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Abstract

This paper presents a novel particle filter called Motion-Adaptive Particle Filter (MAPF) to track fast-moving
objects that have complex dynamic movements. The objective was to achieve effectiveness and robustness
against abrupt motions and affine transformations. To that end, MAPF first predicted both velocity and
acceleration according to prior data of the tracked objects, and then used a novel approach called sub-
particle drift (SPD) to improve the dynamic model when the target made a dramatic move from one frame
to the next. Finally, the propagation distances of each direction in the dynamic model were determined
based on the results of motion estimation and SPD. Experimental results showed that the proposed
method was robust for tracking objects with complex dynamic movements and in terms of affine
transformation and occlusion. Compared to Continuously Adaptive Mean-Shift (CAM-Shift), standard particle
filter (PF), Velocity-Adaptive Particle Filter (VAPF), and Memory-based Particle Filter (M-PF), the proposed
tracker was superior for objects moving with large random velocities and accelerations.

Keywords: Motion-adaptive model, Object tracking, Particle filter, Sub-particle drift

1 Introduction
Visual object tracking is becoming more and more
important in many application fields nowadays, such as
surveillance, robots, and human-computer interfaces
[1–3]. However, it is still a challenging task to achieve
reliable tracking due to erratic motions, occlusions,
crowded background scenes, and different illuminations.
Many algorithms and methods have been proposed to

track moving objects in video sequence, among which
the mean shift (MS) and particle filter (PF) are
frequently used. As a powerful tool in dealing with the
non-linear and non-Gaussian problems, PF has been
extensively studied for visual object tracking [4–9].

1.1 Motion-adaptive problem of tracking
Most PF-based trackers use the linear Gaussian dynamic
model as their target motion model. However, this sim-
ple model cannot match the complexity of a fast-moving
object with random velocity and acceleration.

This research aims to develop a robust tracker that
could stably track a fast-moving rigid object with an
unknown complexity dynamic model, which means
that, even the target moves rapidly and changes
abruptly in the moving direction, velocity, and accel-
eration, the tracker will still keep up with the target
closely. To that end, the main focus was put on
propagating the particles in a better way so as to
make them fit the non-linear, non-Markov, and time-
variant dynamic, because an accurate propagating
region is important not only for the accurate estima-
tion of the target state, but also for the recovery from
tracking loss caused by occlusions. This paper
proposed a novel PF called Motion-Adaptive Particle
Filter (MAPF), which could predict both velocity and
acceleration based on the past data of the tracked
object, and introduced a novel method called sub-
particle drift (SPD) to improve the performance of
the tracker during the target’ dramatic motion from
one frame to the following. The SPD was done by
weighting samples of a main particle set and four
sub-particle sets (left, right, up, and down sides of
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the main particle set), as well as the drift to the dir-
ection with a higher weight. A MAPF moving-object
tracking was implemented in the adaptive color-based
particle filter [6], which can also be used in many
other particle filters where the velocity and acceler-
ation of tracked objects should be considered.

1.2 Related works
In order to successfully track visual objects with complex
dynamic movements, several extensions of the PF have
been proposed including the random walk model and
some other adaptive models. These PF-based trackers can
be categorized as follows.
First, a training and learning process was employed

for generating a dynamic model. Isard and Blake [10]
used learned dynamics in the CONDENSATION
algorithm to track moving objects. North and Blake
[11] also got a dynamic model through learning to
use the Expectation-Maximization CONDENSATION
(EM-C) algorithm. Besides, Hess and Fern [12]
proposed a discriminating training method for PFs.
All of these methods may have good performance in
tracking objects that have similar dynamic models
with the trained video sequences. However, they are
not very effective in tracking the arbitrarily moving
objects which have not been previously learned,
because the parameters used in the dynamic model
are set to be constant values according to the trained
video sequences. As a result, if the tracking object in
a new test video sequence moves much faster or
slower than the trained dynamic model, the tracking
will end up with failure.
Second, a fixed constant-velocity model with fixed

noise variance was used in a number of target trackers
[13, 14] to propagate the particles between the frames.
The result showed that a small velocity factor would lead
to tracking loss when the target moved quickly, while, in
case of a slow motion, it would cause drifting to back-
ground which was similar to the target.
Third, some adaptive strategies have been proposed

to deal with the complex dynamics. Zhou [15] used
an adaptive-velocity model, where the adaptive mo-
tion velocity was predicted using a first-order linear
approximation based on the appearance difference
between the incoming observation and the previous
particle configuration, and the equation θt = θt ‐ 1 + νt
+Ut was used as the adaptive state transition model,
where νt is the predicted shift in the motion vector
and Ut is the adaptive noise parameter. Lui [16] de-
termined the amount of observation noise based on
the temporal difference of each state parameter and
formulated the noise propagation distance in the dy-
namic model as ∑u =max(a + b(ut − ut − 1)), where a
ensures that a minimum amount of noise will be

added to an observation, and b weighs the temporal
difference, which is set to be a constant value. Del
Bimbo [17] proposed a PF-based tracker to exploit a
first order dynamic model and continuously adapt the
model noise so as to balance uncertainties between
the static and dynamic components of the state vec-
tor, which was formulated as θt = Aθt ‐ 1 + νt ‐ 1,where
νt ‐ 1 is an additive, zero mean, and isotropic Gauss-
ian uncertainty term. All the three papers used the
velocity-adaptive model as the system dynamic model,
called Velocity-Adaptive Particle Filter (VAPF). A
Memory-based Particle Filter (M-PF) proposed by
Mikami [18] introduced a paradigm called memory-
based prior prediction which used the prior data of a
target to predict prior distribution. The main idea of
M-PF is to predict the prior distribution of the target
state in future steps by weighing samples of the past
sequence of target states, where the sample weight is
determined based on the long-term dynamics of the
targeted system. These approaches can effectively
track targets that move relatively quickly, since they
automatically change the propagation distance accord-
ing to the estimated velocity. All of the algorithms
can only adapt to small velocity changes of the target,
but, when the target moves with a large acceleration,
changing position, pose, and size dramatically from
one frame to the following, they tend to end up with
failure.
Fourth, spatial and temporal information or multi-

