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High-performance on-road vehicle detection
with non-biased cascade classifier by
weight-balanced training
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Abstract

In this paper, we propose a cascade classifier for high-performance on-road vehicle detection. The proposed system
deliberately selects constituent weak classifiers that are expected to show good performance in real detection
environments. The weak classifiers selected at a cascade stage using AdaBoost are assessed for their effectiveness in
vehicle detection. By applying the selected weak classifiers with their own confidence levels to another set of image
samples, the system observes the resultant weights of those samples to assess the biasing of the selected weak
classifiers. Once they are estimated as biased toward either positive or negative samples, the weak classifiers are
discarded, and the selection process is restarted after adjusting the weights of the training samples. Experimental
results show that a cascade classifier using weak classifiers selected by the proposed method has a higher
detection performance.
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1 Introduction
Vehicle detection is a binary classification problem that
distinguishes vehicles of different colors and shapes from
cluttered backgrounds. Vehicle detection is employed in
driver assistance systems and in autonomous vehicles
[1, 2]. In surveillance systems that perform object detec-
tion using images from a static camera, differential im-
ages are used to locate the region of interest (ROI). In
on-road detection environments, the background of im-
ages captured in a moving vehicle is not fixed and
changes continuously. The ROI cannot be identified and
the whole region of an image should be searched to de-
tect vehicles. This means that a much larger number of
operations is required. In applications related to on-road
vehicle and transportation, driver safety is as important
as convenience; thus, a robust and real-time detection
system should be capable of providing an instant alarm
to the driver or system [1]. From the driver’s viewpoint,
a late alarm would, in effect, be equivalent to a detection
error. The system should give a warning to the driver as
early as possible and needs to detect vehicles in the
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distance. This requires increased image resolution and
makes the detection system more complex.
Radar sensors have been used for vehicle detection

[1, 3]. They can detect objects without complex computa-
tion, even under poor illumination conditions. However,
due to interference problems among sensors and poor lat-
eral resolution [4], passive sensors such as cameras have
been commonly employed for vehicle detection. Recently,
the part-based model approach proposed by Felzenszwalb
et al. [5] was applied to vehicle detection systems [6–8].
By detecting the parts of vehicles from images, their
model combines the detected parts to detect vehicles [6].
While the part-based vehicle model improves detection
performance, its computation complexity increases due to
its algorithmic structure. Neural networks have emerged
as a powerful machine learning model and have shown
outstanding performance in detection systems [9, 10].
However, they require a tremendous amount of comput-
ing time, which makes it difficult to apply them to the de-
tection of multiple moving objects in real time.
The cascade classifier proposed by Viola and Jones

[11] has been commonly employed for real-time vehicle
detection. The cascade classifier achieves both high pro-
cessing speed and detection performance by employing
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simple classifiers at early stages to reject non-objects
and complex classifiers at later stages. However, the de-
tection rate is decreased as the stage proceeds in the
cascade, and there is a large gap between the observed
detection rate and the theoretical one. This is caused by
biased classifiers. A classifier may be biased by unbal-
anced training samples due to a disparity between the
difficulty of positive samples and that of negative ones.
Each stage of a cascade classifier is trained by AdaBoost
with training samples prepared using bootstrapping.
Bootstrapping collects samples misclassified at a previ-
ous stage. It makes negative samples more difficult than
positive ones as the stage proceeds; thus, training comes
to focus more on negative samples.
Several methods have been proposed to improve the

detection performance of cascade classifiers by assigning
larger weights to positive samples. Most of these studies
assumed that AdaBoost has a faulty weight update and
modified it to assign larger weights to positive samples.
These works improved detection performance for face
detection; however, they failed to provide the weight
values to be assigned to the positive samples.
In this paper, a new cascade classifier is proposed, in

