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Abstract

In this paper, a new multicriterion segmentation method has been proposed to be applied to satellite image of
very high spatial resolution (VHSR). It is consisted of the following process: For each region of the grayscale image,
a center of gravity has been calculated and it has been also selected a threshold for its histogram. According to a
certain criteria, this approach has been based on the separation of the different classes of grayscale in an optimal
way. The proposed approach has been tested on synthetic images, and then has applied to an urban environment
for the classification of data in Quickbird images. The selected zone of study has been laid in Skhirate-Témara
province, northwest of Morocco. Which is based on the Levine and Nazif criterion, this segmentation technique has
given promising results compared those obtained using OTSU and K-means methods.
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1 Introduction
Segmentation is the technique and procedure used to
divide the image into different non-overlapping regions
according to their characteristics. The pixel values in the
same region have similar attributes while the pixel values
from diverse regions have various features. Various
methods have been developed and used with a relative
success. They can be roughly classified into several cat-
egories according to the dominant features they employ,
such as edge-based method [1], region-growing method
[2], neural networks method, physics-based method [3–5],
and histogram thresholds method [6].
However, in some practical situations, solving segmen-

tation problems need more information than what is
contained in one-single image band. In these cases, the
use of several image color components or a multispec-
tral image is necessary [7–9]. In practice, the application
of such method, on a VHSR image, leads to inaccurate
results. In certain specific cases, variant region of interest
are classified to be homogenous, this is due to two main
critical issues in color image segmentation: (1) what's the

way segmentation method should be used?; and (2) what's
the way color space should be adopted? [10]. It demon-
strated that, for unsupervised classification problems,
histogram thresholding is a suitable method for achieving
good segmentation results with a low computation com-
plexity for a wide class of images [4, 10].
In this case, a number of classification algorithms, based

on 2D histogram analysis, are obtained by multidimen-
sional histogram projection which are focused on two
color procedures. These algorithms have been elaborated
and used successfully [7–9, 11].
This work proposes a method that focuses on the sepa-

ration of different classes of grayscale in an optimal way
according to some criterion, using typical techniques of
image segmentation. We calculate the center of gravity for
each region of the grayscale image and the threshold of its
histogram [7–9]. In order to show the feasibility of the
proposed method, firstly, we will compare our approach
with OTSU and K-means methods by testing and applying
them on synthetic images. Secondly, we will evaluate our
algorithm on land cover and land use classification using a
satellite image of a selected urban zone.
This task confirm that the segmentation technique

provides better results when it is established on a
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combination of criteria. Thus, the diversity of images to
which it could be applied successfully. At the same time,
it reveals the weakness of the criteria when it' s used
separately, without being combined.
The first chapter of this article presents the proposed

multicriteria segmentation approach. The second one de-
scribes the multiobjective function. The third one presents
the VHSR satellite image we used in this study. The fourth
chapter introduces the criterion of Levine and Nazif, and
the last one reveals the experimental outcomes and the
discussion.

2 Description of the method
Multiobjective optimization extends from the theory of
optimization by allowing several design goals to optimize
simultaneously. A multiobjective optimization problem
is solved in a way similar to the simple objective classic
problem. The goal is to find a set of values for the design
variables that simultaneously optimize several objective
functions (or costs). In general, the solution obtained by
the separated optimization of each objective (simple
objective optimization) does not represent a possible
solution for the multiobjective problem.
The proposed approach in [12] is justified by the simple

reason that, in almost all cases, the segmentation process,
based on the optimization of one criterion only, does not
work very well for many images. Frequently, the optimal
value of the threshold for each criterion does not produce
satisfactory image segmentation. Here, we propose opti-
mal thresholds that allow optimizing a set of criteria. The
method of thresholding was based on three criteria:

1. The modified within-class variance criterion,
2. The overall probability of error criterion, and
3. The entropy criterion.

