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Abstract

Image quality assessment is an important topic in the field of digital image processing. In this study, a full-reference
image quality assessment method called Riesz transform and Visual contrast sensitivity-based feature SIMilarity index
(RVSIM) is proposed. More precisely, a Log-Gabor filter is first used to decompose reference and distorted images, and
Riesz transform is performed on the decomposed images on the basis of monogenic signal theory. Then, the
monogenic signal similarity matrix is obtained by calculating the similarity of the local amplitude/phase/direction
characteristics of monogenic signal. Next, we weight the summation of these characteristics with visual contrast
sensitivity. Since the first-order Riesz transform cannot clearly express the corners and intersection points in the image,
we calculate the gradient magnitude similarity between the reference and distorted images as a feature, which is
combined with monogenic signal similarity to obtain a local quality map. Finally, we conduct the monogenic phase
congruency using the Riesz transform feature matrix from the reference image and utilize it as a weighted function to
derive the similarity index. Extensive experiments on five benchmark IQA databases, namely, LIVE, CSIQ, TID2008,
TID2013, and Waterloo Exploration, indicate that RVSIM is a robust IQA method.
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1 Introduction
Digital image is an essential factor to express and com-
municate information. Digital imaging has been applied in
many fields, but digital image quality is inevitably reduced
and affected during image collection, compression [1–3],
transmission [4], processing [5], and reconstruction [6, 7].
The accurate assessment of image quality has also become
challenging [8]. As such, image quality assessment (IQA)
has been extensively investigated [9–11].
IQA can be divided into full-reference (FR), reduced-

reference (RR), and no-reference (NR) assessments [12]
based on the presence of reference images. The FR IQA
methods are based on “the original image” , which is taken
as the reference image. It is mainly used in assessing the
similarity and fidelity between distorted image and origi-
nal undistorted image [13, 14]. The RR IQA methods are
considered practical when we can only get access to some
extracted features instead of the whole original image [15].
We can use these provided features and give a reasonable
estimation on the distorted image’s quality [16]. In some
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practical applications, the reference image is not available
to perform a comparison against. Therefore, the NR IQA
methods are needed [17]. This study focuses on FR IQA
methods.
MSE and PSNR are widely used FR IQA methods. In

thesemethods, image quality is assessed by calculating the
overall pixel error, and average error is used as the final
assessment result. These methods provide several advan-
tages, such as simple calculation and easy implementation.
But since the modeling is too simple, the comprehend-
ing of the image is overly superficial. The absolute error
between pixels of two images is calculated, but the corre-
lation between pixels and the perceptive characteristics of
human visual system (HVS) are disregarded. Their low-
level features, such as edge information, are also yet to
be described. Thus, it causes serious incongruency, which
is against the perceptive characteristics of HVS and is
likely the cause of unrealistic conditions between assessed
results and actual phenomena during quality assessment
[18, 19].
Many representative assessment methods have been

proposed to adapt to human visual characteristics. Wang
et al. [12] established a Structural SIMilarity (SSIM)
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model, which is considered the most common repre-
sentative based on universal image quality index (UQI)
[20]. The structural information of images is applied to
assess quality and SSIM index. Experiments show that
SSIM is appropriate than previous assessment methods.
Although SSIM improves the congruency between assess-
ment results and HVS perception, the structural features
of images remain scalar and consequently causes SSIM to
lose its validity when images are highly blurred. Numer-
ous methods, such as MS-SSIM [21], ESSIM [22], GSSIM
[23], 3-SSIM [24], CW-SSIM [25], and IW-SSIM [26], have
been improved on the basis of SSIM, and these methods
enhance the assessment result to a certain level. Sheikh
et al. [27, 28] also developed methods, such as IFC and
VIF, based on natural scene statistics (NSS) to introduce
the concept of information fidelity. Zhang et al. [29] pro-
posed a Feature SIMilarity (FSIM)method that introduces
phase congruency (PC) and gradient magnitude (GM)
similarity as assessment features.
With in-depth research, natural images as a two-