which the weak classifiers selected at each stage are con-
firmed for their effectiveness in the detection process
using another sample set (reservoir set). The weights of
these samples are updated by applying the selected weak
classifiers using the same process in AdaBoost. The dis-
parity, between the total weight assigned to the positive
and negative samples in the reservoir set, is regarded as
the degree of weight unbalance in the positive/negative
training samples and bias in the selected weak classifiers.
To generate non-biased classifiers, the disparity should
be reduced. If the initial weight of the training samples
is adjusted prior to training, the unbalance in the train-
ing samples is expected to be reduced and the weak clas-
sifiers selected after retraining are expected to be less
biased. To determine the initial weight, the ratio of total
weight assigned to the positive to the negative samples
in the reservoir set is used as a reference value. This
process is continued at each stage until non-biased weak
classifiers are selected.
The rest of this paper is organized as follows: Section 2

presents the AdaBoost algorithm, the conventional cas-
cade classifier, and asymmetric boosting. Section 3 de-
scribes the proposed system and its algorithmic flow.
Experimental results showing the performance of the pro-
posed system are presented in Section 4. Conclusions are
drawn in Section 5.

2 Background and related works
In this section, a background is provided that is required
for the understanding of the proposed system. The Ada-
Boost and conventional cascade learning algorithms are
briefly described. Asymmetric boosting is then presented
together with related research works.

2.1 AdaBoost and cascade learning
AdaBoost is known to provide a principled and highly
efficient mechanism for feature selection [12, 13]. In
AdaBoost, a strong classifier is constructed by iterating
rounds of weak classifier selection and sample weight
updating. The weights are decreased for correctly classi-
fied samples and increased for incorrectly classified ones
so that AdaBoost can focus on difficult samples [14, 15].
Freund and Schapire proved that the training error of a
strong classifier approaches zero exponentially in the
number of rounds [16, 17].
Let xi ∈ X = {x1, x2, …, xN} be an image in image set X,

and yi ∈ Y = {+1, − 1} be a class label of xi, where N is
the number of images. To initialize the weight of xi prior
to training, it is assigned as in (1)

wi 0ð Þ ¼
1=2⋅Nþ ; if yi ¼ þ1
1=2⋅N −

; if yi ¼ −1
;

�
ð1Þ

where N+ and N_ are the numbers of positive and nega-
tive samples in X, respectively.
A weak classifier is selected from set W as in (2),

where wi (t) denotes the weight of sample xi at round t.

ht ¼ arg min
hj∈W

errhj ; where errhj ¼
XN
i¼1

wi tð Þ⋅ yi−hj xið Þ�� ��
ð2Þ

The error of each weak classifier is calculated, and the
one with the minimum error, ht, is selected. After a weak
classifier is selected, the weights of the samples are up-
dated by applying it as in (3). Zt+1, as shown in (4), is a
normalization factor that makes the sum of wi(t + 1) 1.

wi t þ 1ð Þ ¼ wi tð Þ⋅ exp −yi ⋅ ht xið Þð Þ
Ztþ1

ð3Þ

Ztþ1 ¼
XN
i¼1

wi tð Þ⋅ exp −yi⋅ht xið Þð Þ ð4Þ

A strong classifier is constructed through a linear
combination of the selected weak classifiers as shown in
(5), where T and at are the numbers of weak classifiers
and the confidence level of ht (xi), respectively.

H xið Þ ¼ sign
XT
t¼1

αtht xið Þ
 !

ð5Þ

In the conventional cascade classifier, simple classifiers
are employed at early stages to reject the negative sam-
ples, whereas complex classifiers are used at later stages
to achieve a high detection rate [18, 19]. The structure
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of the cascade reflects the fact that within any single
image, the overwhelming majority of sub-windows are
negative [11]. The bootstrapping procedure [20] is
employed to collect negative samples in the training cas-
cade. Each stage uses misclassified samples at its prece-
dent stage by bootstrapping its training samples. Later
stages are trained by more difficult negative samples,
and the classifiers become more complex.
Given a trained cascade, its detection rate (D) and false

positive rate (F) are calculated as in (6) and (7), respect-
ively [11]. Here, k denotes the number of stages in a cas-
cade. di and fi are the detection rate and false positive
rate of the i-th stage, respectively.

