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Abstract

Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer
vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced
computation complexity. SNN have been successfully used for image classification. They provide a model for the
mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical
models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a
novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time
dependent plasticity (STDP) learning is presented. Frequency spike coding based on receptive fields is used for data
representation; images are encoded by the network and processed in a similar manner as the primary layers in visual
cortex. The network output can be used as a primary feature extractor for further refined recognition or as a simple
object classifier. Results show that the model can successfully learn and classify black and white images with added
noise or partially obscured samples with up to ×20 computing speed-up at an equivalent classification ratio when
compared to classic SRM neuron membrane models. The proposed solution combines spike encoding, network
topology, neuron membrane model and STDP learning.

Keywords: Spiking neural networks - SNN; STDP; Visual receptive fields; Spike coding; Embedded system;
Artificial neuron; Image classification

1 Introduction
In the last years, the popularity of spiking neural net-
works (SNN) and spiking models has increased. SNN are
suitable for a wide range of applications such as pattern
recognition and clustering, among others.There are exam-
ples of intelligent systems, converting data directly from
sensors [1,2], controlling manipulators [3] and robots [4],
doing recognition or detection tasks [5,6], tactile sensing
[7] or processing neuromedical data [8]. Different neu-
ron models exist [9] but their computational complexity
and memory requirements are high, limiting their use
in robotics, embedded systems and real-time or mobile
applications in general.
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Existing simplified bio-inspired neural models [10,11]
are focused on spike train generation and real neuron
modeling. These models are rarely applied in practical
tasks. Some of the neuronal models are applied only for
linearly separable classes [12] and focus on small network
simulation.
Concerning hardware implementation, dedicated ASIC

solutions exist such as SpiNNaker [13], BrainScaleS [14],
SyNAPSE [15] or others [16], but they are targeted for
large-scale simulations rather than portable, low-power
and real-time embedded applications. The model we
propose is mainly oriented for applications requiring
low-power, small and efficient hardware systems. It can
also be used for computer simulations with up to ×20
speed-up compared to classic SRM neuron membrane
model. Nowadays, due to a continuous decrease in price
and increase in computation capabilities, combined with
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the progress in high-level hardware description language
(HDL) synthesis tools, configurable devices such as FPGA
can be used as efficient hardware accelerators for neu-
romorphic systems. A proposal was made by Schrauwen
and Van Campenhout [17] using serial arithmetic to
reduce hardware resource consumption, but no train-
ing or weight adaptation was possible. Other solution,
presented by Rice et al. [18] used full-scale Izhikevich neu-
rons with very high resource consumption (25 neurons
occupy 79% of logic resources in a Virtex4 FPGA device),
without on-line training.
Computation methods used for FPGA dramatically dif-

fer from classic methods used in Von Neumann PCs or
even SIMD processing units like GPUs or DSPs. Thus,
the required SNN hardware architecture must be differ-
ent for reconfigurable devices, opening new possibilities
for computation optimization. FPGA are optimal for mas-
sive parallel and relatively simple processing units rather
than large universal computational blocks as is in case of
SNN, including lots of multiply-add arithmetic blocks and
vast quantities of distributed block RAM [19]. This work
describes computation algorithms properly modeling the
SNN and its training algorithm, specifically targeted to
benefit from reconfigurable hardware blocks. The pro-
posed solution combines spike encoding, topology, neu-
ronmembranemodel and spike-time dependent plasticity
(STDP) learning.

2 Spiking neural networks model
Spiking neural networks are considered to be the third
generation of artificial neural networks (ANN). While
classic ANN operate with real or integer-valued inputs,
SNN process data in form of series of spikes called
spike trains, which, in terms of computation means that
a single bit line toggling between logical levels ‘0’ and
‘1’ is required. SNN are able to process temporal pat-
terns, not only spatial, and SNN are more computation-
ally powerful than ANN [20]. Classic machine learning
methods perform poorly for spike coded data, being
unsuitable for SNN. As a consequence, different training
and network topology optimization algorithms must be
used [9,21].
The SNN model used in this work is the feed-forward