dimensional signal characterized by highly structured fea-
tures must have a vector trait. The pixels of images show
a strong dependency, which constitutes the structure of
two-dimensional image. The main function of HVS is
to obtain structural information from the field of view.
Zhang et al. [30] constructed similarity matrices by using
the characteristic map of first- and second-order Riesz
transforms and utilized edge features as pooling func-
tion to derive the RFSIM index because of the good
performance of Riesz transform in multidimensional sig-
nal processing. Luo et al. [31] introduced monogenic
phase congruency (MPC) based on PC and proposed the
RMFSIM method. With these methods, the structural
method can be used to assess the vector characteristics of
two-dimensional images more efficiently. However, these
methods simply apply the Riesz transform to construct
local features that partially consider the physical meaning
of monogenic signal (MS) theory. Moreover, these assess-
ment factors describe high-frequency information, such
as edge features. The complexity of HVS has not yet to
be fully presented. Hence, there is still much room for
improvement.
In this study, a FR IQA method called Riesz transform

and Visual contrast sensitivity-based feature SIMilarity
index (RVSIM) is proposed by combining Riesz trans-
form with visual contrast sensitivity. To the best of our
knowledge, the Log-Gabor filter and the contrast sensitiv-
ity function (CSF) are all well-known theories. However,
we are the first to combine the frequency characteristic of
Log-Gabor filter and frequency-sensitive features of HVS,
so that the objective and subjective evaluation results are
consistent as much as possible. In addition, although Riesz
transform inmultidimensional signal processing performs
well, the first-order Riesz transform cannot clearly express

the corners and intersection points in the image. The
proposed RVSIM method introduces the GM similarity
thus improves the assessment of performance. In gen-
eral, RVSIM takes full advantage of the MS theory [32]
and Log-Gabor filter [33] by exploiting visual CSF [34]
to allocate the weights of different frequency bands. The
similarity matrix is obtained by introducing GM, and
the MPC map is utilized as a pooling function to derive
the final IQA score. Two groups of simulated experiments
were carried out with two kinds of databases. The one
kind is the LIVE, CSIQ, TID2008, and TID2013 databases,
which mainly assess performance through calculating the
absolute indicators of the method. The other kind is the
Waterloo Exploration database, which mainly assesses
through calculating the competitive ranking amongmeth-
ods. The experimental results demonstrate that the pro-
posed RVSIM method is a robust IQA method.
Notably, RVSIM is different from RFSIM [30] and RMF-

SIM [31] in four aspects. First, RVSIM employs Log-
Gabor band-pass filters on the reference and distorted
images to obtain the components of images in differ-
ent frequency bands. Second, RVSIM does not directly
use the Riesz transform to determine the feature matrix.
Instead, RVSIM utilizes the analytic space obtained by
Riesz transform, including local amplitude, phase, and
direction, which constitute a complete orthogonal basis
[35], and subsequently calculates local feature similar-
ities. Third, RVSIM applies the characteristics of HVS
to assign different weights to various frequency bands.
In this manner, the RVSIM model has appropriate con-
gruency with the perceptive characteristics of the HVS.
Fourth, RVSIM introduces the GM similarity and demon-
strates that the first-order Riesz transform cannot clearly
express the corners and intersection points in images.
The remaining parts of this paper are organized as fol-

lows: Section 2 presents the MS theory, Log-Gabor filter,
MPC, and visual contrast sensitivity. For the specific appli-
cation of these theories in this study, we give a detailed
design ideas and calculation process. Section 3 introduces
the structure of the new IQA method proposed in this
study and also describes the combination ofMS, CSF, GM,
and MPC to derive the RVSIM index. Section 4 presents
the experimental results. Section 5 draws the conclusion.

2 Related works
2.1 Riesz transform
In one-dimensional signal processing, the Hilbert trans-
form has been proven to be effective. However, after its
expansion to the two-dimensional image, various attempts
using the Hilbert transform, including the local Hilbert
transform, the overall Hilbert transform, and the local
and global Hilbert transform [36], have all failed because
they all have a common flaw: they are not isotropic [37].
Riesz transform can convert the Hilbert transform into a
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high-dimensional Euclidean space, which is suitable for
image processing applications [38, 39].
Figure 1 shows that the Riesz transform space is a spher-

ical coordinate system in a 3D Euclidean space. R,R1, and
R2 are the projections of the points in the spherical coordi-
nate system on the three axes [40]. In this spatial domain,
the local amplitude A, the local direction θ , and the local
phase ϕ can be expressed as:

⎧
⎪⎪⎨

⎪⎪⎩

AR(x, y) = √
R(x, y)2 + R1(x, y)2 + R2(x, y)2

θR(x, y) = tan−1 (−R2(x, y)/R1(x, y))

ϕR(x, y) = tan−1 (R12(x, y)/R(x, y))

(1)

where R12(x, y) = √
R1(x, y)2 + R2(x, y)2, θR(x, y) ∈[ 0,π),

ϕR(x, y) ∈[ 0,π).