D ¼
Yk
i¼1

di ð6Þ

F ¼
Yk
i¼1

f i ð7Þ

For example, to achieve a detection rate of 0.95 and a
false positive rate of 6 × 10−6 by a 10-stage cascade, the
performance goals of each stage include a detection rate
of 0.995 (0.99510 ≈ 0.95) and a false positive rate of 0.3
(0.310 ≈ 6 × 10−6). The amount of operations in a detection
cascade is estimated by the number of features (ni) and
the positive rate (pi) of the i-th stage as shown in (8).

N ¼ n1 þ
Xk
i¼2

ni
Y
j<i

pj

 !
≈n1 þ

Xk
i¼2

ni
Y
j<i

f j

 !
ð8Þ

The positive rate (pj), which is the rate of true and
false positives against the number of samples, can be ap-
proximated to fj, as positive samples are extremely rare
in detection environments [11].

2.2 Asymmetric boosting
Asymmetric boosting has been proposed by several re-
searchers [12, 17, 21–24]. It assigns larger weights to
positive samples than negative ones to overcome the
problem that false positives and false negatives are
treated without distinction in AdaBoost. According to
Viola and Jones, one limitation of AdaBoost arises in the
rare occurrence of positive samples [9]. The impact of
misclassified positive samples is much higher than that
of misclassified negative ones, and rejected positive sam-
ples cannot be restored in a cascade classifier. This ne-
cessitates that false negatives be minimized. Various
researchers have proposed methods to improve the per-
formance of the AdaBoost algorithm through asymmet-
ric weight assignment. The weight update of AdaBoost
was modified so that false negatives are assigned larger
weight than false positives [12, 17, 21, 22, 24].
Viola and Jones [12] applied asymmetry to AdaBoost
by assigning k times larger weight to false negatives than
false positives. Fan et al. [21] proposed AdaCost, a cost-
sensitive extension of AdaBoost, in which false negatives
are assigned larger weights than false positives and true
negatives are assigned smaller weights than true posi-
tives. Ting [22] proposed a method that assigns larger
weights to false negatives based on a cost function that
reflects the importance of misclassified samples. While
these methods achieve higher detection performance,
the weight update is heuristic, making it difficult to pre-
dict performance prior to in-field use.
Landesa-Vázquez and Alba-Castro [23] showed that

asymmetric boosting can be achieved by assigning a lar-
ger initial weight to positive samples. Given an asym-
metry parameter of γ, the initial weight of the i-th
sample, wi, is calculated as in (9).

wi ¼
γ=N þ ; if yi ¼ þ1
1−γð Þ=N −

; if yi ¼ −1

�
ð9Þ

They did not suggest any method that derives an optimal
asymmetry parameter of γ for performance improvement.

3 Proposed system
In the cascade learning process, samples are prepared at
each stage with bootstrapping. The bootstrapping pro-
cedure collects samples, which consist of misclassified
examples of its previous stage as well as additional ones
prepared for training. It makes negative samples more
difficult. The training cascade is set to focus on negative
samples as the stage goes on, and the selected weak clas-
sifiers become well-trained to negative samples rather
than positive ones. This fact can be confirmed by ob-
serving the detection rate at each cascade stage of an ob-
ject detector based on the Viola and Jones algorithm, as
illustrated in Fig. 1. Although each stage was trained to
achieve the performance goal for detection rate (0.998),
there is a gap in the observed detection rate, and the gap
becomes larger as the stage proceeds. This is due to the
increased difficulty of classifying negative samples. To
balance the difficulty between the positive and negative
samples, larger weights should be assigned to the posi-
tive samples. In this work, the weights are adjusted so
that the total weight of the positive samples is compar-
able to that of the negative samples.
The proposed system takes the form of the conventional

cascade. The difference is in the structure and operation
of the constituent stages, especially in the training process.
Each stage of a conventional cascade performs feature
(weak classifier) selection. Additionally, the proposed cas-
cade performs an evaluation of the selected weak classi-
fiers to assess their effectiveness. Although the selected
weak classifiers might achieve the performance goal, they