scale strategies have been used in some other trackers.
Yang [19] proposed a new search method for the estima-
tion of consistent motion and disparity based on particle
filtering, where the state dynamics involves the states of
the neighboring blocks located in both spatial and tem-
poral neighborhoods, which is similar to the method in
this paper. However, Yang’s method focuses on estima-
tion of consistent motion and is used in applications
such as image reconstruction and video coding, making
it less suitable for tracking targets with large velocity
and acceleration and unknown complex dynamics,
which is the target of the present research. Han [20]
used an analytic approach to better approximate and
propagate density functions with a mixture of Gaussians.
This approach used unscented transformation to derive
a mixture representation of the predicted probable
distribution function and applied a multistage sampling
strategy to approximate the likelihood function.
However, the random walk model was still used as the
process model, which can only deal with simple and
slow motions of objects, but is not appropriate for com-
plex dynamics.
In contrast to the existing approaches mentioned

above, the novel MAPF proposed in this research can
predict both velocity and acceleration according to
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past data of the tracked object, and the introduced
SPD can improve the performance when the target
moves dramatically from one frame to the following.
Experimental results showed that the proposed
method was robust for tracking objects with complex
dynamic movements and in terms of affine transform-
ation and occlusion.

1.3 Paper organization
Section 2 summarizes related methods used for
visual object tracking; Section 3 deals with the
MAPF; Section 4 introduces experimental results
and makes comparisons with the Continuously
Adaptive Mean-shift (CAM-Shift) [21], standard PF
[6], VAPF [15, 16], and M-PF [18]; and Section 5
outlines the conclusions and suggestions for future
research.

2 Color-based PF
This section briefly overviews the main concepts of
related methods that are discussed in this paper, in-
cluding the color distribution model used in all of
the discussed methods, the basic formulae of the PF
used for visual tracking, and the velocity-adaptive
model.

2.1 Color distribution model
To achieve robustness against non-rigidity, rotation,
and partial occlusion, the color distribution is a
widely used target representation model. Because
the intensity channel V is susceptible to illumin-
ation variations, a lot of models choose histograms
of h × s bins in H-S two-dimension color space to
represent the color distribution. To increase the re-
liability of the color distribution when boundary
pixels resembles the background of the occluded,
smaller weights are assigned to the pixels that are
further away from the region center by employing a
weighting function:

k rð Þ ¼ 1−r2 : r < 1

0 : otherwise

�
ð1Þ

The color distribution py ¼ p uð Þ
y

n o
u ¼ 1…m at loca-

tion y is calculated as:

p uð Þ
y ¼ Ch

Xnh
i¼1

k
y−xi
a

��� ���� �
δ b xið Þ−u½ � ð2Þ

where xif gi¼1;…nh is the normalized pixel location of the
target candidate, m = 16 × 8 is the bin used in the color
distribution in this paper, nh is the number of pixels in
the region, b(xi) is the function which assigns the color
at location xi to the corresponding bin, a is the

parameter used to adapt the size of the region, and δ is
the Kronecher delta function. The normalization con-
stant is calculated as:

Ch ¼ 1Pnh
i¼1k

y−xi
a

�� ��� � ð3Þ

which ensures that p yð Þ ¼ Pm
u¼1pu yð Þ ¼ 1. Because the

pu(y) is the normalized distribution, its total sum
should be 1.

Fig. 2 Circular template model

Fig. 1 Rectangular template model
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To measure the similarity between distributions p
= {pu}u = 1…m and q = {qu}u = 1…m, where m is the
number of bins, the Bhattacharyya distance is adopted:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ p; q½ �

p
ð4Þ

where

ρ p; q½ � ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffiffi
puqu

p ð5Þ

2.2 Particle filter
PF is a Monte Carlo approximation to the optimal
Bayesian filter and provides robust tracking of moving
objects in a cluttered environment, especially in the case

of non-linear and non-Gaussian problems where the
interest lies in the detection and tracking of moving
objects. It is a probabilistic framework for sequentially
estimating the target’s state to recursively computer the
posterior density p(st| z1 : t) of current object state st-
conditioned on all observations z1 : t = (z1, z2……zt) up to
time t.
To implement a standard PF, a state representation st

should be identified that, in object tracking, might in-
clude object locations, scales, and rotations. Moreover, it
is necessary to design three distributions: the process dy-
namical distribution p(st| st − 1), which describes how the
object moves between frames; the proposal distribution
q(st| s1 : t − 1, z1 : t), which is sampled each time the particle
distribution updates; and the observation likelihood distri-
bution p(zt| st), which means how the object appears in
the video frame.
This paper focuses on the dynamical distribution p(st|

st − 1), which can usually be represented as a linear
stochastic differential function:

st ¼ Ast−1 þ Bωt−1 ð6Þ

where A defines the deterministic component of the dy-
namic model; st is the state vector of time t; ωt − 1 ∈ (0, 1)
is the system noise, which is usually a uniformly random
variable or a multivariate Gaussian random variable; and
B is the propagation distance, indicating how far away
the particles can propagate in the next frame and deter-
mining the tracking performance when the object makes
an arbitrary move.