2.2 Log-Gabor filter
Given that the length of the image signal is limited, the
image signal is usually band-pass filtered before the Riesz
transform, usually using the Log-Gabor filter [41]. In prac-
tical applications, multiple Log-Gabor filters should be
used to build a complete filter bank in the radial and hor-
izontal directions because of the bandwidth limitation of
a single Log-Gabor filter [42]. The optimum filter bank
for a specific application can be established on the basis
of previously described methods [43, 44]. In this study,
the number of scales nr = 5, the number of orientations
nθ = 1, and the splicing parameters are discussed in detail
in Section 4.1.
Section 2.4 shows that the center frequencies

ω0i (i = 1, . . . , 5) of the filter bank are ω01 = 1
3 ,ω02 = 1

32.1 ,

Fig. 1 The Riesz transform space

ω03 = 1
32.1×2.1 ,ω04 = 1

32.1×2.1 , and ω05 = 1
32.1×2.1×2.1×2.1 .

The bands of the Log-Gabor filter bank are
[0.4786, 0.2026], [0.2611, 0.0965], [0.1243, 0.0460], [0.0591,
0.0221], and [0.0282, 0.0105]. Using this filter bank, the
image R is filtered to complete the five-scale decom-
position of the image, and the decomposed images
Rbi (i = 1, . . . , 5) are obtained. The MS of the reference
image

[
Rbi,Rbi

1 ,R
bi
2

]
(i = 1, . . . , 5) are obtained using

Rbi (i = 1, . . . , 5) for the Riesz transform. Thus, Eq. (1)
becomes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Abi
R (x, y) =

√

Rbi(x, y)2 + Rbi
1 (x, y)2 + Rbi

2 (x, y)2

θbiR (x, y) = tan−1
(
−Rbi

2 (x, y)/Rbi
1 (x, y)

)

ϕbi
R (x, y) = tan−1

(
Rbi
12(x, y)/Rbi(x, y)

)

(2)

where Rbi
12(x, y) =

√

Rbi
1 (x, y)2 + Rbi

2 (x, y)2, θbiR (x, y) ∈
[ 0,π),ϕbi

R (x, y) ∈[ 0,π), i = 1, . . . , 5. Similarly, the MS of
the distorted image is

[
Dbi,Dbi

1 ,D
bi
2

]
(i = 1, . . . , 5) and the

corresponding local amplitude Abi
D , the local direction θbiD ,

and the local phase ϕbi
D , i = 1, . . . , 5.

In this study, the Log-Gabor filter bank is shown in
Fig. 2. The center frequencies ω0i (i = 1, . . . , 5) from
Fig. 2a–e are ω01 = 1

3 ,ω02 = 1
32.1 ,ω03 = 1

32.1×2.1 ,ω04 =
1

32.1×2.1×2.1 , and ω05 = 1
32.1×2.1×2.1×2.1 . Using this Log-Gabor

filter bank, two sample images (which are monarch and
sailing2 in the LIVE database [45]) are filtered to obtain
the different components of the corresponding five bands.
Notably, the sample images are grayed before filtering.
Figure 2 also shows that the Log-Gabor filter whose ω0

is set as 1
3 reflects the high-frequency components of the

image, mainly representing the most detailed information
of the original image. The Log-Gabor filter, whose ω0 is
set as 1

32.1 , reflects the sub-high frequency components
of the image. The Log-Gabor filter whose ω0 is set as

1
32.1×2.1×2.1 contains a large number of low-frequency com-
ponents, which mainly reflect the contour information
of the original image. The detailed information describes
the small-scale parts of the image such as texture, and
the remaining large-scale information expresses the basic
structure and the trend of the image.

