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Abstract

Images can be broadly classified into two types: isotropic and anisotropic. Isotropic images contain largely rounded
objects while anisotropics are made of flow-like structures. Regardless of the types, the acquisition process introduces
noise. A standard approach is to use diffusion for image smoothing. Based on the category, either isotropic or
anisotropic diffusion can be used. Fundamentally, diffusion process is an iterated one, starting with a poor quality
image, and converging to a completely blurred mean-value image, with no significant structure left. Though the
process starts by doing a desirable job of cleaning noise and filling gaps, called under-smoothing, it quickly passes
into an over-smoothing phase where it starts destroying the important structure. One relevant concern is to find the
boundary between the under-smoothing and over-smoothing regions. The spatial entropy change is found to be one
such measure that may be helpful in providing important clues to describe that boundary, and thus provides a
reasonable stopping rule for isotropic as well as anisotropic diffusion. Numerical experiments with real fingerprint data
confirm the role of entropy-change in identification of a reasonable stopping point where most of the noise is
diminished and blurring is just started. The proposed criterion is directly related to the blurring phenomena that is an
increasing function of diffusion process. The proposed scheme is evaluated with the help of synthetic as well as the
real images and compared with other state-of-the-art schemes using a qualitative measure. Diffusions of some
challenging low-quality images from FVC2004 are also analyzed to provide a reasonable stopping rule using the
proposed stopping rule.
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1 Introduction
In image processing problems, many times one comes
across the task to enhance flow-like structures, for
instance, the automatic assessment of wood surfaces or
fabrics, fingerprint image analysis, scientific image pro-
cessing in oceanography [1], seismic image analysis [2],
or sonogram image interpolated for Fourier analysis [3].
All images as mentioned above have one thing common;
they contain elongated structures [4–6]. Such images can
be referred to as anisotropic. The isotropic, by contrast,
is an image category having largely round objects. The
isotropic as well as anisotropic images, once acquired
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from their respective sources are mostly noisy. The noise
treatment is different based on the category they belong.
The case of noise smoothing for anisotropic images is
more interesting and is the focus of research presented
here.
Classifying images into their category will help to devise

a proper noise removal strategy for them. The authors in
[7] suggested to use local anisotropy strength as a mea-
sure for an image to classify as anisotropic or isotropic.
They later extended their anisotropy strength defini-
tion to construct a complete flow-coordinate system for
anisotropic images. Their proposed anisotropy strength
measure computation can be summarized as follows.
First, the image L(x, y) is smoothed with a Gaussian of
small standard deviation. The result C(x, y) is then dif-
ferentiated in x- and y- direction to form Cx(x, y) and
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Cy(x, y), respectively. Next the covariance matrix compo-
nents J1(x, y) = 2Cx(x, y) and J2(x, y) = C2

x(x, y)−C2
y (x, y),

and J3(x, y) =
√
C2
x(x, y) + C2

y (x, y) are computed. The
components are smoothed again with a larger Gaussian.
The local orientations and their anisotropy strength mea-
sure are computed as

θ(x, y) =
arctan(

J1(x,y)
J2(x,y)

2
, (1)

and

χ(x, y) =
√
J21 (x, y) + J22 (x, y)

J3(x, y)
. (2)

Applying this definition to our test images, that is,
Blackball and Curves image, will result in a graphical dis-
play as shown in Fig. 1. The local flow directions are
depicted by the orientations of the small needles superim-
posed on the image. The length of each needle is drawn
proportional to the amount of local anisotropy at that
pixel point. It is noted that the Blackball image is largely
isotropic with no preferred local directions, whereas the
Curves image showed a profound anisotropic character,
largely in the vicinity of the elongated structures. This jus-
tifies labeling Blackball image as isotropic and the Curves
image as anisotropic.
The rest of this paper is organized as follows. In

Section 3, a discrete image as a spatial distribution is dis-
cussed. The spatial entropy of linear isotropic diffusion
process is described in Section 4. Section 5 talks about
spatial entropy of a linear anisotropic diffusion process
followed by results and discussion in Section 6. Finally, the
paper is concluded in Section 7.

2 Related work
The research concerned here is to smooth noise present in
fingerprint images (a representative of anisotropic class)
without affecting their ridge/valley pattern. This aim can
be conveniently served in a scale-space construction. A
scale-space framework describes a noisy image as a stack
of progressively evolving many smooth images, each one
with their corresponding scale [8]. The stack is ordered
in increasing smoothness scale, where the scale varies
in fine-to-coarse. The fine-to-coarse transformation is
implemented, in general, by a linear isotropic diffusion
process, governed by a partial differential equation (PDE)
as follows.
Let L(x, y) denote a noisy grayscale input image and

L(x, y; t) be an evolving image at scale t, initialized with
L(x, y; 0) = L(x, y). Then, the linear isotropic diffusion
process can be defined by the equation

∂L
∂t

= ∇ · (c∇L) = c∇2L. (3)

This equation appears in many physical processes
[9, 10]. In the context of heat transfer, it is referred to as the
famous heat equation. For image processing, the amount
of heat is replaced with the intensity value at a certain
location. The diffusivity parameter c is constant across
the image, making it a linear isotropic equation. The lin-
ear isotropic equation has an elegant solution L(x, y; t) =
G√

2ct(x, y)∗L(x, y), whereGσ = 1
2πσ 2 exp

(
− x2+y2

2σ 2

)
. This

solution provides the required interpretation in the form
of low-pass filtering. Due to low-pass nature of this dif-
fusion, as it progresses from fine scale images to coarser
images, the blurring intensifies and may result in remov-
ing significant image structure, typically edges, lines, or
other details, well before it had taken care of the noise. To
protect the structure in a diffusion process, the diffusivity