Fig. 4 Particle propagation model

Fig. 3 Base propagation parameters
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As mentioned before, there are three different
methods in dealing with the dynamic model: training
and learning, a fixed constant-velocity model, and a vel-
ocity adaptive model. In the training and learning
method, the propagation distance B is determined
through training and learning using some video se-
quences, while, in a fixed constant-velocity model, B is
set to be a constant value during the tracking process,
and, as an adaptive method, the velocity adaptive model
(VAPF) updates the propagation distance according to
the temporal difference of previous frames by calculating
the average velocity:

st ¼ 1
j

Xt

n¼t−j

∣sn−sn−1∣ ð7Þ

B
0
t∝s

0
t ð8Þ

where s0t means the average state velocity in the previous
j frames of one certain dimension, and B

0
t is the corre-

sponding propagation distance in that dimension. For

example, in the x direction, Bx
t∝xt ¼ 1

j

P
n¼t−j

t
∣xn−xn−1∣.

The main advantage of the PFs mentioned above is its ro-
bust performance under clutter background or occlusion.
The main drawback is that it still cannot effectively track
objects moving with rapid speeds and large accelerations.

3 The proposed method
This section describes the proposed MAPF used for vis-
ual object tracking in complex dynamics, including the
template model of the tracked objects (bounding rect-
angular model and circular model), and the proposed
motion-adaptive model.

Fig. 6 Sub-particle model

Fig. 5 a Four sub particle sets, b eight particle sets, and c Euclidian distance of “basketball_2” using eight sub-particle sets and four
sub-particle sets
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3.1 Template model
As the proposed method is based on adaptive color-based
PF, the tracking process is accomplished by choosing an
appropriate bounding region as the area of interest out of
some candidate regions and comparing the similarity of
the color distribution between each other. In this paper,
two different template modes, the rectangular model and
circular model, were used according to the tracked object’s
template.

3.1.1 Rectangular template model
In this model, a candidate bounding box can be de-
scribed as:

s ¼ x; y;w; h; θ½ �T ð9Þ

where x, y represents the location of the rectangle, w, h
the width and height of the rectangle, and θ the rotation
angle, as is described in Fig. 1. Thus, the track region

Fig. 8 Particle weights distribution of the 7th frame of video “tennis” using different algorithms, PF(a), VAPF(b), M-PF(c) and Proposed(d)

Fig. 7 Sub-particle drift model
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can be represented by four vertices {P0, P1, P2, P3} of the
rectangle, of which the corresponding coordinates
are{(x0, y0), (x1, y1), (x2, y2), (x3, y3)}:

x0
x1
x2
x3

2
664

3
775 ¼

x
x
x
x

2
664

3
775þ

R sin φ−θð Þ
R sin π−φ−θð Þ
R sin π þ φ−θð Þ
R sin −φ−θð Þ

2
6664

3
7775 ð10Þ

y0
y1
y2
y3

2
664

3
775 ¼

y
y
y
y

2
664

3
775þ

R cos φ−θð Þ
R cos π−φ−θð Þ
R cos π þ φ−θð Þ
R cos −φ−θð Þ

2
6664

3
7775 ð11Þ

where R ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ h2

p
, φ = arctan(w/h), and − π

2 ≤θ≤
π
2.

The state variable s can be separated into two parts, sp

= [x, y]T and sa = [w, h, θ]T, where sp represents the ob-
ject’s position-related parameters, while sa represents the
affine transformations.

3.1.2 Circular template model
The circular model is relatively simple, in which a candi-
date bounding circle can be described as:

s ¼ x; y; r½ �T ð12Þ

where x, y represents the location of the circle and r the
radius of the circle, as is described in Fig. 2. Then the
tracking region can be represented by a circle centered in
(x, y) with the radius r. As has been described above, the
state variable s is separated into two parts, sp = [x, y]T and
sa = [r]T, where sp represents the object’s position-related
parameters, while sa represents the affine transformations.

3.2 Motion-adaptive model
In order to follow the tracked object moving with a com-
plex dynamic, a motion adaptive model was proposed that
combined velocity and acceleration estimation with a new
approach called sub-particle drift.

3.2.1 Velocity and acceleration estimation
Setting vpt as the velocity vector at time t of the position-
related parameter and apt the acceleration vector, the fol-
lowing formulae can be obtained:

vpt ¼ dsp=dt ¼ spt −s
p
t−1ð Þ=T ð13Þ

apt ¼ dvp=dt ¼ spt −2s
p
t−1 þ spt−2ð Þ=T 2 ð14Þ

where T is the sampling time andλT = 1/T:

vpt ¼ λT spt −s
p
t−1ð Þ ð15Þ

Fig. 10 The tracking results using different parameters

Fig. 9 Sub-particle drift example
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apt ¼ λ2T spt −2s
p
t−1 þ spt−2ð Þ ð16Þ

To reduce random noises, a weighted function was
used for the velocity vpt and acceleration apt :

vpt ¼ λT
XNs
n¼0

αnv
p
t−n ð17Þ

apt ¼ λ2T
XNs
n¼0

βna
p
t−n ð18Þ

where αn and βn are the normalization factors for every
velocity and acceleration. And it was assumed that the
older velocities and accelerations are assigned smaller
weights:

XNs
n¼0

αn ¼ 1

α0 > α1 > …… > αn

8<
:

XNs
n¼0

βn ¼ 1

β0 > β1 > …… > βn

8><
>:

ð19Þ

where Ns is the number of frames that needs to be
smoothed.

