achieved appreciable re-
sults, while on YouTube, Canny detector performs better
than the other two. The reasonable explanation for this
phenomenon is that edge detection is the foundation of
all subsequent work. So, the quality of edge LV-ET is
highly depending on the integrity of edge information.
For most action clips in UCF Sports, the edge of targets
is relatively clear and easy to be detected by the three
edge detectors. Whereas for some action clips in
YouTube, the targets are relatively weak which lead to
false detection or weak edge losing, thus increases the
difficulty of edge detection. Among the three edge

a

c

b

Fig. 9 Comparison of edge detectors: a recognition accuracy on UCF Sports, b recognition accuracy on YouTube, and c Example frames of
different edge detectors. From left to right: Original, Sobel, Log and Canny
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detectors, Canny is more likely to detect true weak
edges, which provides the necessary guarantee for the
follow-up works.

4.3.2 Evaluation of motion skeleton numbers
In Section 4.2, we introduced the pre-defined parameters
motion skeleton number. In order to analyze the impact
of this parameter, we evaluated the HAR performance of
the parameter among three datasets aforementioned and
the comparison result is illustrated in Fig. 10. It is
obvious that in each dataset, when the motion skeleton
number is too small, increasing it will improve the
performance. But when it reaches a certain value,
performance begins to decrease. To be specific, the
performance on UCF Sports, YouTube, and HMDB51
reaches the highest respectively at 256, 128, and 256. It
is partly because the resolution of action clips in
YouTube is lower than that those of two.

4.4 Comparison with baseline descriptors
A large number of experimental studies [23, 25, 26] have
proved the discriminative and representative of HOG,
HOF, and MBH, so we set these three descriptors as
baseline descriptors. In order to have a fair comparison,
both STMS and baseline descriptors are extracted from
the proposed LV-ET and employ the same parameters as
presented in Section 4.2. The comparison result between
proposed STMS and the baseline descriptors is given in
Table 1, where “Combine 1” is the method of com-
bining three baseline descriptors, “Combine 2” is the
combination of the four descriptors (i.e., HOG, HOF,
MBH, and STMS). We compare the recognition re-
sults of baseline descriptors with the combination of
the descriptors. It is obvious that the combination
with STMS outperforms that without STMS. This
indicates the discriminative and complementary of
proposed STMS descriptor.

4.5 Comparison with baseline trajectories
Due to the excellent performance obtained by DT and
iDT, we select both of them as baseline trajectories. The
default parameters of the baseline trajectories are set
as the same as in [24, 25]. In order to get the best

Table 2 Comparison of LV-ET with baseline trajectories

Trajectories UCF Sports (%) YouTube (%) HMDB51 (%)

DT 88.2 84.1 52.1

iDT 89.3 86.6 57.2

LV-ET 92.8 89.6 58.2

The italicized values indicate the best performance among three types of trajectories

Table 1 Comparison of STMS with baseline descriptors

Descriptors UCF Sports (%) YouTube (%) HMDB51 (%)

HOG 84.3 74.3 38.4

HOF 79.2 70.9 42.5

MBH 84.5 82.5 48.1

STMS 87.6 81.3 51.3

Combine 1 90.4 87.0 56.6

Combine 2 92.8 89.6 58.2

The italicized values in the above four rows indicate the best result of single
descriptor and those in the below two rows shows the best result between
“Combine 1” and “Combine 2”

Fig. 10 Evaluation of motion skeleton number on three datasets
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performance of iDT, a human detector is employed.
In addition, the parameters of both baseline trajector-
ies and LV-ET are configured as the same as pre-
sented in Section 4.2. The combination of the four
descriptors (i.e., “Combine 2” in Table 1) is utilized to

evaluate the performance, and the results are reported
in Table 2, where we report the average accuracy over
all three action datasets.
As given in Table 2, the HAR performance on three

datasets of LV-ET outperform DT by 4.6, 5.5, and 7.1%.

a

c

b

Fig. 11 Confusion matrices on three datasets: a UCF Sports, b YouTube, and c HMDB51
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As compared with iDT, the performances are increasing
3.5, 3.3, and 2.0% respectively. It is obvious that the pro-
posed LV-ET obtains the best HAR performance among
three types of trajectories. This is because LV-ET
describes the evolution features between different types
of actions and uses the edge information of the target to
reduce background interference and camera motion.

4.6 Evaluation of the overall recognition performance
We report the overall recognition performance over
three datasets mentioned above. Figure 11 shows the
confusion matrix for UCF Sports, YouTube, and
HMDB51 respectively. As seen from Fig. 11a, it can be
observed that the actions of diving, weight lifting, swing
bench, and swing side can all be identified and the
average recognition accuracy is 92.80% which is a suffi-
ciently high accuracy on UCF Sports. In Fig. 11b, it can
be observed that the average recognition accuracy is
89.64% which is comparable to the state-of-the-art. The
recognition accuracy among these actions is over 85%
except basketball shoot and walk, which are confused
with each other. This is one of the problems that we
need to consider in the future.
Figure 11c shows the confusion matrix of HMDB51,

and we use a heatmap to represent the confusion matrix.
The color legend is drawn at the right and the detailed

per-class accuracy is given in Table 3. We can see that
the per class accuracy of smile, swing baseball, sword
exercise, throw, and wave are all less than 20%. Smile is
confused with chew, laugh, and talk which are all in the
group of general facial actions. Sword exercise is most
confused with draw sword, and throw is confused with
kick ball. These errors mainly occur between classes
which are visually similar. Table 3 also shows that the
proposed method gains a relatively low performance in
the type of body movements with object interaction like
pick, sword exercise, swing baseball and throw. In the
future, we will consider how to better distinguish the
action in one type of group especially the group of body
movements with object interaction.