Fig. 1 Anisotropy strength measure. The figure reveals anisotropy strength measure in the form of an array of needles on top of the image. The
length of needles is representative of anisotropy strength and the needle direction is an estimation of local flow. The blackball image is largely
isotropic with little amount of anisotropy at almost all the points in the image. However, the curve image on the right is largely anisotropic, with a
strong strength measure appearing around the elongated feature of interest. a represents the black ball image. b is the curve image
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parameter should be made dependent on some charac-
terization of image structure. This results in the famous
nonlinear isotropic diffusion process, proposed by [11].
The diffusivity now becomes a function of gradients, so
at the edge point the diffusion is completely inhibited and
in smooth regions diffusion is allowed. However, comput-
ing gradients for a noisy image is an ill-posed problem.
A remedy was pointed out by [12], that suggests the use
of Gaussian smoothing before computing gradients. This
modification lays the foundation for a well-behaved non-
linear isotropic diffusion process. Later on, instead of
inhibiting diffusion at edge points, it was thought of to
steer the diffusion in the direction parallel to the edge
[13–16] rather than across it. This paved the way for
the use of the diffusion matrix. This evolved the current
form of non-linear anisotropic diffusion. The diffusion
matrix-based equation is defined as

∂tL = ∇ (D∇L) , (4)

where D is the 2 × 2 diffusion matrix. The eigenvectors
of the diffusion matrix provide the required steering while
the eigenvalues as a function of gradients, add the non-
linearity character. In our wish to keep connected with the
Gaussian convolution interpretation that provides amath-
ematical tractability to the whole process, the research
reported here is restricted to the linear anisotropic diffu-
sion case. For that, the eigenvalues of the diffusion matrix
are kept fixed. It is found that the Gaussian convolution
connection is also useful for linking anisotropic diffusion
with its earlier counterpart isotropic diffusion in a more
natural way. The support for this modification came from
the argument made in [14], that a non-uniform Gaussian
can act as a solution of the Anisotropic Gaussian scale-
space as long as the diffusion matrix is spatially constant,
i.e., it does not depend on (x, y) spatial location. Keeping
in line with this argument, only spatially-invariant diffu-
sion matrix is used; however, the steering was allowed.
This leaves us with the so-called linear anisotropic dif-
fusion process. The constant eigenvalues are responsible
for the linear part of the name, while the steering of the
eigenvectors is what provided the word anisotropic in the
nomenclature. The linear anisotropic diffusion equation
has a convolution solution with a non-uniform Gaussian
of the form:

Gλu,λv(u, v) = 1√
2πλu

exp
(
− u2

2λ2u

)
1√
2πλv

exp
(
− v2

2λ2v

)
,

(5)

where (u, v) are the rotated coordinates obtained using
eigenvectors of the diffusion matrix. The eigenvalues λu,
λv represent the standard deviations of the Gaussian in u
and v direction, respectively. Normally, for noisy images,
one of the eigenvalues is set to be much smaller than the

other one, resulting in a non-uniform Gaussian function
with more generalized elliptical support.
Searching for a suitable linear anisotropic diffusion

strategy for noisy images in literature, we stumble upon
considerable activity regarding the impact of a non-linear
anisotropic diffusion equation on noisy images. The non-
linear anisotropic literature is used as a stepping stone to
reach a linear anisotropic diffusion strategy. The idea of
non-linear anisotropic diffusion was pioneered byNitzbeg
et al. [17] and Cottet et al. [12]. Later on, Weickert [3]
put forward a formal method for enhancing the elongated
structure, referred to as coherence-enhanced diffusion
(CED). The CED works by steering the diffusion process
in a particular direction with the help of a spatially vary-
ing diffusion matrix. The design was further generalized
by adopting a diffusion matrix to learn the local struc-
ture iteratively [18]. Since smoothing elongated structure
is desired, the CED procedure comes in handy. The CED
is adopted as it is, but with one major modification. That
is, the eigenvalues are forced to be independent of spatial
position without disturbing the eigenvectors. Thus, our
proposed linear anisotropic diffusion process will steer
the non-uniform Gaussian to lay along the structure, but
its size will remain constant regardless of the position.
Towards the end, we will desribe another variant of CED,
where even the steering part of the diffusion matrix will
also be precomputed and kept constant throughout the
evolution process. This is referred to as the linear-oriented
diffusion process.
The suggested linear anisotropic process for anisotropic

images are confronted with one basic problem: when to
stop the diffusion. For the case of a noisy image, the
diffusion process initializes with an under-smooth situa-
tion that ultimately turns into an over-smooth one (the
mean-value image at the end with no structure). Over-
estimating stopping time will result in an over-smoothed
blurry image while under-estimating may leave signifi-
cant noise in the image. Therefore, it is crucial that an
appropriate time is selected in an automatic way. The lit-
erature activity in this respect can be divided into two
broad categories. One that deals with stopping criterion
selection in additive noise model setting. These meth-
ods adopt the stopping time by treating the noisy image
as the result of a noise addition, where the correlation
between the diffused image and the initial noisy image
minimized [3]. The authors in [19] introduced a multigrid
algorithm using a normalized cumulative periodogram.
A frequency approach to the problem was presented in
[20]. Whereas, [21] uses the extent of noise smoothing in
every iteration as a stopping parameter for diffusion. Later
on, a spatially-varying stopping method was introduced
that increased the computational cost significantly [22].
By identifying it as a Lyapunov functional of a large class
of scalar-valued nonlinear diffusion filters, Weickert [23]
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introduced decreasing the variance of an evolving image
as a stopping tool.
Since additive noise model may break down for some

real-world images, where noise manifests itself in the
form of gaps in regular ridge structures. Therefore, a sec-
ond category of stopping rule was evolved. The category
deals with examining entropy profile of the diffused image
and proposed stopping criterion for the evolving image
entropy distance from that of the entropy of the original
noisy image [3]. The idea of local image entropy was intro-
duced in [24], where the measure of local entropy defines
the segmentation boundaries in multiple-object images.
Local image entropy definition can be extended to define
a global characteristic of the scale-space image, that is
spatial entropy [25].
The research work reported here takes an investigative

look at the stopping rule concerning the change in spatial
entropy of an image as it goes through diffusion pro-
cess. The connection, between last peak in spatial entropy
curve and the size of the image structure, is found to be
related to the start of significant information loss. This
observation paves the way to the hypothesis that peak
entropy change will happen at the time instant on dif-
fusion time axis when dominant image structures just
start blending with the background right at their bound-
aries. This finding, substantiated by extensive empirical
evidence provided here, motivated us to put forward the
idea that a maximum entropy change may well be posed
as a good stopping time for the diffusion process.