Setting Bp
Base and Bp

Max as the base propagation and
maximum propagation distance parameters of sp,
respectively, the following formulae can be obtained:

Bp
Max ¼ Bp

Baseð
apt
2
þ 1Þ if ∣apt ∣ > Ta

Bp
Max ¼ Bp

Baseð
vpt
4
þ 1Þ else

8>>><
>>>:

ð20Þ

Specifically, the base propagation distance Bp
Base ,

which consists of (Bx, By), is decided automatically ac-
cording to the size of the tracked object. Take the
rectangular template model as an example, as is seen
in Fig. 3.
Ta is the acceleration threshold, which means that,

when the acceleration at time t is larger than the thresh-

old, the propagation radius is determined by apt , while

when the acceleration is smaller, it is determined by vpt .

Table 3 Video sequences with different attributes

Attribute video OCC BC AT AM

Motians_chamber ✓

Bottle ✓

Book ✓ ✓

Basketball_1 ✓

Basketball_2 ✓ ✓

Basketball_3 ✓ ✓ ✓

Tennis ✓

v_juggle_11_06 ✓ ✓ ✓

v_juggle_15_02 ✓ ✓ ✓

Bolt ✓

Diving ✓

MountainBike ✓ ✓

RedTeam

Table 2 Parameter values used in the test
Video A BBase Ns Ta σ

Book 1 (15,15, 0.1,0.1,0.1) 3 4 0.16

Bottle 1 (10,10, 0.1,0.1,0.1) 3 4 0.16

Motinas_chamber 1 (20,20,0.1,0.1,0.1) 3 4 0.16

Bolt 1 (10,10, 0.1,0.1,0.1) 3 4 0.16

Diving 1 (10,10, 0.1,0.1,0.1) 3 4 0.16

MountainBike 1 (10,10, 0.1,0.1,0.1) 3 4 0.16

RedTeam 1 (10,10, 0.1,0.1,0.1) 3 4 0.16

Basketball_1 1 (15,15, 0.1) 3 4 0.16

Basketball_2 1 (15,15, 0.1) 3 4 0.16

Tennis 1 (5,5, 0.1) 3 4 0.16

v_juggle_11_06 1 (10,10,0.1) 3 4 0.16

Table 1 Resulting of using different particle number
Sequences Number of Particles CAM-Shift PF VAPF Proposed

Book 100 138.83 34.69 11.40 7.05

150 34.99 18.68 9.99

200 62.47 17.30 5.02

250 35.15 77.15 5.41

300 34.06 20.79 5.13

Bottle 100 27.78 26.03 24.86 20.74

150 25.83 22.90 20.96

200 25.70 22.40 20.47

250 26.18 22.17 20.15

300 25.66 22.55 20.53

Basketball_1 100 78.58 71.09 53.59 14.90

150 88.28 85.50 16.51

200 88.76 44.12 9.93

250 87.36 36.48 8.34

300 65.65 65.83 8.35

Basketball_2 100 75.04 52.78 46.19 40.12

150 47.58 35.83 16.29

200 44.58 42.80 11.35

250 42.41 33.40 11.55

300 46.16 42.13 9.79

Tennis 100 116.31 136.04 80.47 2.31

150 15.24 13.96 2.27

200 80.78 79.07 2.04

250 80.47 79.24 2.18

300 79.87 10.63 2.06
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The algorithm updates the propagation distance of each

frame according to the vpt and apt ,

Bp
t ¼

Bx
t 0

0 By
t

	 

¼ BL

t þ BR
t 0

0 BU
t þ BD

t

" #
ð21Þ

while the affine transformation-related parameters Ba
t

are all set to be one constant value. BL
t , B

R
t , B

U
t , and BD

t
are the propagation distances of respectively the left,
right, up, and down side based on the position of the ob-
ject in the current frame, as is described in Fig. 4.
And the distance of each side is determined based on

the velocity or acceleration estimation. For example, in
the horizontal movement, when the velocity or

acceleration is negative, that is, the object tends to move
to the left side, the left propagation distance is set to be:

BL
t ¼

Bx
Max ¼ Bxða

x
t

2
þ 1Þ if ∣axt ∣ > Ta

Bx
Max ¼ Bxðv

x
t

4
þ 1Þ else

8>>>><
>>>>:

ð22Þ
while, in the opposite direction, the right propagation
distance BR

t ¼ Bx
Base.

Then, the dynamic model at time t can be represented as:

st ¼ Ast−1 þ Btωt−1 ð23Þ

Fig. 12 The tracking results for the video “bottle” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red).
Particle number N = 200

Fig. 11 The tracking results for the video “motinas_chamber” using CAM-Shift (white), PF (blue), VAPF(green), M-PF(pink), and the proposed
tracker (red). Particle number N = 200
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3.2.2 Sub-particle drift
In order to enhance the robustness of this research’s tracker
for objects moving more dramatically, a sub-particle drift
method is proposed. In this method, the center of the main
particle set region drifts to the sub-particle set in which the

total particle weight
P
i¼0

N

wi is the largest.