Fig. 1 Training goal and observed detection rate of each stage
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were trained using the samples collected by bootstrapping.
Therefore, the weak classifiers tend to become biased as
unbalance between the positive and negative samples in
the training set increases. In detection environments, false
negatives are much more critical than false positives, while
objects are less frequent than non-objects. Thus, non-
biased weak classifiers are desired. The estimated bias in
the selected weak classifiers is used to adjust the weights
in the training samples. By adjusting the initial weight of
the training samples prior to training, the unbalance be-
tween positive and negative samples in the training set is
reduced, and the weak classifiers selected by using weight-
adjusted samples are less biased. In the proposed system,
this is handled as follows: By applying weak classifiers to
another set of samples, the reservoir set, the weights of
these samples are updated with the same process that up-
dates the weights of the samples in training. The degree of
weight disparity in the positive and negative samples is es-
timated with the weight ratio, which is the ratio of the
total weight assigned to positive to negative samples. In
this research, the weight ratio is used as a reference to esti-
mate to what extent the selected weak classifiers are
biased to positive or negative samples. The training is then
restarted using the training samples whose weights are ad-
justed by the weight ratio. If the positive and negative
samples in the training set are balanced, the weight ratio
converges to 1. This process prevents the detection rate
by the selected weak classifiers from decreasing in later
stages; thus, the detection performance of the cascade
classifier improves.
Figure 2 shows the algorithmic flow of the proposed

system for training a cascade stage. First, the weights of
the samples in the training set are initialized and a cas-
cade stage is trained using the provided samples. In
training, weak classifiers that can achieve the given per-
formance goal are selected. The selected weak classifiers
may satisfy the performance goal for the training set, but
they may not be efficient when used for detecting vehi-
cles. The samples in the training set are collected with
bootstrapping, and the training samples are unbalanced.
In the proposed system, to estimate bias, the efficiency
of the selected weak classifiers is assessed by applying
them to different samples called the reservoir set. The
weights of the samples in the reservoir set are initialized
and updated by applying the selected weak classifiers.
The weights updated by applying (t + 1)-th weak classi-
fier, w

0
j t þ 1ð Þ and y

0
j denote the j-th sample and its class

sample in the reservoir set, respectively.

w
0
j t þ 1ð Þ ¼ w

0
j tð Þ⋅ exp −y

0
j⋅ht x

0
j

� �� �
ð10Þ

M denotes the number of weak classifiers selected at a
cascade stage, and the updated weight of j-th sample in
the reservoir set, w

0
j, is calculated as (11).

w
0
j ¼ w

0
j 0ð Þ⋅ exp −y

0
j⋅
XM−1

t¼0

ht x
0
j

� � !
ð11Þ

Equation (12) shows that the sums of the weights
assigned to positive and negative samples are S+ and S_,
respectively, where N' denotes the number of samples in
the reservoir set.

Sþ ¼
XN 0

j¼1

w
0
j if y

0
j ¼ þ1

S− ¼
XN 0

j¼1

w
0
j if y

0
j ¼ −1

ð12Þ

The weight ratio is obtained as in (13).

WR ¼ Sþ
�
S−

ð13Þ

If WR converges to 1, the training will be terminated
and proceed to a subsequent stage. Otherwise, the
weights of the samples in the training set are adjusted by
WRcp, the cumulated product of WR, using (14), and all
the selected weak classifiers will be discarded.

wi 0ð Þ ¼
WRcp= 1þWRcpð Þ⋅Nþ

; if yi ¼ þ1
1= 1þWRcpð Þ⋅N −

; if yi ¼ −1

(
ð14Þ

The training for the corresponding stage is restarted.
This process is repeated until the weight ratio converges
to 1 or there is no further improvement.