3 A discrete image as spatial distribution
Consider a discrete fingerprint image L (x, y), where x is
the row index and y is the column index. This discrete
image can be realized as spatially distribution light inten-
sity [26]. Each spatial location that is (x, y) in the image
registers the number of light quantum-hit. In this way, we
may define

p (x, y) = L (x, y)∑
x

∑
y
L (x, y)

. (6)

This spatial probability perspective was found to cor-
respond very nicely with the theory of scale-space [27].
As we move higher in scale-space for an image, and
the spatial smoothing is high, or equivalently, the spatial
uncertainty increases. In the limit, the spatial distribu-
tion, becomes close to uniform distribution. The spatial
entropy of an image is given as

Ht (L) = −
∑
x

∑
y

L (x, y; t)∑
x

∑
y
L (x, y; t)

log

⎛
⎜⎝ L (x, y; t)∑

x

∑
y
L (x, y; t)

⎞
⎟⎠ .

(7)

As stated in [26], the spatial entropy of the image
increases monotonically towards an equilibrium state
logN , where N is dimension N = rows × columns.

4 Spatial entropy of linear isotropic diffusion
process

The linear diffusion process implemented by so-called
heat equation is the oldest and well-investigated noise-
smoothing process in the image processing domain. The
linear diffusion process can be visualized as an evolution
process with an artificial variable t denoting the diffusion
time, where the noisy input image is repeatedly smoothed
at a constant rate in all directions. No preference to any
direction is what justifies the name isotropic. This evo-
lution results in scale space representation of the noisy
image. As we move up to coarser scales, the evolving
images become more and more simplified since the dif-
fusion process removes the image structures present at
finer scales. In the process, noise also gets smoothed as
it is considered a smaller size object while diffusion just
reaches the point of touching the boundaries of the large
dominating structure.
During the process of diffusion from fine-scale image to

the higher coarser scale images, the mean of the result-
ing image remains constant with a monotonic decrease in
variance (a second-order statistic [13]). Later on, it was
found that spatial entropy associated with linear isotropic
diffusion process also rises smoothly in a monotonic fash-
ion [25]. Motivated by the smoothness of the spatial
entropy graph for the diffusion process, the first deriva-
tive of the entropy function on natural scale parameter
τ = log(t) was investigated. It was shown that entropy
change graph do show important peaks related to domi-
nating structures present in the original fine scale image.
However, their experiments did not involve smoothing
noisy images, and the authors fell short of suggesting
to use these peaks as stopping criterion. The empiri-
cal evidence is provided here to show that once a lin-
ear isotropic diffusion process is involved in smoothing
noisy images, these peaks will come at a much later stage
in diffusion time. Therefore, most of the noise being
low size structure already wiped by the process, and
thus the peaks could be regarded as a suitable stopping
time. This proposition is tested by tracking experimental
data.
To provide a quantitative measure for checking our test

results, two binary statistical measures are used: sensitiv-
ity and specificity. This is due to the use of a binary image
as input test, and the final diffused image is thresholded to
come up with the final binary output image. Since we are
dealing with binary images, the two measures suit us. The
measures deal with comparing the output binary image A
with a standard ground truth image B. Let us first define
four related quantities: true positive (TP) (the black pixels



Khan et al. EURASIP Journal on Image and Video Processing  (2016) 2016:6 Page 5 of 20

in image A are also black in image B), false positive (FP)
( the black pixels in image A are white pixels in image B),
false negative (FN) ( the black pixels of image B are iden-
tified as white in image A, that is we missed the true black
pixels), and true negative (TN) (the white pixels in image
A are same as white pixels in image B). Sensitivity is given
by

Sensitivity = number of TP
number of TP + number of FN

. (8)

Specificity is more concerned with

Specificity = number of TN
number of TN + number of FP

(9)

First, a linear isotropic diffusion process is conducted
for the image without noise. Figure 2b shows the entropy
curve with natural scale parameter. The monotonic
behavior of entropy curve is noted. The curve starts
increasing from a low value and moves onwards to an
almost stable asymptotic value on a much larger scale.
The regularity of the entropy curve motivates us to com-
pute its derivative on the natural scale parameter. The
entropy change curve for this image diffusion process
is depicted in Fig. 2c. One clear peak in the graph is
observed, corresponding well with the radius of the black
balls. If the linear diffusion process is stopped at a scale

where the peak in entropy-change happens, then out-
put resulting diffused image is displayed in Fig. 2d. It is
observed that diffused image is still intact with all the
black balls showing their characteristic black colors, with
diffusion just started at the boundaries of these balls. Hop-
ing that this peak in entropy change will remain fixed
at this scale with the noise added to the image, the best
possible stopping time will be the scale of the peak. The
sensitivity and specificity numbers for the comparison of
the output diffused binary image with the original are 88
and 96%.
To investigate the shape and location of the peaks in

entropy change with noise-added images, we start with
lower SNR images. The black balls image is considered
with Gaussian noise added, such that its SNR reduces to
2. The black ball image with SNR = 2 dB is depicted in
Fig. 3a. The linear diffusion process was conducted for this
noisy image to mitigate the effect of Gaussian noise. The
resulting entropy change graph is displayed in Fig. 3b. We
see two peaks in the graph. The first peak is largely the
contribution of the noise added to the image. The second
peak is due to the presence of black balls, at the same loca-
tion where we saw it before in the clean image entropy-
change graph. This validated the claim made in [25],
that peaks in entropy change graphs are representative of
the corresponding sizes of the structures present in the