The sub-particle drift process is achieved by com-
paring the particle weights and drifting to the max-
imum in the next frame, as is described in the
following formula:

wmax ¼ max
XN
i¼0

wM
i ;

XN
i¼0

wSP0
i ……

XN
i¼0

wSPn
i

( )
ð24Þ

xtþ1

ytþ1

	 

¼ xmax

t

ymax
t

	 

ð25Þ

where wM
i and wSPn

i represent the particle weights of the
main and nth sub particle region, respectively, and
xmax
t , ymax

t are the x and y position with the largest
weight determined by Eq. (24). For example, when
the second sub-particle set has the largest weight,
xmax
t ¼ xSP1t and ymax

t ¼ ySP1t . Therefore, when the
maximum weight is in the main particle region, the
propagation process is achieved according to Eq.(23);
on the other hand, when the maximum region is one
of the sub-particle sets, the dynamic model changes
to the following:

st ¼ Asmax
t−1 þ Btωt−1 ð26Þ

Fig. 14 The tracking results for the video “basketball_1” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker
(red). Particle number N = 250

Fig. 13 The tracking results for the video “book” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red). Par-
ticle number N = 300
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where smax
t−1 is the one that has the maximum weight

in Eq. (24).

4 Results and discussion
To demonstrate the effectiveness and robustness of the
proposed tracking scheme, 13 different color videos were
used in the experiments (Additional files 1–13), which
were obtained from different datasets. Four of them (Bolt,
Diving, MountianBike, Redteam) belonged to the
tracking benchmark dataset [22], three (basketall_1,
basketall_2, basketall_3) were clips of the famous
basketball dribbling teaching movie Bobbito’s Basics to
Boogie, two (v_juggle_11_06, v_juggle_15_02) from UCF

YouTube Action Dataset [23], one (motians_chamber)
from Surveillance Performance Evaluation Initiative
(SPEVI) dataset [24], and the rest (book, bottle, tennis)
were acquired indoors using a SONY CCD camera
EX-FCB48. These videos posed several challenges, such as
objects moving at a high speed and large acceleration, affine
transformation, partial or total occlusion, and images with
colors similar to the objects in the background. For all the
videos, the target object was manually selected in the first
frame, and so was the corresponding template model.
The proposed tracking method was also compared

with the four existing trackers, CAM-Shift, PF, APF,
and M-PF, to identify their correlations. All the algo-
rithms were implemented in C++ using the OpenCV
library and run on a 1.8 GHz Pentium Dual-Core
CPU, with 2Gbyte DDR memory. The parameter T in
Eq. (13) was T = 1/25 seconds because the video for-
mat was PAL.

4.1 Parameters selection
There are some parameters that can affect the perform-
ance of the proposed tracker. In order to achieve the
best tracking performance, the process of selecting some
parameters is discussed as follows.

1. Number of the sub-particle set

Based on the concept of sub-particle drift and the
fact that the object will be moving in horizontal and
vertical directions, several strategies such as the four
sub-particle sets and the eight sub-particle sets, as is
seen in Fig. 5a, b, were considered and evaluated first
to identify the best one. Figure 5c shows the evalu-
ation result of using the four particle sets and the
eight sub-particle sets. The evaluation metric of the
Euclidian distance will be detailed in section 4.3.1.
The figures indicate that the four sets strategy shows
a slight advantage in tracking position accuracy. The
reason is that, with the same particle number, more
sub-particle sets will cause fewer particles in each set,
making the distribution more sparse, which means
the prior distribution is not as accurate as that of the
four particle sets. Another reason is that, if the object
moves only in the horizontal or vertical direction, the
four surrounding sub-particle sets are enough to keep
tracking it when high speed or large acceleration
takes place. However, if the object moves diagonally,
it will have the “resample” mechanism of PF. As long
as there are still several particles in any of the four
sub-particle sets that can “catch” the object, all the
particles can move to the object quickly, so the
tracker can still keep tracking it in this situation. As
a result, the four particle sets strategy was used in
this paper.
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In this method, there are five different particle sets in
the tracker, including one main particle set and four
sub-particle sets (up, down, left, and right sub sets). All
four sub-particle sets are generated by the main set and
distributed as the main one is, except for the particle po-
sitions. Take the rectangular template model as an ex-
ample, as is described in Figs. 6 and 7.
Figure 8 shows the particle weight distribution of PF

(a), VAPF (b), M-PF (c), and proposed (d) of the 7th
frame of the video “tennis.” It can be seen that the
particles in PF are concentrated in a relatively small
region and that VAPF propagates the particles in a
larger scope, while the proposed tracker not only has
five concentrated regions but also propagates in a lar-
ger scope (Fig. 9).

2. Parameter A of the dynamic model

The equation of the circular model can be specified as
follows:

xt
yt
rt

2
4

3
5 ¼

Ax
t 0 0

0 Ay
t 0

0 0 Ar
t

2
64

3
75 xt−1

yt−1
rt−1

2
4

3
5þ

Bx
t 0 0

0 By
t 0

0 0 Br
t

2
64

3
75 wt−1

wt−1

wt−1

2
4

3
5
ð27Þ

The experiment results are shown in Fig. 10a,
where the parameter A = 1 means Ax

t ¼ Ay
t ¼ Ar

t ¼ 1 .
It can be seen that the tracker performs best when
the parameter Ax

t ¼ Ay
t ¼ Ar

t ¼ 1, because the param-
eter A in Eq. (23) shows the relationship between the

Fig. 15 The tracking results for the video “basketball_2” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker
(red). Particle number N = 250

Fig. 16 The tracking results for the video “tennis” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red).
Particle number N = 200
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object states of the current frame and the next one.
Assuming that the position of one particle in the
current frame is (100, 50), under the condition Ax

t

¼ Ay
t ¼ 1 , the particle is propagated to (100 + ran-

dom_x, 50 + random_y) in the next frame, where ran-
dom_x and random_y are random values decided by
the estimated velocity and acceleration. In contrast,
under the condition Ax

t ¼ Ay
t ¼ 0:5 , the particle is

propagated to (0.5 × 100 + random_x, 0.5 × 50 + rand-
om_y), and it is obvious that the propagation process
is not appropriate, so the tracking tends to fail.