The identification of these three criteria in the thresh-
olding algorithm requires the introduction of three
parameters: w1 , w2 , and w3, see eq. (7) and the detail of
which we shall see later.
Our aim is to increase the information about the position

of the optimal threshold that allows us to obtain the correct
segmentation.
In this subsection, we present the different criteria that

we will minimize later for the process of multilevel
image thresholding. Functions (criteria) that we chose
are the modified within-class variance, the overall prob-
ability of error and the entropy.

2.1 Modified within-class variance criterion
Thresholding based on within-class variance tends to
classify an image as the object and the background of
similar sizes. In order to overcome this drawback, an
objective function was derived from the classical within-

class variance criterion; some a priori knowledge about
the characteristics of the resulting segmentation, such as
uniformity or homogeneity, of the regions and simplicity
of the interiors of the regions was introduced. The
proposed modification consists, in the integration in the
criteria, of the ideal segmentation properties. The criter-
ion expressing the uniformity and the homogeneity of
the regions is the within-class variance criterion, defined
as follows:

MVar Ið Þ ¼ α
XNR

j¼1

Var jð Þ2
βj

þ γ j ð1Þ

And we assume that the number NR of regions is two.
α is given by 1

10000XM

ffiffiffiffiffiffiffi
NR

p
where M is the image size.

βj ¼ 1
1þLog Njð Þ , Nj denotes the number of pixels in the

region j.

γ j ¼
R Njð Þ
Nj

� �2

, and R(Nj) is the number of the regions

of which cardinal is equal to Nj.
Var(j) is defined as (www.cpe.eng.cmu.ac.th/wp-con-

tent/uploads/CPE752_08.pdf ):

Var Rð Þ ¼
XJ

j¼1
PJ mj−mG

� �2 ð2Þ

With

mj ¼ 1
Pj

X
i∈Cj

ipi

Pj ¼
X
i∈Cj

pi

mG ¼
XL−1
i¼0

iPi

pi ¼
h ið ÞXL−1

j¼0
h jð Þ

j is the number of region; Pj is the probability of class j;
mj is mean intensity of the pixels in class j; mG is the
global mean; pi is the probability density function of
different pixels of the image; h(i) is the number of occur-
rences of the gray level of pixel i ∈ [0, L − 1], and L is the
total number of grayscales.

2.2 Overall probability of error criterion
We assume that the histogram is properly set up using the
Gaussian probability density function. Then, the optimal
threshold is determined by minimizing the overall error
probability. For two successive Gaussian probabilities of
density functions, the function was been given by
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e Tið Þ ¼ Pi

Z
−∞

Ti

Pi xð Þdxþ Piþ1

Z þ∞

Ti

Piþ1 xð Þdx ð3Þ

i = 1; 2;…; d−1 with respect to the threshold Ti,
Then, the overall probability to minimize is

E Tð Þ ¼
Xd−1

i¼1
e Tið Þ ð4Þ

Where T is the vector of thresholds: 0 < T1 < T2 <… <
Td−1 < 255.

2.3 Entropy criterion
The entropy of the two classes A and B are defined by

HA tð Þ ¼ −
Xt

i¼1

pi
Pt

log
pi
Pt ð5aÞ

HB tð Þ ¼ −
XL

i¼tþ1

pi
1−Pt

log
pi

1−Pt ð5bÞ

and the total entropy is

HT tð Þ ¼ HA tð Þ þHB tð Þ ð5cÞ
The first problem with this approach, highlighted by

Pal [13], is that the entropy Shannon is not defined for
probability densities including zero probabilities. Pal and
Pal then proposed a new definition of entropy based on
exponential gain information:

HT tð Þ ¼ −
Xt

i¼1

pi

Pt
e1−

pi
Pt−

XL

i¼tþ1

pi
1−Pt

e1−
pi

1−Pt
; ð5Þ

2.4 Objective function
The multiobjective function applied to two thresholds
images (like medical images) by Nakib [12] is defined as
follows:

MOBJ1 Tð Þ ¼ w1MVar R Tð Þð Þ þ w2E Tð Þ ð6Þ
Obviously, this function has certainly been success-

ful but it showed its limits. For that reason, we

Fig. 1 ®Digital Globe: area of study—QuickBird multispectral image—regions of interest for color image (urban areas, Forêt, TerrainNu1)
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thought about introducing another factor such as
entropy.
Therefore, for the multithreshold images, we propose to

modify this objective function (6) by introducing the entropy
information, which we can take into account as follows:

MOBJ2 Tð Þ ¼ w1MVar R Tð Þð Þ þ w2E Tð Þ
þ w3HT Tð Þ ð7Þ

Where T is the vector of thresholds: 0 < T1 < T2 <… <
Td-1 < 255.
In addition, the weighting parameters given by

○ For the function MOBJ1 (6): w1 = 1 − w2

w2 ¼
X

i¼1

d
σ2
i

σ2
Histogram

○ For the function MOBJ2 (7): w1 = 1 − w2 −w3

w2 ¼
X

i¼1

d
σ2
i

σ2
Histogram

w3 ¼ mGX
j¼1

d
mj

Where d is the number of the Gaussians; σi is the
standard deviation of the ith Gaussian probability dens-
ity function; and σHistogram is the standard deviation of

Fig. 2 ®Digital Globe: area of study—QuickBird panchromatic image—region of interest for panchromatic image (urban areas, forest, and River)

Table 1 Quickbird MS image specification

Band Wavelength (nm) Spatial resolution (m2)

Blue 450–520 (485) 2.4 × 2.4

Green 520–600 (560)

Red 630–690 (660)

Near-infrared 760–900 (830)

Panchromatic 445–900 0.61 × 0.61
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the original histogram. The weighting parameters
(w1 , w2 , and w3) allow touching the boundary of the
feasible domain. This operation was used when the goal
of the segmentation is to extract the target from the ori-
ginal image.

3 Quickbird image data
The Quickbird image (Figs. 1 and 2) retained for this
work is a selected urban zone of the Skhirate-Témara
province, in the northwest of Morocco, delimited by lon-
gitude φ1 = 6°57′58.87″ W and latitude λ1 = 33°55′
35.99″ N and covers about 90 Km2. This image was cap-
tured on June 15, 2006. We used the panchromatic band
and the multispectral band (see the characteristic in
Table 1).

4 Levine and Nazif evaluation of criteria
One of the most intuitive criterions being able to quan-
tify the quality of a segmentation result is the intra-
region uniformity. Weszka and Rosenfeld [14] propose
such a criterion with thresholding that measures the ef-
fect of noise to evaluate some thresholded images. Based
on the same idea of intra-region uniformity, Levine and
Nazif [15] also defined a criterion that calculates the uni-
formity of a region characteristic based on the variance
of this characteristic [16]:

LEV1 IRð Þ

¼ 1−
1

Card Ið Þ
X

k¼1

NR

X
s∈Rk

½gI sð Þ−
X

t∈Rk
gI tð Þ�2

maxs∈Rk gI sð Þð Þ−mins∈Rk gI sð Þð Þð Þ2

ð8Þ

Where

(I). IR corresponds to the segmentation result of the image
in a set of regions R = {R1,…,RNR} having NR regions,

(II).Card(I) corresponds to the number of pixels of the
image I,

(III).gI(s) corresponds to the gray-level intensity of the
pixels of the image I and can be generalized to any
other characteristic (color, texture …).

Sezgin and Sankur [17] proposed a standardized uni-
formity measure. Based on the same principle, the meas-
urement of homogeneity of Cochran [18] gives a
confidence measure on the homogeneity of a region. How-
ever, this method requires a threshold selection that is
often arbitrarily is done, limiting thus the proposed
method. Another criterion to measure the intra-region uni-
formity is developed by Pal and Pal [19]. It is based on a
thresholding that maximizes the local second-order en-
tropy of regions in the segmentation result. In the case of

Fig. 3 Comparison between two multiobjective functions (MOBJ1 and MOBJ2)

Table 2 Values of Levine and Nazif evaluation of criteria for various functions (MOBJ1 and MOBJ2)