2.3 Monogenic phase congruency
The traditional PC model [46] utilizes the phase informa-
tion of the image and is widely used to detect the edges,
key feature points, and symmetry of the image. However,
noise interference, frequency spread, and other problems
will occur [47, 48]. The MPC model developed based on
the MS theory and PC can better express the local phase
information of the image and improve computational effi-
ciency and local feature accuracy [31].
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Fig. 2 Two examples and their Log-Gabor filter banks. a–e Forms of filter bank. Their center frequencies are ω01 = 1

3 ,ω02 = 1
32.1

,ω03 = 1
32.1×2.1 ,

ω04 = 1
32.1×2.1×2.1 , and ω05 = 1

32.1×2.1×2.1×2.1 respectively. f–k The original imagemonarch and the different components of the corresponding five
bands. l–q The original image sailing2 and the different components of the corresponding five bands

According to Eq. (2), the sum of the local energy is:

E
′
(x, y) =

√

Rb(x, y)2 + Rb
1(x, y)2 + Rb

2(x, y)2 (3)

where Rb(x, y) = ∑5
i=1 Rbi(x, y),Rb

1(x, y) = ∑5
i=1 Rbi

1 (x, y),
and Rb

2(x, y) = ∑5
i=1 Rbi

2 (x, y).
The sum of the local amplitudes is:

A
′
(x, y) =

5∑

i=1
Abi(x, y) (4)

The MPC model is expressed as:

MPC(x, y) =

W (x, y)
⌊

1 − ξ × acos
(

E′
(x,y)

A′
(x,y)

)⌋
⌊
E′

(x, y) − T
⌋

A′
(x, y) + ε

(5)

where � � indicates that the difference between the func-
tions is not permitted to become negative. ξ is the gain
coefficient, which is generally given as 1 ≤ ξ ≤ 2. T is the
noise compensation factor. ε is a small positive constant,
which is set as ε = 0.0001. W (x, y) is the weight func-
tion that applies a filter response extended value to S-type
growth curve [49].

W (x, y) = 1
1 + exp(g(c − s(x, y)))

(6)

where c is the cutoff value of the filter response spread,
below which the PC values become penalized, g is the gain
factor that controls the sharpness of the cutoff, and s(x, y)
is the spread function [31]. Here, we set g = 1.8182 and
c = 1/3.
Figure 3 shows the three-dimensional surface ofW (x, y)

used to derive the weight function more intuitively. Two
sample images (Fig. 3a, d, which is the same as Fig. 2f, l) in
the LIVE database [45] are taken as examples. Figure 3b,
e shows the three-dimensional surface of W (x, y).
Figure 3c, f shows the three-dimensional rotate surface of
W (x, y).
Figure 3 shows that the weight function accurately

highlights the local characteristics in the sample image,
indicating that the MPC can express the local phase infor-
mation of the image.

2.4 Visual contrast sensitivity
Physiological and psychological research have revealed
that HVS has many characteristics such as visual sensi-
tivity band-pass effect, visual nonlinearity effect, visual
multichannel, and masking effect [50]. Among them, the
CSF characterizes the HVS sensitivity band-pass effect,
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a b c

d e f
Fig. 3 Two sample images used for the weight function. These images are extracted from the LIVE database. a, d Reference image. b, e Three-dimensional
surface of the weight function. c, f Rotate maps of the three-dimensional surface

which reflects the difference in the sensitivity of HVS
to different spatial frequencies. Given that CSF can be
combined with subjective visual experience, it has been
applied tomany IQAmethods [51, 52]. This study uses the
CSF model proposed by Mannos et al. [34]:

A(fr) ≈ 2.6(0.0192 + 0.114fr) exp
(−(0.114fr)1.1

)
(7)

where fr is the spatial frequency. The normalized CSF
characteristic curve is obtained as shown in Fig. 4.
To facilitate the calculation and adapt to CSF, the

center frequencies ω0i (i = 1, . . . , 5) of the Log-Gabor
filter bank are set as ω01 = 1