Fig. 2 Linear isotropic diffusion process. a shows a black ball test image with white background. The features present in the image are isotropic in
shape with a constant radius of two pixels. b shows the smooth spatial entropy graph resulting from diffusion process on natural scale parameter.
The entropy change with natural scale change is displayed in (c), where the peak corresponds to the size of the black balls. The diffused image
resulting from stopping the diffusion process at the location of the peak in entropy change is shown in (d). The diffused image is converted to
binary image using Otsu optimal threshold of 0.63. The final binary image is displayed as (e)
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Fig. 3 Linear isotropic diffusion process for noisy image. a shows a noisy black ball test image with white background. The zero mean Gaussian
Noise added such that SNR reduces to 2 dB. b shows the spatial entropy-change graph resulting from diffusion process on the natural scale
parameter for a noisy image. Two peaks can be observed, where the first peak is the result of adding Gaussian noise, and the second peak is
representing the characteristic size of the black balls. The diffused image resulting from stopping the diffusion process at the location of the second
peak in entropy change is shown in c. Binarized image as a result of the threshold, set to the mean value of the diffused image results in (d)

images. The linear diffusion process can be stopped at the
location of the second peak, the resulting output diffused
image is shown in Fig. 3c. The image clearly shows a dif-
fused image where largely the noise is smoothed with the
black balls still intact. The diffused image can be binarized
by using its histogram, clearly showing a valley between
black and white bars. Doing so, the image of Fig. 3d is
reached, with sensitivity and specificity numbers being 85
and 91%.
To further investigate the entropy change graph of a

noisy image, the black ball imaged are severely degraded
with a large amount of Gaussian noise till its SNR drops
to −3 dB. The noisy black ball image is depicted in
Fig. 4a. The linear diffusion process is applied to this noisy
image, with the resulting entropy change graph displayed
in Fig. 4b. The presence of two peaks is observed, as pre-
viously did in a less noisy image. However, this time, the
peak associated with noise is much large in amplitude to
the peak of the black balls. This clearly is the outcome of
a large amount of noise added to the image pixels. The
second peak, though small in amplitude, is still present at
the same location as that of clean image entropy-change
graph. By stopping the linear diffusion process at the sec-
ond peak location, we get the diffused image is shown in
Fig. 4c. By converting this diffused image by selecting a
threshold from its histogram, we reach the binary result
as displayed in Fig. 4d, having sensitivity and specificity
numbers as 78 and 88%.

5 Spatial entropy of a linear anisotropic diffusion
process

In this section, spatial entropy analysis is carried out for
the anisotropic diffusion process. What we are looking for
is the finding whether we will get a smooth spatial entropy
increasing function, and then will we get a distinct peak
in the entropy change curve for the anisotropic diffusion
process.
The anisotropic scale-space for the image L(x, y) can be

constructed by the diffusion equation

∂L
∂t

= ∇ (D∇L) , (10)

where D is the 2 × 2 diffusion matrix, adapted to the
local image structure, via a structural descriptor, called the
second-moment matrix μ, defined as

S =
(
s11 s12
s12 s22

)
=

(
L2x,σ Lx,σLy,σ
Lx,σLy,σ L2y,σ

)
, (11)

where L2x, LxLy, and L2y represent the second order
Gaussian-derivative filters, in the x and y directions. This
symmetric 2 × 2 matrix has two eigenvalues λ1 and λ2,
given by:

μ1 = 1/2 (s11 + s12 + α)

μ2 = 1/2 (s11 + s12 − α) , (12)
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Fig. 4 Linear isotropic diffusion process for noisy image. a shows a noisy black ball test image with white background. The zero mean Gaussian
Noise added such that SNR reduces to -3dB. b shows the spatial entropy-change graph resulting from diffusion process with respect to natural scale
parameter for noisy image. Two peaks can be observed, where the first peak is much larger in amplitude than the second peak. The diffused image
resulting from stopping the diffusion process at the location of the second peak in entropy change, is shown in c. Binarized image as a result of
threshold, set to the mean value of the diffused image is resulted in (d)

where

α =
√

(s11 − s22)2 + 4s122 (13)

The second-moment matrix comes with two eigenvec-
tors. The first normalized eigenvector can be written as
(cos θ , sin θ)T , and the second orthogonal eigenvector
comes out to be as (− sin θ , cos θ)T . One of these eigen-
vectors is parallel, and the other is perpendicular to the
structure. The parameter θ represents the local orienta-
tions of the given image. What is observed here is that
eigenvalues are dependent on the local structure. In order
to transform CED process into a linear anisotropic pro-
cess, fixed values are assigned to the eigenvalues. Specifi-
cally, the eigenvalue associated with eigenvector that goes
parallel to the structure has given a larger value than that
of the eigenvalue of an eigenvector that is perpendicular
to the structure boundary. Our specific choice of λ1 and
λ2 for this experiment are

λ1 = 0.1
λ2 = 1 − 0.1, (14)

with a step size of 0.01 to provide a stable diffusion
process.
The diffusion matrix D can now be reconstructed with

help of its structure-invariant eigenvalues and structure-
dependent eigenvectors as

d11 = λ1 cos2 θ + λ2 sin2 θ

d12 = (λ1 − λ2) sin θ cos θ

d22 = λ1 sin2 θ + λ2 cos2 θ

(15)

Once the diffusion matrix is constructed, the evaluation
process is set to start. The diffusion process proceeds in
four steps.

1. Calculate the second-moment matrix for each pixel.
2. Construct the diffusion matrix for each pixel.
3. Calculate the change in intensity for each pixel as

∇ (D∇L).
4. Update the image using the diffusion equation as

Lt+�t = Lt + �t × ∇ (D∇L) . (16)

This monotonic decreasing behavior of the image vari-
ance is also evident in the graph depicted in Fig. 5 when
we are diffusing our fingerprint image shown in Fig. 5.
What can be seen from the graph is that it is fast decreas-
ing in the beginning, but towards the end, it becomes
saturated, providing convergence. Thus, by bounding the
relative change in the variance, one can define the diffu-
sion stopping rule. However, this rule does not guarantee
an optimal time to stop the process. It is based on the
user-defined ratio of diffused image variance to that of ini-
tial image variance. This ratio might be useful if we want
to compare various diffusion schemes. Its utility to pro-
vide a well-diffused image with all the important structure
cleaned but intact may be limited.
Under the CED process, the fingerprint image becomes

strongly coherent as the number of iterations increased.
In other words, as the scale increases, the image becomes



Khan et al. EURASIP Journal on Image and Video Processing  (2016) 2016:6 Page 8 of 20

Fig. 5 This graph shows the monotonic decreasing behavior of the
variance of the image for coherence enhanced diffusion (CED)

diffused with a corresponding change in its spatial dis-
tribution. Taking pt (x, y) = L(x,y;t)∑

x

∑
y
L(x,y;t) and C =

∑
x

∑
y
L (x, y; t), we get

Ht (L) = −
∑
x

∑
y

pt (x, y) log pt (x, y) . (17)

Now, we track the change in entropy with respect to
natural scale parameter τ = log t. The natural scale
parameter is defined in [28]. The entropy change is thus,

dHt (L)

dτ
= −

∑
x

∑
y

d
dτ

(
pt (x, y) log pt (x, y)

)
. (18)

After some mathematical manipulations, reach to the
equation

dHt (L)

dτ
= −

∑
x

∑
y

[
1 + log pt (x, y)

] d
dτ

pt . (x, y) .