Fig. 2 Algorithmic flow of the proposed system
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Fig. 3 False alarm rate of classifiers at the end of each stage Fig. 5 ROC curves of classifiers trained by different algorithms
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4 Experimental results
To show the effectiveness of the proposed system, a
series of experiments were performed. For the positive
samples, 26,000 vehicle images were obtained by crop-
ping the images captured on the road with a camera
mounted on vehicle. All of the vehicle samples were
resized to 20 × 20 pixels. For each stage of the cascades,
6,000 samples were used for training. A half of re-
maining 20,000 samples were used as the reservoir set,
and the other half were used to evaluate the detection
performance of the weak classifiers employing the pro-
posed system. Over 500,000 negative samples were pre-
pared by randomly cropping 1,085 background images
that did not contain any vehicle objects. These samples
Fig. 4 Detection rate of classifiers at the end of each stage
were included in the training set, the test set, and the
reservoir set.
Vehicle detection systems were trained by three differ-

ent approaches: the conventional cascade learning ap-
proach, the asymmetric boosting approach, and the
proposed system. Each stage in the cascade classifiers
was trained to achieve a detection rate of 0.998 and a
false alarm rate of 0.5. The detection system employing
the asymmetric boosting approach was trained by
assigning the initial weights to the training samples such
that the sum of the positive sample weights is two times
and four times greater than that of the negative sample
weights. In the proposed system, the weight is assigned
by extracting the latent asymmetry at each stage in the
cascade classifier. The termination condition of each
stage is set to have the weight ratio of 1.
Figures 3 and 4 show the detection rate and the false

alarm rate of the cascade classifiers trained employing the
different approaches evaluated at the end of each stage,
respectively. The cascade classifier trained employing
the conventional cascade learning approach is labeled
“Viola&Jones”, and those trained employing the asym-
metric boosting approach with the asymmetric weights
of 2 and 4 are labeled “AsymBoost(W = 2)” and “Asym-
Boost(W = 4)”, respectively. Generally, cascade classifier
characteristics entail that the detection rate and false
alarm rate decrease as the stage moves forwards. The
Table 1 Comparison of number of operations

Methods Number of operations Comparison w/ Viola&Jones

Viola&Jones 1,049,758 –

AsymBoost(W = 2) 904,741 −13.8 %

AsymBoost(W = 4) 945,914 −9.9 %

Proposed 859,821 −18.1 %
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detection rate and false alarm rate of the cascade with
15 stages was approximately 0.97 (0.99815 ≈ 0.97) and
3 × 10−5 (0.515 ≈ 3 × 10−5), respectively. While all the ap-
proaches achieved the performance goal for false alarm
rate, they failed to achieve the detection rate goal. The
detection rate of the proposed system decreased slowly
as the stages proceeded when compared with the
others. With less stages, the cascade classifier based on
the proposed system can achieve the required detection
performance.
Figure 5 shows the receiver operating characteristic

(ROC) curves of different classifiers trained in the cas-
cade consisting of 12 stages. The cascade classifier
employing the proposed system shows significantly im-
proved performance when compared with the others.
Table 1 shows the number of operations required for

rejecting 100,000 negative sub-windows. It is calculated
by using the false alarm rate and number of features, as
shown in (8). The number of operations is also reduced
in the proposed system compared to the other ap-
proaches. This is due to the fact that the number of fea-
tures used in the early cascade stages is smaller, even
though more features are used in all the cascade stages
of the proposed system in the detection environments.

5 Conclusions
To obtain a high-performance cascade classifier, weak
classifiers constituting each stage should be selected con-
siderately, even with increased training time. Weak classi-
fiers not biased toward either positive or negative samples
are desired. This is due to the fact that false negatives are
much more critical than false positives while objects are
less frequent than non-objects in detection environments.
The selected weak classifiers in conventional cascade clas-
sifiers are biased, and they lead to a gap between perform-
ance goal and observed performance at each stage.
In this paper, a cascade classifier is proposed in which the

selected weak classifiers are confirmed for their effective-
ness in detection process. The main factor contributing to
biased weak classifiers is unbalanced training samples pre-
pared by the bootstrapping procedure. To assess the bias of
the selected weak classifiers, they are applied to the samples
in the reservoir set to update their weights. The disparity
between the total weight of positive and negative samples
in the reservoir set indicates the degree of unbalance in the
positive and negative training samples. If they are found to
be unbalanced, the weights of the training samples are ad-
justed and the weak classifier selection process is restarted.
Experimental results confirm the effectiveness of the pro-
posed cascade classifier in vehicle detection by showing an
improved performance over conventional ones.
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