3 ,ω02 = 1
32.1 ,ω03 = 1

32.1×2.1 ,
ω04 = 1

32.1×2.1×2.1 , and ω05 = 1
32.1×2.1×2.1×2.1 . The CSF

curve is divided into five segments. The half-power
point filter is set as the bandwidth limit. Then,
the five bands of the Log-Gabor filter bank are
[0.4786, 0.2026], [0.2611, 0.0965], [0.1243, 0.0460], [0.0591,
0.0221], and [0.0282, 0.0105], which are correspondent
to red, orange, green, cyan, and blue colors, respectively,
in Fig. 4 (the overlap between the bands in the figure is
not reflected). The maximum value of each band is set as
the weight of the corresponding similarity matrix, and
w1 = 0.3370,w2 = 0.8962,w3 = 0.9809,w4 = 0.9753, and
w5 = 0.7411.
3 Proposed RVSIMmethod
3.1 The proposed framework
The framework of the proposed RVSIM method in
this study is shown in Fig. 5. The reference image R

and the distorted image D are filtered by a five-band
Log-Gabor band-pass filter to obtain the components
Rbi and Dbi (i = 1, . . . , 5) in five different frequency
bands.

[
Rbi,Rbi

1 ,R
bi
2

]
and

[
Dbi,Dbi

1 ,D
bi
2

]
(i = 1, . . . , 5) are

obtained by applying Riesz transform to the decomposed
image. Five MS similarity functions

(
SbiA , S

bi
ϕ , Sbiθ

)
(i =

1, . . . , 5) are obtained using the five similarity func-
tions of the local features (including local amplitude A,
local phase ϕ, and local direction θ ). Then, the similar-
ity matrix SMi (i = 1, . . . , 5) is derived. The weights
wi (i = 1, . . . , 5) of the five similarity matrices are set
using the CSF to obtain a single similarity matrix SM.
The GM similarity matrix SG of R and D is calculated.
Then, SM and SG are combined to obtain the local fea-
ture similarity SL of R and D. At the same time, the
MPC calculation is performed using the MS obtained by
the reference image R to obtain the pooling function.
Finally, the local feature similarity map SL is convoluted
by the pooling function MPC to obtain the proposed
similarity index.

3.2 RVSIM index
As described previously, the reference image R and the
distorted imageD are subjected to a Log-Gabor filter bank
and a first-order Riesz transform to obtain five MSs to
calculate the characteristic indices in the Riesz transform
space, including the amplitude A, phase ϕ, and direction
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Fig. 4 The visual CSF characteristic curve. The CSF curve is divided into five segments, which correspond to red, orange, green, cyan, and blue colors

Fig. 5 Illustration of the proposed RVSIM method

θ . Then, the MS similarity of R and D at the pixel (x, y) is
derived as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SbiA (x, y) = 2Abi
R A

bi
D+C1

(
Abi
R

)2+
(
Abi
D

)2+C1

Sbiθ (x, y) = exp
(
−

∣
∣
∣tan

(
θbiR − θbiD

)∣
∣
∣

)

= exp
(

−
∣
∣
∣
∣
Rbi1 D

bi
2 −Rbi2 D

bi
1

Rbi1 D
bi
1 +Rbi2 D

bi
2

∣
∣
∣
∣

)

Sbiϕ (x, y) = exp
(
−

∣
∣
∣tan

(
ϕbi
R − ϕbi

D

)∣
∣
∣

)

= exp
(

−
∣
∣
∣
∣
RbiDbi

12−Rbi12D
bi

RbiDbi+Rbi12D
bi
12

∣
∣
∣
∣

)

(8)

where i = 1, . . . , 5, and C1 is a relatively small positive
number.
The construction parameter SMi is taken as the MS

similarity matrix:

SMi = SbiA · Sbiθ · Sbiϕ (9)

where i = 1, . . . , 5.
The weights of five MS similarity matrices are set as

wi (i = 1, . . . , 5) using the CSF curve. The weighted sum
is calculated to obtain the MS similarity matrix SM:

SM =
5∑

i=1
wiSMi (10)
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Similar to previous studies [29, 53], the GM similarity is
defined as:

SG(x, y) = 2GR(x, y)GD(x, y) + C2
(GR(x, y))2 + (GD(x, y))2 + C3

(11)

where GR(x, y) and GD(x, y) are GM R and D at the pixel
(x, y), respectively. C2 and C3 are relatively small positive
numbers.
The value range of SG(x, y) is (0, 1]. The smaller the

value is, the more severe the GM distortion. When
SG(x, y) = 1, R and D are not distorted at the GM of the
pixel. C3 can prevent Eq. (11) from singularity. C2 and C3
play important roles in adjusting the contrast response at
the low gradient region.
Then, SM and SG are combined to derive the similarity

SL of R and D. SL is defined as:

SL = [SM]α · [SG]β (12)

where α and β are parameters used to adjust the relative
importance of MS and GM features. In this study, α =
β = 1 is set for simplicity.