(19)

Using chain rule τ = log t and dτ = 1
t dt

dHt (L)

dτ
= −

∑
x

∑
y

[
1 + log pt (x, y)

] (
d
dt

pt (x, y)
)
t.

(20)

Now, as pt (x, y) = L(x,y;t)∑
x

∑
y
L(x,y;t) = Lt(x,y)

C

dpt (x, y)
dt

= 1
C
dLt (x, y)

dt
(21)

dpt (x, y)
dt

= 1
C

∇ (D∇Lt (x, y)) (22)

dpt
dt

= 1
C

∇D∇Lt . (23)

The Eq. (20) lends itself now as
dHt
dτ

= −t
∑
x

∑
y

(
1 + log

Lt
C

)
.
1
C

∇D∇Lt (24)

dHt
dτ

= −t
∑
x

∑
y

(
1 − logC + log Lt

)
.
1
C

∇D∇Lt (25)

dHt
dτ

= − t
C

∑
x

∑
y

(
k + log Lt

)
.∇D∇Lt . (26)

The rate of change in the entropy for the linear isotropic
diffusion case is the special case of 26, and this happens
when the diffusion matrix D is replaced by a scalar dif-
fusivity, say c. Spatial entropy change for linear isotropic
diffusion process is given by

dHt
dτ

= − ct
C

∑
x

∑
y

(
k + log Lt

)
.∇2Lt . (27)

For both, anisotropic as well as isotropic cases, the
spatial entropy change equation contains the same con-
stant k = 1 − logC.
The same tests, as were performed earlier for lin-

ear isotropic diffusion process, are conducted for linear
anisotropic diffusion process. The test anisotropic image
for this purpose consists of three curves, as shown in
Fig. 6. At the heart of the anisotropic process is the
construction of diffusion matrix D. The diffusion matrix
handles steering the elliptical Gaussian to go around the
structure. The geometric visualization in the form of
ellipses corresponding to point-wise diffusion matrix is
displayed in Fig. 6, where it can be seen that they align
well with the local flow of the curve. The diffusion parallel
to the edges is enabled due to the large eigenvalue while

Fig. 6 Geometric interpretation of diffusion matrix. The figure shows
part of the anisotropic curve image. The diffusion matrix associated
with each pixel is depicted as ellipses on top of the image. It is
observed that ellipses are steered to follow with the curve flow
direction
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avoiding the cross-over edge problems due to small eigen-
values. The linear anisotropic diffusion character is made
evident by having constant eccentricity for all the ellipses
across the image. The term anisotropic used here is related
to changing direction of the ellipse at each pixel due to the
diffusion matrix eigenvector adaptability with the given
local structure. Therefore, with each iteration, the ellipse
does grow without changing the eccentricity ratio and for
a given diffusion time, the size of the ellipse remains con-
stant throughout the image. Since the major axis of the
ellipse is parallel to the edge of the curve, so no harm in
increasing it. The minor axis of the ellipse is aligned with
the width of the curve. So increasing the ellipse minor
axis will eventually make the ellipse protrude outside the
boundary of the curve, and the disturbed structure is
obtained, and that is precisely where the diffusion should
stop eventually.
First, linear anisotropic diffusion process was applied

to a clean curve image. The entropy and entropy change
graphs as depicted in Fig. 7b,c. Both graphs are smooth
and well-behaved, validating the notion that the linear
anisotropic diffusion process is a lot like their isotropic
counterparts. A prominent peak is located at τ = 4 in

the entropy change graph, representing the characteris-
tic width of the curves present in the image. By stopping
the diffusion process by that peak location, the diffused
image is shown in Fig. 7d. The image is largely undisturbed
with small diffusion effects at the boundaries and ends of
the curves. The quantitative measures, of sensitivity and
specificity, for the output image, are computed as 82 and
89%. The peak in entropy change graph, thus, presents
itself as a suitable stopping time for the linear anisotropic
diffusion process.
The experiment for linear anisotropic diffusion pro-

cess was also conducted for an extremely noise situation.
A Gaussian noise is added to the original curve image
such that the resulting SNR is lowered to become −10
dB. The noisy curve image is displayed in Fig. 8a. After
the completion of the linear anisotropic diffusion pro-
cess, the entropy change graph is obtained as depicted
in Fig. 8b,c, respectively. It is clearly observed that the
curve for entropy change is steeply coming down in the
beginning and then hits a bottom. After the minimum is
reached, it rises again to display a peak at the character-
istic width of the curves in the noisy image. The noise
can be largely curtailed by stopping the diffusion process

Fig. 7 Linear anisotropic diffusion process. a shows a flow-like test image having three black curves with a white background. The features present
in the image are elongated in shape with a constant width of two pixels. b shows the smooth spatial entropy graph resulting from diffusion process
with respect to the natural scale parameter. The entropy change with natural scale change is displayed in (c), where the peak corresponds to the
width of the curves. The diffused image resulting from stopping the diffusion process at the location of the peak in entropy change is shown in (d).
The diffused image is converted to the binary image using Otsu optimal threshold of 0.63, as shown in (e)
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Fig. 8 Linear anisotropic diffusion process for noisy image. a shows a flow-like noisy test image having three black curves with a white background.
The Gaussian noise is added to bring down the SNR of the resulting image to be −10 dB. b shows the smooth spatial entropy graph resulting from
diffusion process on the natural scale parameter. The entropy change with natural scale change is displayed in (c), where a distinct peak is still
observable. The diffused image resulting from stopping the diffusion process at the location of the peak in entropy change is shown in (d). The
diffused image is converted to binary image using Otsu optimal threshold of 0.55, as shown in (e)

at the peak. The diffused image stopped by the peak is
shown in Fig. 8d. The image does show a large smoothing
of the noise with minimum disturbance to the structure
of interest. Thresholding the image by Otsu method, a
final binarized image is obtained, as shown in Fig. 8e. The
quantitative measures of sensitivity and specificity for the
binarized output image are recorded as 75 and 84%.