Imagery Threshold Filter Criterion intra-region
of Levine and Nazif

Criterion inter-region
of Levine and Nazif

Criterion intra-inter region
of Levine and Nazif

Multiobjective1 Multiobjective2 Multiobjective1 Multiobjective2 Multiobjective1 Multiobjective2

Image_synt [22] 2 2.5 0.0120 0.0372 0.2943 0.1834 0.5542 0.5310

Image_panchr 2 2.5 0.1129 0.1240 0.2635 0.2424 0.5350 0.5341
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slightly textured images, these criteria of intra-region uni-
formity prove to be effective and very simple to use. How-
ever, the presence of textures in an image often generates
improper results due to the over influence of small regions.
Complementary to the intra-region uniformity, Levine

and Nazif [15] defined a disparity measurement between
two regions to evaluate the dissimilarity of regions in a
segmentation result. The formula of total inter-region
disparity was defined as follows:

where wRk is a weight associated to Rk that can be
dependent of its area, for example, g k is the average of
the gray-level of Rk. g I Rkð Þ can be generalized to a feature
vector computed on the pixel values of the region Rk such
as for LEV1. pRk Rj

Corresponds to the length of the
perimeter of the region Rk common to the perimeter of
the region Rj. This type of criterion has the advantage
of penalizing the over segmentation. (Formula intra-
inter region)

LEV2 IRð Þ ¼

XNR

k¼1
WRk

XNR

j¼1=Rj∈W Rkð Þ
PRknRj

g I Rkð Þ−g I Rj
� ��� ��

g I Rkð Þ þ g I Rj
� �

" #
XNR

k¼1
WRk

ð9Þ

Fig. 4 Segmentation result for synthetic images
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Fig. 5 Segmentation result for panchromatic images and multispectral images
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Note that the intra-region uniformity can be combined
with the inter-region dissimilarity by using the following
formula:
where C2

NR
is number of combinations of two regions

among NR.
This criterion [20] combines intra- and inter-region

disparities. Intra-region disparity is computed by the
normalized standard deviation of gray levels in each re-
gion. The inter-region disparity computes the dissimilar-
ity of the average gray level of two regions in the
segmentation result.
Haralick and Shapiro [21] consider that

(I). The regions must be uniform and homogeneous,
(II).The interior of the regions must be simple without

too many small holes,
(III).The adjacent regions must present significantly

different values for the uniform characteristics, and
(IV).Boundaries should be smoothed and accurate.

5 Contribution of the new multiobjective function
The improvement of the objective function requires on
the way to identify the contribution of our method. We
precede by a comparison between two eqs. (6) and (7).
So, in this section, we will compare our new multiob-

jective function MOBJ2 with that of Nakib MOBJ1 so
the introduction of entropy in the multiobjective func-
tion, and after several test of this function on synthetic

images and on high spatial resolution images, clearly, we
could observe the positive contribution to the segmenta-
tion process. The result of the segmentation is obviously
amazing (see Fig. 3), and this is well justified of course
through the assessment criteria obtained in Table 2.

6 Experimental results and discussion
Thresholding based on within-class variance tends to
classify an image as the object. The experiments pre-
sented here concern the pixel classification of both a
synthetic image and the classification of our Quickbird
image in the different land cover and land use classes.
In order to evaluate the proposed technique, we con-

ducted the first phase of experimentation on synthetic
images. We have chosen a first image, which contains a
texture to study the influence of small regions. We no-
ticed that the inter-region, the intra-region, and the
intra-inter-region criterion values of our proposed
method are lower than those provided by Otsu’s one.
The same findings were obtained when processing other
synthetic images having different morphological proper-
ties. Figure 4 presents the segmented results for syn-
thetic images, and Fig. 5 presents the segmented results
for panchromatic images. Also, to evaluate the proposed
technique, we have used the Levine and Nazif evaluation
of criteria. From Table 3, it can be seen that the pro-
posed method performs better than Otsu’s method.