SL = SM · SG (13)

Finally, theMS PC assessment factorMPC is used as the
pooling function to obtain the RVSIM index:

RVSIM =
∑

(x,y)∈
 SL(x, y) · MPC(x, y)
∑

(x,y)∈
 MPC(x, y)
(14)

where 
 means the whole image spatial domain.

4 Experimental results and discussion
This study runs the RVSIM index on five image databases,
namely, LIVE [45], CSIQ [54], TID2008 [55], TID2013
[56], and Waterloo Exploration database [57], to verify
the performance of the proposed method. The five image
databases are used here for algorithm validation and com-
parison. The characteristics of these five databases are
summarized in Table 1.
For the LIVE, CSIQ, TID2008, and TID2013 databases,

the five-parameter nonlinear logistic regression function
in Eq. (15) is used to fit the data [58]. Moreover, four
corresponding indicators, such as Spearman rank-order
correlation coefficient (SROCC), Kendall rank-order cor-
relation coefficient (KROCC), Pearson linear correlation

coefficient (PLCC), and root mean square error (RMSE),
are used to compare the performance of the index objec-
tively [59].

f (z) = β1

[
1
2

− 1
1 + exp(β2(z − β3))

]

+β4z+β5 (15)

where z is the objective IQA index, f (z) is the IQA regres-
sion index, and βi (i = 1, . . . , 5) are the regressing
function parameters.
For the Waterloo Exploration database, the group

MAximum Differentiation (gMAD) competition, which
provides the strongest test to let the IQA models compete
with each other [60], is carried out. The gMAD competi-
tion can automatically select a subset of image pairs from
the database, which provides the competition ranking and
reveals the relative performance of the IQA models.

4.1 Determination of parameters
4.1.1 Determination of the constants C1, C2, and C3
Orthogonal experiments were conducted on the LIVE
database using the assessment index SROCC to deter-
mine the optimal values of constants C1,C2, and C3.
Two rounds of orthogonal experiments were con-
ducted to achieve a balance between the complexity of
the experiment and the determination of the param-
eters. Similar to the SSIM model [12], [C1,C2,C3]=[
(K1L)2, (K2L)2, [ (K3L)2

]
. L is the dynamic range of the

pixel values. For 8-bit grayscale image, the value is
L = 28 − 1 = 255.

1. First round: In the first step, K2 = 1.0 and K3 = 1.0
were set. The RVSIM index is applied to the LIVE
database when K1 has different values. The
K1 − SROCC curve is obtained. As shown in Fig. 6a,
SROCC can achieve its maximum value when
K1 = 1.0. The second step is to set K1 = 1.0 and
K3 = 1.0 when K2 has different values. The RVSIM
index is applied to the LIVE database to obtain the
K2 − SROCC curve. As shown in Fig. 6b, SROCC
can achieve its maximum value when K2 = 1.2. In
the third step, K1 = 1.0 and K2 = 1.2 when K3 has
different values. The RVSIM index is applied to the
LIVE database, and the K3 − SROCC curve is
obtained. As shown in Fig. 6c, the maximum value of

Table 1 Comparison of five IQA databases

Database No. of images No. of reference images No. of distortion images No. of distortion types No. of distortion degree Year

LIVE 808 29 779 5 5 2006

CSIQ 986 30 866 6 4–5 2010

TID2008 1725 25 1700 18 4 2008

TID2013 3025 25 3000 24 5 2013

Waterloo 99,624 4744 94,880 4 5 2016
Exploration
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Fig. 6 Determine the optimal values of K1, K2, and K3. a K2 = 1.0 and K3 = 1.0, b K1 = 1.0 and K3 = 1.0, c K1 = 1.0 and K2 = 1.2, d K2 = 1.2 and
K3 = 1.0, e K1 = 1.09 and K3 = 1.0, and f K1 = 1.09 and K2 = 1.16

SROCC is obtained when K3 = 1.0. At this point,
the first round of experiments ends. The parameters
are K1 = 1.0, K2 = 1.2, and K3 = 1.0.