network, each neuron is connected to all the neu-
rons in the next layer by a weighted connection, which
means that the output signal of a neuron has a differ-
ent weighted potential contribution [22]. Input neurons
require spike trains and input signals (stimuli) need to be
encoded into spikes (typically, spike trains) to further feed
the SNN.
An approximation to the functionality of a neuron is

given by electrical models which reproduce the function-
ality of neuronal cells. One of the most common mod-
els is the spike response model (SRM) due to the close

approximation to a real biological neuron [23,24]; the
SRM is a generalization of the ‘integrate and fire’ model
[9]. The main characteristic of a spiking neuron is the
membrane potential, the transmission of a single spike
from one neuron to another is mediated by synapses at the
point where neurons interact. In neuroscience, a trans-
mitting neuron is defined as a presynaptic neuron and
a receiving neuron as a postsynaptic neuron. With no
activity, neurons have a small negative electrical charge
of −70 mV, which is called resting potential; when a sin-
gle spike arrives into a postsynaptic neuron, it generates
a post synaptic potential (PSP) which is excitatory when
the membrane potential is increasing and inhibitory when
decreasing. The membrane potential at an instant is cal-
culated as the sum of all present PSP at the neuron inputs.
When the membrane potential is above a critical thresh-
old value, a postsynaptic spike is generated, entering the
neuron into a refractory period when the membrane
remains overpolarized, preventing neurons from generat-
ing new spikes temporarily. After a refractory period, the
neuron potential returns to its resting value and is ready
to fire a new spike if membrane potential is above the
threshold.
The PSP function is given by Equation 1, where τm

and τs are time constants to control the steepness of rise
and decay, and t is the time after the presynaptic spike
arrived.

PSP(t) = e(
−t
τm ) − e

( −t
τs

)
, (1)

Figure 1A shows different PSP as a function of time (ms)
and weight value, being excitatory in case of red and blue
lines, and inhibitory in case of a green line.
Let us consider the example shown in Figure 1B where

spikes from two presynaptic neurons trigger an excitation
PSP in a postsynaptic neuron. The spike train generated
by the presynaptic neurons will change the membrane
potential calculated as the sum of individual PSPs gen-
erated by incoming spikes. When membrane potential
reaches the threshold, the neuron fires a spike at the
instant ts. Graphically it is shown on Figure 1C. If we
denote the threshold value as υ, the refractory period η

is defined according to Equation 2 [24]. This equation
describes a simple exponential decay ofmembrane charge,
being H(t) the Heavyside step function, H(t) = 0, for
t < 0 and H(t) = 1 for t > 0; τr is a constant defining the
steepness of the decay.

η(t) = −υe
(

t
τr

)
H(t) (2)

Being t(g)i the time when a spike is fired by a presynaptic
neuron, this spike changes the potential of a postsynaptic



Iakymchuk et al. EURASIP Journal on Image and Video Processing  (2015) 2015:4 Page 3 of 11

Figure 1 Postsynaptic potential function (PSP) with weight dependency. (A) Red line is for ω = 1, green for ω = −1 and blue is for ω = 0.5.
(B) Two neurons (yellow) generate spikes, which are presynaptic for next layer neuron (green). (C)Membrane potential graph for green neuron.
Presynaptic spikes raise the potential; when the potential is above threshold, a postsynaptic spike is generated and the neuron becomes
overpolarized.

neuron j at time t and the time difference between these
two events is t − t(g)i . The travelling time between two
neurons for a spike is defined by Equation 3 where dji is
the delay of synapse value.

�tji = t − t(g)i − dji (3)

When a sequence of spikes Fi =
{
t(g)i , . . . , tKi

}
arrives

to a neuron j, the membrane potential changes accord-
ing to the PSP function and refractory period, and thus,
an output spike train is propagated by neuron j as Fj ={
t(f )j , . . . , tNj

}
. The equation for the j-th neuron potential

Pj is obtained according to Equation 4, where the refrac-
tory period is also considered.