3. Acceleration threshold

From the acceleration threshold curve of Fig. 10b, it can
be found that, for the video sequence “Basketball_1,” the
acceleration threshold between 3 and 7 pixels per frame2

tends to have a better tracking performance, while, for the

video sequence “Basketball_2,” all the tested thresholds
are equally good. One explanation is that, in “Basket-
ball_1,” the basketball moved much more dramatically.
Most of the time, the ball moved from the top to the bot-
tom of the image within 10 frames, having the video
height of 240 pixels. According to the si ¼ 1

2 git
2
i , the

image acceleration gi was more than 2 pixels per frame2.

4. Particle number

For performance evaluation and comparison, all the
four PF-based algorithms were tested using different
numbers of particles, including 100, 150, 200, 250, and
300, and some of the tracking results are shown in
Table 1. It can be found that the tracking performance
improves when the particle number increases, and that
it reaches the top when the particle number is larger
than 200.

Fig. 17 The tracking results for the video “v_juggle_11_06” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker
(red). Particle number N = 200

Fig. 18 The tracking results for the video “Bolt” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red). Par-
ticle number N = 200
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Other parameters used in the test are shown in Table 2.
The following section first presents all the tracking

results of the five algorithms in the same tested video
with different color bounding boxes or circles and
then performs detailed evaluations and comparisons
to demonstrate the effectiveness of the algorithms.

4.2 Performance and results overview
To better evaluate and analyze the strength and weak-
ness of the tracking approaches, the videos were catego-
rized with four attributes based on the challenging
factors including occlusion (OCC), background clutters
(BC), affine transformation (AT), and abrupt motion
(AM), as is seen in Table 3.

4.2.1 Occlusion
In the video sequences with the occlusion attribute, in
general, all the four PF-based algorithms could recover
from occlusion and loss when the object moved without
abrupt motions, while differences showed up when the
object moved abruptly.
In the video sequence “motinas_chamber,” the

tracked object was a man in red. It can be observed

in Fig. 11 that, in the beginning, when the object ran
slowly without occlusion, all tested algorithms tracked
the object well, as can be seen in the 33rd frame,
while, in the 93rd frame, when the object was oc-
cluded by another person, the proposed tracker tracks
the object better not only in position but also in size
due to its accurate motion estimation. When the ob-
ject disappeared from the field of view in the 717th
frame and showed up again in the 746th, all the four
PF-based algorithms recovered from loss, but, still,
the proposed tracker performed a little better.
Tracking the basketball during dribbling was a very

challenging task. Moreover, the partial or total occlusion
made the tracking much more difficult when the player
dribbled the ball behind the back or between the legs, as
can be seen in the video “basketball_2.” In the 7th frame,
when the basketball was blocked by his leg, the CAM-
Shift and the PF lost its position, while the VAPF and
the proposed tracker kept tracking it. And in the 33rd
and 34th frames, when dribbled behind the back, the
basketball was blocked by the back, but the proposed
tracker had predicted this correctly and kept tracking
the ball when it appeared again.

Fig. 19 The tracking results for the video “Diving” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red).
Particle number N = 200

Fig. 20 The tracking results for the video “MountainBike” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker
(red). Particle number N = 200
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4.2.2 Background clutters
As all the four tested algorithms were based on color
distribution, they could address the background clutter
problem well in most cases. However, the weakness of
color distribution showed up when there was another
object in almost the same color as the true target, as can
be seen in the video “basketball_3,” which will be dis-
cussed in the section 4.2.3.

4.2.3 Affine transformation
In the video sequences with the affine transformation at-
tribute, all four PF-based trackers could deal with the
factor, while CAM-Shift’s bounding box was not tight
due to its inability to follow the direction.
The video sequence “bottle” (Fig. 12) contained a fast

moving bottle with affine transformation in a relatively
simple background. Its dynamic model and background
complexity was the simplest in all of the 13 tested vid-
eos. At the beginning of the video sequence, the bottle
moved with a relatively low speed and small

acceleration, as is shown in the 4th frame. All of the five
tested algorithms performed almost equally well by
tracking the object with the right position and rotation
angle. When a relatively higher speed and bigger acceler-
ation took place, as is shown in the 31st, 45th, and 46th
frames, the VAPF and the proposed tracker showed their
advantages compared with the CAM-Shift and the PF
which could not follow the bottle well. Besides, the
M-PF did not show any advantage because the video se-
quence was too short and did not have much history
data for constructing a better prior distribution.

4.2.4 Abrupt motion
In the video sequences with the abrupt motion attribute,
including “book,” “basketball_1,” “basketball_2,” “basket-
ball_3,” “v_juggle_11_06,” “v_juggle_15_02,” and “Bolt,”
the proposed algorithm performed the best because the
velocity and acceleration was fully taken into account in
the motion-adaptive model.