2. Second round: Based on the parameters obtained in
the first round of experiments, the first round of
experiments is repeated to obtain the results shown
in Fig. 6d–f. At the end of the second round of
experiments, the finalized parameters are K1 = 1.09,
K2 = 1.16, and K3 = 1.00.

4.1.2 Determination of the Log-Gabor filter bank
As described in Section 2.2, the finalized splicing param-
eters of the Log-Gabor filter bank are the number of
scales nr = 5 and the number of orientations nθ = 1.
Table 2 lists the SROCC/KROCC/PLCC/RMSE values
obtained by applying the RVSIM index to the LIVE, CSIQ,
TID2008, and TID2013 databases when different splicing
parameters are taken to illustrate the rationality of the
selection of these two parameters. The top performance is
highlighted in bold. Table 2 shows that, when the number
of scales nr = 5 and the number of orientations nθ = 1,
the RVSIM index exhibits its best performance.

4.2 Two sample examples
In order to determine whether the proposed RVSIM
method agrees with human judgment, two sample images

(Fig. 7a,g, which are the same as Fig. 2f,l) in the LIVE
database [45] are taken as examples. Corresponding to
these two ground truth images, we select five noise-
distorted images and five blur-distorted images in differ-
ent degrees from the LIVE database.
As shown in Fig. 7, images seem to degrade with

increasing blur or noise from left to right. The LIVE
database provides the difference mean opinion score
(DMOS) for each image. A small DMOS represents a
high-quality image. We calculate the objective scores of
these images using the RVSIMmethod. The results can be
found in Fig. 7.
Figure 7 shows that RVSIM index is consistent with

DMOS. This indicates that RVSIM method, in line with
the subjective perception of HVS, can work well in indi-
cating the image quality.

4.3 Performance comparison
Table 3 lists the performance of RVSIM and 11 other
state-of-the-art IQA methods (including PSNR, SSIM
[12], GSSIM [23], MS-SSIM [21], IW-SSIM [26], FSIM
[29], RFSIM [30], VSI [61], SCQI [13], MDSI [62], and
SRSIM [63]) on the LIVE, CSIQ, TID2008, and TID2013
databases. The top 3 performances of the indices are high-
lighted in bold. Apart from GSSIM, the MATLAB source
codes of all of the other methods were obtained from
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a b c d e f

g h i j k l
Fig. 7 Two group of images and their corresponding subjective/objective scores. a–f The original imagemonarch and five noise-distorted images.
g–l The original image sailing2 and five blur-distorted images

the authors. Compared with traditional methods such as
PSNR, SSIM, GSSIM, and MS-SSIM, RVSIM exhibits a
good performance on the LIVE and CSIQ databases. As
we only conduct the orthogonal experiments based on
LIVE database, but do not carry out on TID2008 and
TID2013 databases, RVSIM performs slightly worse than
the best results on TID2008 and TID2013 databases.
Figure 8 shows the scatter distributions of the subjec-

tive DMOS versus the quality/distortion predicted scores
by PSNR, SSIM,MS-SSIM, IW-SSIM, FSIM, SCQI,MDSI,
RFSIM, and RVSIM indices on the LIVE database. Figure 8
shows that the scatter plot of RVSIM is evenly distributed
throughout the coordinate system and has a strong linear
relationship with DMOS, which indicates that the RVSIM
model has a strong congruency with HVS.
The experiments on these four databases (LIVE, CSIQ,

TID2008, and TID2013) are insufficient to illustrate the
problem. This study conducted gMAD competition in the
Waterloo Exploration database to test the performance of
RVSIM objectively and fairly.
Figure 9 shows the competition ranking in theWaterloo

Exploration database. In the gMAD competition experi-
ment, the results of the ranking of the 16 state-of-the-art
methods have been provided by the official framework
[60]. The experimenter is only allowed to participate in
the competition ranking on the basis of 16 algorithms
that have been provided. The algorithm to be added in

Fig. 9a–f is RVSIM, SRSIM, RFSIM, VSI, MDSI, and SCQI
respectively. Notably, the overall performance of RVSIM
ranked first. In particular, the RVSIM performs consis-
tently well in terms of aggressiveness, validating that it is
a robust IQA method.