4.7 Comparison with state of the arts
To further verify the effectiveness of the proposed
method, we compare our method with the recent
trajectory-based methods on all three datasets and the
results are reported in Table 4. For the sake of fairness,
we only report the results for the case in which we com-
bined all descriptors. For the three datasets evaluated,
we can observe that the proposed method achieves a
comparable HAR performance.
As given in Table 4, the proposed method achieves

comparable result on all three datasets. We note that the
UCF Sports dataset, the proposed method obtains at
least 0.8% improvement and obtains 92.8% accuracy; for
the HMDB51 dataset, there is at least 1.5% improvement
compared with other methods and obtains 58.2% accuracy;
for the YouTube dataset, our method outperforms 0.7%
than the others and obtains 89.6% accuracy.

Table 3 Per class average accuracy for HMDB51

brushhair:0.89 eat:0.53 kiss:0.80 shakehands:0.62 swordexercise:0.19

cartwheel:0.63 fallfloor:0.53 laugh:0.69 football:0.76 swordfight:0.29

catch:0.67 fencing:0.64 pick:0.27 shootbow:0.78 talk:0.64

chew:0.71 backhandflip:0.76 pour:0.77 shotgun:0.48 throw:0.04

claphands:0.77 golf:0.97 pullup:0.97 sit:0.82 turn:0.62

climb:0.64 handstand:0.66 punch:0.33 situp:0.73 walk:0.57

climbstairs:0.68 hit:0.28 push:0.57 smile:0.19 wave:0.14

dive:0.57 hug:0.83 pushup:0.82 smoke:0.50

drawsword:0.46 jump:0.44 ridebike:0.72 somersault:0.52

dribble:0.88 kickball:0.49 ridehorse:0.69 standup:0.67

drink:0.67 kick:0.27 run:0.49 swingbaseball:0.06

Table 4 Comparison of the overall performance of our method
and the trajectory-based methods

Methods UCF Sports (%) YouTube (%) HMDB51 (%)

Wang et al. [23] 88.0 84.1 46.6

Seo et al. [16] – – 57.8

Yi et al. [30] 90.0 – –

Wang et al. [39] 92.0 88.9 54.3

Peng et al. [40] – 87.6 51.8

Cho et al. [41] 89.7 86.1 –

Ours 92.8 89.6 58.2

The italicized values indicate the best HAR performance among the three datasets

Table 5 Comparison of the average time consumption per
video for the trajectory

Trajectory
numbers

Trajectory
extraction (s)

Descriptor
computation (s)

Descriptor
encoding (s)

Total (s)

DT 26,749 7.04 70.48 10.17 87.69

LV-ET 2354 19.15 6.39 2.86 28.40
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4.8 Evaluation of computational complexity
To evaluate the computational complexity of the pro-
posed LV-ET, we compute the average time consump-
tion per video for both trajectory extraction and
descriptor representation on UCF sports. The experi-
ment compared the proposed LV-ET with DT in Matlab
with Intel I7 (3.6GHz CPU), only a single CPU core is
used, and both of the codes are not optimized. The time
consumption for the above two trajectories are com-
pared in Table 5. The extraction of LV-ET is somewhat
more computationally expensive than DT. It is because
LV-ET use edge-based sampling strategy and needs to
traverse every edge points in the next frame which is
time consuming. But the number of LV-ET is much
smaller than DT, so the descriptor computation and
encoding process for the former is much more time-
saving. In addition, we do not count the time consump-
tion on optical flow, PCA, and GMM training because
the process between these two types of trajectory is
similar.

5 Conclusions
In this paper, a new trajectory generation strategy LV-ET
is proposed and a novel descriptor STMS is designed for
human action recognition. The LV-ET, extracted by
tracking edge points across video frames based on op-
tical flow with the aim of better descript the evolution of
different type of actions, which proves representative
and informative. In the process of extracting STMS, a
novel encoding method for trajectory clustering is pro-
posed. The motion similarity is adequately considered
during TMH clustering. STMS is designed for extracting
the most representative trajectories in one action, so we
call it motion skeleton.
Through experimentation with three publicly uncon-

strained datasets, we demonstrated that the proposed
LV-ET outperforms the baseline approach (e.g., DT and
iDT). Regarding STMS, it is also comparable to the
current trajectory-based descriptors and proved to be
discriminative and complementary to existing descrip-
tors. Note that we do not leverage background subtrac-
tion and thus can be well applied to unconstrained
realistic action recognition.
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