Fig. 21 The tracking results for the video “RedTeam” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed tracker (red).
Particle number N = 200

Fig. 22 Estimated object center position of “basketball_2” compared with ground truth with the particle number N = 250
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In the video sequence “book,” as can be seen in Fig. 13,
the CAM-Shift lost track of the object in most of the
180 frames, except for the first few frames. Although the
VAPF performed better than the PF, it still lost the
object in a lot of frames, especially when a sudden direc-
tion change occurred, as can be seen in the 91st frame.
The M-PF did not follow the object well in the
beginning because few history data were available, but
performed much better after about 60 frames, as can be
seen in the 91st, 124th, and 152nd frames. In compari-
son, the proposed tracker managed to maintain smooth
tracking despite sudden orientation changes and large
acceleration (Figs. 14, 15, 16, and 17).
In the video “tennis,” the tennis ball first underwent a

free fall and then bounced up several times. In the first
few frames, all four algorithms tracked it well due to the
low speed, while, in the later frames, they were affected
by the acceleration of gravity, with the only exception of
the proposed tracker which kept following the ball

because the acceleration had been fully taken into ac-
count in the motion-adaptive model. The video “v_jug-
gle_11_06” was even more challenging than the previous
three because of the similarity in color between the
soccer and the background, as well as the long-time total
occlusion. From the 105th frame to the 117th, the soccer
was totally occluded by the kid, during which all the four
trackers kept searching around the position where they
lost tracking, as can be seen in the 105th frame. When
the ball appeared again, the four PF-based trackers
recovered from loss and went on with the tracking. In
contrast, the proposed tracker performed the best in fit-
ting the right position and size, while the CAM-Shift got
totally lost (Figs. 18, 19, 20, and 21).

4.3 Comparative performance analysis
The following section compares the performance of the
MAPF with the four analyzed trackers using Euclidian
distance, that is, the distance between the tracking pos-
ition and the ground truth which is manually marked, to
evaluate the tracking position accuracy.

4.3.1 Euclidian distance
Comparisons were made between the estimated tracking
position, rotation angle, width, height, and the corre-
sponding ground truth can be seen in Figs. 22, 23, 24,
and 25. The results showed that the CAM-Shift
performed the worst because it lost track of the object
except in the first frames, and could not recover. The PF
and the VAPF did maintain tracking, but could not make
an accurate estimation of position, angle, or size, while
the proposed tracker followed the position of the object
in both X and Y directions in most of the frames and fit-
ted the object well both in rotation angle and width.
However, the height result did not fit the ground truth
very well because, in the video sequence of “book,” the
height changed dramatically due to camera view and
perspective. Besides, the tracking algorithm did not use

Fig. 23 Estimated object center position of “book” compared with ground truth with the particle number N = 150

Fig. 24 Estimated object rotation angle of “book” compared with
ground truth with the particle number N = 250
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the same acceleration estimation strategy as the position
related parameter in the target affine transformation.
Table 4 shows the result of the averaged Euclidian dis-

tance d1 over all frames in all videos from both the pro-
posed tracker and the four analyzed trackers, while
Table 5 shows the d1 over all frames in each video from
the two groups. For the four PF-based trackers, each
data is the average value of the 100, 150, 200, 250, and
300 particles. The table showed that the PF-based
tracker always performed better than the CAM-Shift ex-
cept in some special cases, such as in “Basketball_1.”
One explanation is that both the CAM-Shift and the PF
lost the track of the object entirely, and, as a result, the
positions of these two trackers tended to be random
values, with one being possibly larger than the other.
The performance of the proposed tracker was superior
in all videos except the “bottle,” because the bottle
moved relatively slowly and the background was simple,
as can be seen in Fig. 12.
The rotation angle error between the tracking angle at

time t and the ground truth angle can be described as:

e1t ¼ ∣θt−θ
GT
t ∣ ð28Þ

where θt is the rotation angle in one certain algorithm at
time t and θGTt is the ground truth in the same frame.
The error between the estimated width at time t and

the ground truth width can be described as:

e2t ¼ ∣Wt−WGT
t ∣ ð29Þ

where Wt is the width of the tracked object in one cer-
tain algorithm at time t and WGT

t is the ground truth in
the same frame.

The error between the estimated height at time t and
the ground truth height can be described as:

e3t ¼ ∣Ht−HGT
t ∣ ð30Þ

where Ht is the height of the tracked object in one cer-
tain algorithm at time t and HGT

t is the ground truth in
the same frame.
Tables 6, 7, and 8 show the results of the averaged

angle error e1, width error e2, and height error e3 over
all frames in each video from the proposed tracker and
four analyzed trackers. For the four PF-based trackers,
each data is the average value of the results of 100, 150,
200, 250, and 300 particles. The videos used for the cir-
cular template model were not analyzed in these three
tables because there were no “angle,” “width,” and
“height” in the model. These three tables show that the
differences between the proposed tracker and the four
analyzed trackers in the “book” were much more obvi-
ous than those in the “bottle” and “motinas_chamber,”
because the objects in the latter two videos moved

Fig. 25 Estimated width and height of “book” compared with ground truth with the particle number N = 250

Table 5 Resulting of averaged Euclidian distance

Video CAM-Shift PF VAPF M-PF Proposed

Book 138.83 40.27 29.06 10.88 6.52

Bottle 27.78 25.88 22.98 26.24 20.57

Motinas_chamber 67.97 18.87 16.82 24.48 13.07

Bolt 134.48 14.21 28.36 16.80 13.73

Diving 11.40 29.64 22.38 30.70 28.78

MountainBike 233.89 14.23 12.86 15.63 13.98

RedTeam 60.86 8.2 8.27 8.68 9.44

Basketball_1 78.58 80.23 57.10 17.20 16.58

Basketball_2 75.04 46.70 40.07 38.57 17.82

Tennis 116.31 78.48 52.67 64.24 2.17

v_juggle_11_06 55.78 21.20 21.11 24.70 19.64

Table 4 Resulting of averaged position error of all test videos

Algorithms CAM-Shift PF VAPF M-PF Proposed

Position error 90.99 34.35 28.33 25.28 14.75
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relatively slowly and did not have obvious affine trans-
formation. Nevertheless, the trends in these tables still
confirmed the robustness of the proposed tracker.