6 Results and discussion for real fingerprint
images

This section deals with real fingerprint images. We look
into their acquisition process then process them for
uniform background and later investigate their spatial
entropy characteristic as the image evolves under linear
anisotropic process. The first test that we performed is to
check the anisotropic strength measure for the acquired
fingerprint. Figure 9 shows the results of the test. It is
observed that the regular ridge/valley pattern found in
the fingerprint image is largely anisotropic in nature. This
justifies the employment of linear anisotropic diffusion
process for smoothing these images.
The acquired fingerprint images often show important

illumination variations, poor contrast in some areas, and
gaps in ridge/valley regions. To reduce the illumination

imperfections and generate images more suitable for
enhancement and minutia extraction, a preprocessing
comprising the non-uniform illumination correction is
applied. It occurs due to the very process of scanning a
finger. The middle finger surface is thicker as compared
to the surrounding region. This results in blocking the
light in the middle while the outer surface is fairly highly
illuminated. The fingerprint scanner registers this uneven
illumination. Consequently, background variation will add
bias for different regions of the same image to disturb
the ridge/valley contrast. Since the ridge/valley pattern is
identified and classified by its gray-level profile, this effect
may worsen the performance of diffusion and disturb our
spatial entropy analysis. With the purpose of removing
this disturbing factor from our experimental analysis, a
homomorphic filtering approach is adopted. The process
is described below.
In basic terms, homomorphic filtering assumes that an

image can be represented in terms of product of illumina-
tion and reflectance. That is

L(x, y) = i(x, y) × r(x, y), (28)

where L(x, y) is the fingerprint image, i(x, y) is the back-
ground illumination image, and r(x, y) is the reflectance
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Fig. 9 Anisotropic strength measurement for real fingerprint images.
This figure shows an acquired digital fingerprint with local anisotropy
strength displayed as length of the needles on top of the image. We
observe a large presence of significant anisotropy in the image

image [29]. Reflectance r arises due to the object itself,
but the illumination image i is independent of the object,
is a pure representation of lighting conditions at the time
of the image capture. To compensate for the non-uniform
illumination, the illumination image part has to be made
constant. Illumination is assumed to be slowly varying
lending itself in the low-frequency region as compared
to the reflectance image that contains abrupt changes,
showing a considerable high-frequency attitude.
For implementing homomorphic filtering, we first

transform the multiplicative model of image formation to
additive model by moving to the log domain.

ln(L(x, y)) = ln(i(x, y)) + ln(r(x, y)). (29)

Then, a low-frequency filter is used with an appropriate
cutoff to get a background illumination image i(x, y) esti-
mate. The difference d(x, y) between original image L(x, y)
and background illumination i(x, y) is calculated for every
pixel,

d(x, y) = L(x, y) − i(x, y). (30)

To this respect, literature reports illumination-correction
methods based on the subtraction of the background illu-
mination image from the original image [30–32]. The
background image is shown in Fig. 10. After subtraction,
a grayish look image is obtained, as depicted in Fig. 10b.
Finally, an illuminated-corrected image is obtained by
transforming linearly new image pixels into the whole
range of possible gray levels [0–1] using the linear
stretch. Figure 10c shows the new image corresponding
to stretched and uniformly illuminated image. The pro-
posed illumination correction algorithm is observed to
reduce background intensity variations and enhance con-
trast in the middle region than the original fingerprint
image. The method was validated for all the images that
were processed in the database.
To validate the effect of the homomorphic filtering, the

histogram analysis is investigated before and after homo-
morphic filtering stage. Histogram of an image represents
the relative occurrences of the gray-level present in an
image. According to [29, 33], the non-uniform illumi-
nation will modify the histogram of an image in a way
that it can not be binarized by a single global threshold.
For this purpose, the Otsu method [34] is used, which
chooses the threshold to minimize the intraclass variance
of the background and foreground, to compute the binary
threshold for the original fingerprint and that of the uni-
formly illuminated image. The results are displayed in
Fig. 11.
The uniformly illuminated fingerprint image is now fed

to the linear anisotropic diffusion process. The image
went through diffusion evolution process from a small
scale τ = log(t) = −3 till tau = log(t) = 5. The nor-
mal width of the ridges was found to be 9, with half the
width equal to 4.5. The spatial entropy graph is depicted
in Fig. 12. We see a smooth curve with ever increasing
entropy values. The entropy change graph in Fig. 12b dis-
plays a clear peak at τ = log(t) = 1, that results in
t = 2.13. The scale value t in fingerprint images is linked
to the width of the ridges as proposed in [14]. By stopping
the process at τ = 1, a diffused image is obtained as shown
in Fig. 12c. If we let the diffusion process continue for long
time (τ = 5), we get a mean image as shown in Fig. 12d.
What remains to be tested is the comparison of entropy-

change based stopping criterion with that of correlation-
based method, presented in [35]. If the unknown additive
noise n is uncorrelated with the unknown signal u(t), it
could be reasonable to minimize the covariance of the
noise u(0) − u(t) with the signal u(t). The covariance
is represented by the correlation coefficient and is given
by,

corr (u (0) − u (t) , u (t))
= corr(u(0)−u(t),u(t))√

var(u(0)−u(t) )·var(u(t))
(31)
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Fig. 10 Non-uniform illumination correction. a shows an acquired digital fingerprint. b depicts the estimated illumination surface, clearly showing
non-uniform background lighting conditions. c is an output result after passing the image through homomorphic filtering operation and then
linearly stretched. We observe that illumination has been corrected with clear ridge/valley structure