LEV3 IRð Þ ¼ 1
2

1þ 1

C2
NR

XNR

i;j¼1;i≠j

g I Rið Þ−g I Rjð Þj j
512− 4

2552NR

XNR

i¼1
σ2Ri

0
BB@

1
CCA ð10Þ

Table 3 Values of Levine and Nazif evaluation of criteria for various methods

Imagery Threshold Filter Intra-region criterion
of Levine and Nazif

Inter-region criterion
of Levine and Nazif

Intra-inter criterion region
of Levine and Nazif

Otsu K-means Multiobjective Otsu K-means Multiobjective Otsu K-means Multiobjective

ImagSynt1 1.3 1 0.0105 0.0263 0.0335 0.2473 0.2217 0.1826 0.5503 0.5509 0.5397

ImagSynt2 1.3 1.5 0.0231 0.0246 0.0306 0.1936 0.2142 0.1789 0.5442 0.5490 0.5334

ImagSynt3 0.5 1.5 0.0265 0.0292 0.0331 0.1623 0.1725 0.1469 0.5447 0.5517 0.5328

ImagSynt4 0.23 0.5 0.0425 0.0412 0.0467 0.1718 0.1892 0.1706 0.5500 0.5597 0.5374

ImagSynt5 0.5 1 0.0221 0.0051 0.0461 0.2486 0.2574 0.2495 0.6121 0.5915 0.5803

ImagSat1 1.66 1.5 0.0612 0.0704 0.0709 0.3747 0.2952 0.2912 0.5556 0.5443 0.5437

ImagSat2 4 3 0.0898 0.0858 0.1286 0.2940 0.3158 0.2901 0.5865 0.5957 0.5789

ImagSat3 4 3 0.1015 0.1002 0.1246 0.3059 0.3355 0.3111 0.5860 0.5975 0.5856

ImagSat4 2.6 1 0.1026 0.0996 0.1338 0.2900 0.3054 0.2826 0.5853 0.5914 0.5796

Forêt_T 0.5 1 0.0695 0.0704 0.1145 0.2156 0.2253 0.2259 0.5810 0.5919 0.5398

Plage_T 1.25 1 0.0675 0.0735 0.1064 0.3271 0.3360 0.3533 0.5837 0.5883 0.5503

El Joumani et al. EURASIP Journal on Image and Video Processing  (2017) 2017:26 Page 8 of 9



The second phase of experimentation was conducted
on a set of summary images with a VHSR (panchromatic
image with a spatial resolution of 0.61m × 0.61m). While
adjusting the threshold and the filter coefficients to seg-
ment each image, we also calculated their centers of
gravity as well as their uniformity criterion of intra-
region and intra-inter region of Levine and Nazif. This
was done for the multicriteria method and the Otsu
method.
To evaluate quality of segmentation results in the case

of real images, which usually contains several unknown
degradations, the second phase of this comparative ex-
perimental study conducted as a result and evaluated
using a real gray level image and a set of VHSR satellite
images. We could infer from obtained evaluation criter-
ion values (Table 3), which remains constantly inferior
to those obtained when using Otsu’s algorithm, that the
multiobjective optimization method provides more
stable and reliable results especially in the case of high-
resolution satellite images.

7 Conclusions
In this work, we proposed a new multicriterion segmenta-
tion method based on the separation of different classes of
gray levels in an optimal way according to certain criteria
and applied it to VHSR satellite images. Therefore, we im-
plemented a segmentation method based on multiobjec-
tive optimization function MOBJ2 developed and take
account of entropy. We tested the function with respect
to that of Nakib MOBJ1 while appealing to Levine and
Nazif evaluation criteria and gave good results.
We applied the MOBJ2 according to the segmentation

of multiclass images such as synthetic images and samples
of panchromatic image of VHSR in order to assess the
MOBJ2 function compared to that of the OTSU and the
K-means available MATHLAB. The evaluation of the seg-
mentation by introducing Levine and Nazif assessment
criteria shows that the multiobjective function developed
is better than the OTSU method and the K-means.
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the intra-region uniformity and the inter-region disparity; MOBJ1: The
multiobjective function applied to two threshold images by Nakib;
MOBJ2: Our multiobjective function applied to images with at least two
thresholds; VHSR: Very high spatial resolution
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