4.4 Discussion
In Table 3, the top 6 methods are highlighted in bold, i.e.,
MDSI (16 times in bold), SCQI (12 times in bold), VSI
(9 times in bold), SRSIM (4 times in bold), FSIM (3 times
in bold), and RVSIM (3 times in bold). In Fig. 9, the top
6 methods of the gMAD competition are RVSIM, SRSIM,
MS-SSIM,MDSI, and RFSIM. The results are summarized
in Table 3 and Fig. 9, and the algorithm rank statistics are
shown in Table 4. The proposed RVSIM is highlighted in
bold.
Table 4 shows that the conclusion of indicator per-

formance on the LIVE, CSIQ, TID2008, and TID2013
databases and the conclusion of gMAD competitive rank-
ing on the Waterloo Exploration database are not exactly
the same. MDSI ranked first in indicator performance,
but ranked fifth in gMAD competition. SCQI ranked sec-
ond in indicator performance, but performed poorly in
gMAD competition. VSI ranked third in indicator perfor-
mance, but ranked fourth in gMAD competition. SRSIM
ranked fourth in indicator performance, but ranked sec-
ond in gMAD competition. Although RVSIM, SRSIM, and
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Fig. 8 Scatter plots of predicted image quality indices on the LIVE database. a PSNR, b SSIM, cMS-SSIM, d IW-SSIM, e FSIM, f SCQI, gMDSI, h RFSIM,
and i RVSIM

MS-SSIM are not ranked at the top in indicator perfor-
mance, they exhibited good results in gMAD competition.
In particular, RVSIM had the highest rank in gMAD
competition.
What results should be considered? The performance

indices of the method and gMAD competition ranking
are two kinds of judging basis. The performance indices
can objectively reflect the performance of the method,
but the benchmark databases only provide limited images
because of the time-consuming and laborious subjec-
tive scoring. gMAD competitions are performed between
methods. The results of competitive ranking objectively
reflect the relative performance of the IQA models. How-
ever, the subjective scoring is needed because the Water-
loo Exploration database is so large that the official did not

provide DMOS of the image in advance. In other words,
they have both rationality and restrictions. A method
which has both good results in performance indices and
gMAD competitive ranking is considered as an excel-
lent and more objective method. From this point of view,
RVSIM exhibits a more consistent and stable performance
than the other methods.

5 Conclusion
This study proposes a FR IQA method called RVSIM,
which combines Riesz transform and visual contrast
sensitivity. RVSIM takes full advantage of the MS the-
ory and Log-Gabor filter by exploiting CSF to allocate
the weights of different frequency bands. At the same
time, GM similarity is introduced to obtain the gradient
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Fig. 9 gMAD competition. a RVSIM, b SRSIM, c RFSIM, d VSI, eMDSI, and f SCQI

similarity matrix. Then, the MPC matrix is used to con-
struct the pooling function and obtain the RVSIM index.
This study conducts experiments involving the RVSIM

index on five benchmark IQA databases. The conclusion
of the indicator performance indicates that the RVSIM
index delivers a highly competitive prediction accuracy on
the LIVE and CSIQ databases. The scatter plot of the sub-
jective DMOS versus scores obtained by RVSIM predic-
tion on the LIVE database suggests that the RVSIMmodel
has a strong congruency with HVS. The conclusion of
gMAD competition ranking on the Waterloo Exploration
database implies that the performance of the RVSIM
method is better than that of advanced IQAmethods. The

Table 4 Summary of the method rank statistics on five databases
LIVE, CSIQ, TID2008, TID2013, and Waterloo Exploration

Rank of indicators Methods Rank of competition Methods

1 MDSI 1 RVSIM

2 SCQI 2 SRSIM

3 VSI 3 MS-SSIM

4 SRSIM 4 VSI

5 FSIM 5 MDSI

6 RVSIM 6 RFSIM

The proposed RVSIM is highlighted in bold

overall performance on all five databases demonstrates
that RVSIM is a robust IQA method.
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