Fig. 11 Validation test for homomorphic filtering output. a shows the binarization of an acquired digital fingerprint using the optimal Otsu method.
b depicts the binarization of the uniformly illuminated fingerprint with homomorphic filtering, also using the optimal Otsu method. We observe
that binarization results for filtering output shows all the regions with ridge/valley structure intact
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Fig. 12 Spatial Entropy for a real fingerprint image under linear anisotropic diffusion process. a displays spatial entropy graph of an acquired digital
fingerprint. b depicts the entropy-change graph with one clear peak. the peak goes well with half-width of the average ridge present in fingerprint
image. The diffused image obtained by peak of entropy-change is depicted in (c). While the image shown in (d) is the image we will ultimately get if
we let the diffusion go on for a long enough diffusion time

and choose the stopping time T so that the expression 31
is as small as possible.
Later on, the authors in [36] proposed to use the qual-

ity of the edges in the process of finding the optimal time
to stop the diffusion process. To assess the quality of our
fingerprint edge structures, the edge contrast measure is
used which is defined in [37]. The edge quality index is
referred to as the edge based contrast measure (EBCM).
The EBCM is based on the observation that human per-
ception mechanisms are very sensitive to contours (or
edges). The larger the width of the edge pixels, the larger
will be this quality index. In our diffusion process, the

edges are larger in width due to the poor image quality,
so this EBCM is larger at the beginning of the diffusion
process. After certain iterations, the smoothness of the
noise happens, and the edges improve with less width
and a lower value for the EBCM. After reaching a certain
minimum, the edges again starts to widen due to over-
smoothing, and the corresponding EBCM values increase.
The best stopping time could be the minimum of the
EPCM values, as shown in Fig. 13.
Image enhancement for fingerprint images is essentially

to raise the contrast of ridge/valley structure, such that
enhanced version is more suitable for binarization that
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Fig. 13 Comparison between spatial entropy-based and correlation-based stopping rule. a displays spatial entropy change graph of an acquired
digital fingerprint as black curve and correlation coefficient between (input noisy image - diffused image) and diffused image. b shows stopping the
diffusion process at the minimum of the correlation coefficient curve. The diffused image still shows signs of interrupted ridges

Fig. 14 Progression of diffusion for a fingerprint image. Image binarized using global threshold using the Otsu method with respect to various
locations of the entropy-change graph. a displays image at τ = −1.2, the location specified by the correlation method. Similarly, (b) at τ = 0.9, (c) at
τ =1, (d) at τ =1.1, (e) at τ = 1.4, and (f) at tau = 2. We observe that as the diffusion increases, the the gaps within ridges started to fill. However, after
a certain limit as τ = 1, the closer ridges started to get merged into one. The ellipse is drawn of the portion of the fingerprint to facilitate observation
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will eventually be used for automated identification sys-
tem. To perform the evaluation of the real fingerprint
image after diffusion, the third party minutia extractor as
provided in [38] is used. The noisy acquired images were
stopped at three different time instants due to correla-
tion method, EPCM, and the proposed entropy-change
based, and the resulting three output diffused images were
then compared quantitatively. Analysis of the diffused

image yields a list of candidate minutiae. However, due
to the use of non-optimal stopping time, there are usu-
ally a large proportion of false minutiae, i.e. points that
have been incorrectly identified as minutiae. This diffu-
sion process directly affects the binarization which creates
wrong minutiae, as shown in Fig. 14. Therefore, the total
number of candidate minutiae detected in three types of
diffused images indicate the relative degree of noisiness

Fig. 15 Comparison of fake minutia point of the proposed method with correlation-based and EBSM methods. a, (d), and (g) are the graph shows
the comparison of stopping time for correlation-based in green and proposed method in blue. b, (e) , (h) are the fingerprint images diffused and
stopped by the correlation-based optimal stopping method. c, (f), and (i) are the final optimal stopped images for the proposed method
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still present in them, and will cause false minutiae. Figure
15 depicts a comparison of fake minutiae of the pro-
posed method with correlation-based and EBSMmethod.
A Table 1 has been generated for the six test images from
the university campus students, that indicate that corre-
lation based stopping method and EPSM-based stopping
criterion had detected considerable more minutiae, indi-
cating the immature diffusion of the noisy input image.
The correlation-based stopping generated on the average
350 minutiae per image (4 times the ground truth image)
while EPSM provided 210 minutiae per image (2.4 times
the ground truth). The proposed entropy-change gener-
ated 145 minutiae per image (1.65 time ground truth).
Another set of experiments was conducted to assess

the suitability of proposed stopping criterion for some
extremely low-quality fingerprint images present in the
FVC2004 database to assess the ultimate strength of the
proposed stopping rule. One such challenging image is
displayed in Fig. 17c. The fingerprint shows broken ridges,
salt and pepper noise, non-uniform illumination, and on
top of it a dark square patch right at the center. The image
was preprocessed first with small median filter of size 3×3
to tackle salt and pepper noise, and was then made to go
through homomorphic filtering to eliminate to a larger
extent the non-uniform background variations.
After initial treatments, the image was passed on to

a linear diffusion process to join broken ridges while
avoiding the mixing of ridge/valley pattern. A modified
coherence enhancing diffusion (CED) as suggested earlier
in linear anisotropic section proves to be of little success
for diffusing low-quality fingerprints. This is due to the
finding that our earlier attempts at introducing constant
eigenvalues with CED process ( to transform CED into a
linear anisotropic process) seems to inadequate for low-
quality fingerprint image diffusions. The spatial entropy
curve was found to be increasing in the beginning but
show a dip in spatial entropy values towards the end (large
logarithmic scales). A search was conducted to look into
some recent robust variant of CEDs while dealing with
low-quality fingerprints. The search culminated into a

Table 1 A comparison. Total minutiae found by the detection
algorithm enhanced by edge-width-based, correlation-based,
and entropy-change-based. The sample images are used from
FVC2004 DB2_B 101_1 to 101_6

Edge width-based Correlation-based Entropy-change-based

Image1 220 367 155

Image2 200 333 135

Image3 222 370 150

Image4 208 330 140

Image5 224 380 160

Image6 206 320 130

new class of diffusion process that was developed specif-
ically for low-quality challenging fingerprints. The new
process deploys a precomputed orientation field to trans-
form the Coherence-enhancing diffusion process into that
of linear oriented diffusion process [39], much more
robust to the extremely noisy situations. The new pro-
cess was studied with special care for its spatial entropy
behavior while smoothing low-quality fingerprints. The
spatial entropy was found to be monotonically growing
quantity as a function of increasing logarithmic scale. This
desirable behavior was found to be consistent across many
database images that were tested here. The large part of
the stable behavior for entropy graph can be attributed
to the injection of precomputed orientation filed that was
extremely helpful to steer the diffusion matrix in right
direction in sensitive later stages of diffusion process,
where large scales were involved. Specifically, the linear
oriented diffusion process was adopted for experimenta-
tion here with two fixed eigenvalues as λ1 = 0.01 and
λ2 = 1 − 0.01. The diffusion matrix was constructed as
before:

d11 = λ1 cos2(θ) + λ2 sin2(θ), (32)
d12 = (λ1 − λ2) sin(θ) cos(theta), (33)
d11 = λ1 sin2(θ) + λ2 cos2(θ), (34)

but with one major change that is θ is now precomputed
orientation field from the use of directional filter bank
framework for the image [40]. The orientation field θ was
kept constant in the whole evolution process. The diffu-
sion process was evolved starting from scale τi = log(t =
exp(−3)) and reaching final scaleτf = log(t = exp(5.5))
(providing mean value image) with a step size of t =
exp(−3). The spatial entropy was computed along the way
and reported to be growing entity with steady value at the
end, as depicted in Fig. 16d. The entropy graph contains a
multitude of discontinuities corresponding to a small left-
over noise particles in the fingerprint after preprocessing.
The curve can be smoothed by fitting a piecewise spline
while caring for some real big discontinuities. To do so, a
smoothing spline function was fitted to the noisy entropy
curve with a coarser soothing parameter of value 0.95 on
a scale of [ 0, 1]. The entropy change curve is constructed
from fitted spline curve and is depicted in Fig. 16e. It
shows a number of peaks representing different struc-
tures dominating at different scales. There may well be
some small broken parts of otherwise long ridges. The last
peak at the farthest end represents the largest dominat-
ing structure that may be linked tom average ridge width
of the fingerprint. By stopping the linear diffusion process
at that peak τ = 3.2, the diffused image is displayed in
Fig. 16f. The uneven image contrast can be straightfor-
wardly improved using well-known block-based contrast
enhancement scheme such as contrast limited adaptive
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Fig. 16 Performance of proposed stopping rule for a low-quality image. A sample image from FVC2004 database is displayed in (a). Its non-uniform
illumination image is extracted as shown in (b). The (c) depicted the uniform image. Spatial entropy points for the uniform image are plotted in (d).
A piecewise smooth spline was fitted due to noisy nature of the entropy points, and subsequently, its derivative is computed as shown in (e),
proving a smoothed entropy-change curve with increasing logarithmic scale. The optimally diffused image stopped at the farthest peak in
entropy-change curve is displayed in (f). The contrast-adjusted image through linear stretch is shown in (g). Finally, a 9 × 9 block-based binarization
was used to come up with a clean binary image as depicted in (h)
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histogram equalization (CLAHE) [41], to provide evenly-
contrasted image, as in Fig. 16g. The contrast-adjusted
image was then binarized with a block-by-block process
to result in Fig. 16h. The binarized result shows a clear
fingerprint with ridge/valley structure largely intact (min-
imum mixing of nearby ridges) with greatly diminishing
the intensity of noise. Most of the genuine minutia points
(ridge ending and bifurcation points) are still valid and can
be easily detected by the subsequent extraction process.
To quantitatively assess the performance of proposed

stopping rule for image diffusion, a measure goodness
index (GI), was adopted from an earlier fingerprint image
enhancement [42]. This goodness index (GI) is defined as
follows:

GI =

r∑
i=1

qi
[
pi − ai − bi

]
r∑

r=1
qiti

, (35)

where, p represents the paired minutiae (between the
manually extracted and machine extracted), a represents
the missing minutiae, b represents the spurious minutiae
and t represents the true minutiae. The measure is sup-
pose to give a number between 0 and 1. This goodness

index is applied on Fig. 17c. The GI without enhance-
ment is found to be 0.34, with enhancing using CED [18]
is 0.45 and after applying the proposed method is 0.52.
A larger test is performed on the 40 images of FVC2000
DB4_B (101 to 105). The averaged GI without enhance-
ment comes out to be 0.26, with enhancing using CED [18]
is 0.37 and after applying the proposed method is 0.43.
The proposed stopping rule being an iterated process

can be analyzed with its computation complexity profile.
The stopping rule involves three nested loops. First one is
the do-while loop that let the process runs till it reaches
the farthest peak in the entropy change graph, and the
remaining two are FOR loops that span the dimensionality
of the fingerprint. Therefore, an estimate of the computa-
tional complexity associated with the proposed stopping
rule can be described as a productN×M×ITERATIONS,
where N and M represents the rows and columns of the
fingerprint and ITERATIONS are the count of repetitions
to reach the required peak. Since the peaks represent the
dominating structure, which is this case is the width of the
ridges, an experiment was conducted to see that linkage
more explicitly. A sequence of same dimension finger-
print images was created by increasing zoom values and
center cropping the resultant image. For each of these

Fig. 17 Linear relationship between stopping point and average ridge width. The figure shows the fitting of a linear curve through some discrete
points for the stopping point of the entropy-change versus logarithmic scale curve, corresponding to the furthest peak. For creating increasing
large ridge widths, the center-cropped zoomed images of same dimension are being employed. The figure shows the first and the last such
zoomed images. Figure (a) Shows the first zoomed image and (b) displays the last image in zoomed series. c gives a comparison of average ridge
width with Logarithmic scale for farthest peak in Entropy change
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images, an identical linear diffusion scheme with pre-
computed orientation filed was run to locate the desired
peak in their respective entropy-change graphs. A plot in
Fig. 17 is shown connecting logarithmic scale at which
the process stopped and the average width of the ridges
in the respective zoomed images. The graph in fig shows
the dots, obtained from this experiment, and were fitted
with a linear curve having 95% confidence interval. The
logarithmic scale, at which the diffusion process stopped,
in turn, can provide the number of iterations knowing the
step size involved in the diffusion process. Thus, given
dimension of the input fingerprint and an estimate of the
average ridge width, a reasonable guess at the compu-
tation complexity of the proposed stopping rule can be
reached.

7 Conclusions
In this paper, the entropy-change for an anisotropic dif-
fusion of a fingerprint image is investigated. a unique
peak is found, associated with blurring of the dominant
structure. This provides a reasonable stopping rule for the
anisotropic diffusion process, whose goal is to smooth the
image without disturbing the structural information. The
numerical results validated the existence of the bound-
ary between under-smooth and over-smooth regions of
anisotropic diffusion.
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