4.3.2 Time consumption
To evaluate the computational efficiency, the time used
by every algorithm was recorded. For example, in the
video “basketball_1,” as is seen in Fig. 26, when there
were 150 particles, the PF and the VAPF needed about
60 ms per frame, the proposed tracker needed 50 ms,
and the CAM-Shift only needed less than 1 ms. The sta-
tistics showed that the proposed tracker was the most
efficient among the four PF-trackers, saving about 16.7%
time compared to the PF and the VAPF.
In the ordinary PF, every state vector {x, y, w, h, θ} of

each particle in, for example, the rectangular model is
generated by a random number generator, and every
cycle involves a float number operation, which is
really time-consuming. Compared with that, in the
proposed method of the research, only the particles
of the main region are generated by the random
number generator, that is, 1/5 particles, while the
other four regions are simply “duplicates” from the
main region with the same distribution, which only
need to change the position data {x, y}. The addition
and subtraction operations are faster than the random
number generating operation, making this method
faster than the ordinary PF.
The time consumed by the M-PF tested in our experi-

ments was much more than Mikami’s proposed in [18],
because the latter’s algorithm could run 30.0 frames per
second by using 2000 particles. The first reason for this
large difference is that they employed the graphics pro-
cessing unit (GPU) processing to accelerate the weight
computation of particles, which was said to be 10 times
faster than the CPU-only version used in the experi-
ments of this research. Secondly, the Intel Core2Extreme
3.0GHz (Quad Core) CPU of the PC they used was
much better. Therefore, the two hardware differences
caused the huge difference in time consumption.

The proposed tracker, however, consumed much
more time than the CAM-Shift, which was a common
problem of PFs. Fortunately, the development of com-
puter technology has provided many ways to solve
the time consuming problem, such as to use parallel
computing enabled by multi-core processors [25–28]
and to use hash coding techniques to improve the ef-
ficiency [29, 30].

4.3.3 Failure modes
In the tests, two failure modes were identified. In the
first mode, there was another object which had almost
the same template and motion parameters as the tracked
one, as is seen in Fig. 27, while, in the second, the
tracked object had similar color distribution as part of
the background, as is seen in Fig. 28.
As all the four tested algorithms were based on color

distribution, when there were nearby objects in the iden-
tical color with the selected one or the background color
distribution was similar to the object’s, the tracking
process would probably end up with failure. In the first
example, the man was dribbling two basketballs at the
same time, and occlusion often took place when drib-
bling behind the back or between legs, as can be seen in
the 23rd and 83rd frames. In the 23rd frame, when the
tracked basketball disappeared, the proposed tracker
moved to another basketball immediately while the other

Table 6 Resulting of averaged angle error

Video CAM-Shift PF VAPF M-PF Proposed

Book 28.22 53.56 28.94 33.7 16.78

Bottle 8.53 16.35 10.23 17.33 11.02

Table 7 Resulting of averaged width error

Video CAM-Shift PF VAPF M-PF Proposed

Book 36.65 5.09 13.41 4.27 3.12

Bottle 13.45 2.17 2.11 3.05 2.08

Motinas_chamber 196.21 6.86 6.54 11.28 6.50

Table 8 Resulting of averaged height error

Video CAM-Shift PF VAPF M-PF Proposed

Book 19.19 7.39 5.34 4.41 4.37

Bottle 16.16 3.21 3.08 3.13 2.96

Motinas_chamber 59.73 17.03 17.05 29.23 15.44

Fig. 26 Resulting of time consuming of video “basketball_1” with
the particle number N = 150
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four tended to stay in the original position and search,
because the SPD mechanism of the proposed tracker
detected a dramatic movement due to the similarity
between the two basketballs. This was also the reason
for the failure in the 170th, 196th, and 224th frames
of the video “v_juggle_15_02,” which could be avoided
by combing a much better appearance mode and ob-
ject correspondence mechanism. However, finding a
good template model for visual tracking remains a
challenging task.

5 Conclusion
This paper has presented a MAPF for visual object
tracking under complex dynamics. The ways of using
the prior history position data to estimate the velocity
and acceleration of moving objects were demonstrated,

and a new method called SPD was proposed to improve
the robustness of tracking a fast-moving object. Through
updating the propagation distance in the dynamic model
in each frame, the robustness and effectiveness were
significantly improved during the tracking process. The
experimental results demonstrated that, compared with
the CAM-Shift, PF, VAPF, and M-PF, the proposed
algorithm was effective and robust in dealing with object
tracking under conditions of complex dynamics, occlu-
sion, and affine transformation. The tracking perform-
ance was improved significantly not only in position
accuracy and object similarity, but also in computational
efficiency.
The proposed algorithm was inspired by the color-

based PF and has turned out to be better, and it will be
helpful in other PF algorithms that need to consider

Fig. 27 The tracking failure example of video “v_juggle_15_02” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed
tracker (red). Particle number N = 250

Fig. 28 The tracking failure example of video “basketball_3” using CAM-Shift (white), PF (blue), VAPF (green), M-PF (pink), and the proposed
tracker (red). Particle number N = 200
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objects moving with dramatic changes in velocity and
acceleration.

6 Additional files
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