Pj(t) =
K∑
i

∑
t(g)i ∈Fi

wijPSP(�tji) +
∑
t(f )j ∈Fj

η
(
t − t(f )j

)
(4)

These equations define the SRM, which can be mod-
eled by analog circuits since the PSP function can be
seen as a charging and discharging RC circuit. How-
ever, this model is computationally complex when used
in digital systems. We propose to use a simplified model

Figure 2Membrane potential dynamics of a single neuron with simplified membrane model. After several incoming spikes, the membrane
potential surpasses threshold and neuron fires a postsynaptic spike. For better visibility, neuron potential is increased twice for one TU after spiking.
During refractory period, neuron does not change its potential. For visibility, neuron potential is shown with offset +100.
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Figure 3 STDP curve used for learning. This type of curve has stronger depression value than potentiation, increasing specificity. A+ = 0.6, A− =
0.3, τ+ = 8, τ− = 5.

with linear membrane potential degradation with similar
performance and learning capabilities as the classic SRM.

3 Simplified spiking neural model
The classic leaky integrate-and-fire (LIF) model [9] and
its generalized form (SRM) are widely used as a neuron
model. However, LIF spiking neuron models are compu-
tationally complex since non-linear equations are used to
model the membrane potential. However, simplification
might be defined in order to reduce computational com-
plexity by proposing a simplified membrane model. Let us
describe the membrane potential Pt as a function of time
and incoming spikes. Time units are counted in discrete
time form as the model is intended to be used in digital
circuits. For an n-input SNN, during the non-refractory
period, each incoming spike Sit , i =[1..n] increases the
membrane potential Pt by a value of synapse weight Wi.
In addition, the membrane potential is decreasing by a
constant value D, every time instant. This process can be
described by Equation 5, which corresponds to a simpli-
fied version of Equation 4 in a LIF model.

Pt =

⎧⎪⎪⎨
⎪⎪⎩
Pt−1 +

n∑
i=1

WiSit − D, if Pmin < Pt−1 < Pthreshold

Prefract, if Pt−1 ≥ Pthreshold
Rp, if Pt−1 ≤ Pmin

(5)

Thus, instead of an initial postsynaptic potential ramp
in the spike response model, the instant change of mem-
brane potential allows a neuron to fire immediately in the
next clock cycle after the spike arrives.

At each time instant t, if membrane potential Pt is big-
ger than the resting potential Rp = 0, it degrades by a
fixed value Pt = Pt−1 −D. The resulting PSP function will
be a saw-like linear function, which is easily implemented
by a register and a counter, contrary to classic non-linear
PSP models based on look-up tables or RAM/ROM for
non-linear equations. The value of constant D is cho-
sen relevant to the maximum presynaptic spike rate and
the number of inputs. An example of membrane poten-
tial dynamics is shown in Figure 2. When Pt > Pthreshold,
the neuron fires a spike, the membrane potential becomes
Pt = Prefract (resting potential) and a refractory period

Figure 4Off-centered and on-centered neural receptive field and
corresponding spike trains. Source: Millodot: Dictionary of Optometry
and Visual Science, 7th edition. ©2009 Butterworth-Heinemann.
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Figure 5 Patterns for network training of 10 hand written digits (Semeion dataset).

counter starts. Instead of a slow repolarization of mem-
brane after the spike, the neuron is blocking its inputs for
time Trefract, and holds membrane potential at Prefract level
during this time. To avoid strong negative polarization of
membrane, its potential is limited by Pmin. Despite the
model of the neuron is linear, the network can produce
non-linear response by tuning the weights of previous
layer inputs.

3.1 Spike-time dependent plasticity learning
STDP is a phenomenon discovered in live neurons by
Bi and Poo [25] and adapted for learning event-based
networks. STDP learning is an unsupervised learning
algorithm based on dependencies between presynap-
tic and postsynaptic spikes. In a given synapse, when
a postsynaptic spike occurs in a specific time window
after a presynaptic spike, the weight of this synapse

Figure 6 Image to spike train encoding dataflow. Input image (A) is processed with RFs of encoding neurons (B), and the result (C) is received by
encoding neurons, generating the spike trains (D)where spike frequency is proportional to the intensity of corresponding pixel and its surroundings.
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Figure 7 Three receptive fields on the 10 × 10 input space. Blue
field corresponds to the neuron (A) (3,3 in input matrix). Green field
corresponds to neuron (B) (6,5) and orange corresponds to neuron
(C) (10,10). Note that only active part or RF is shown.

is increased. If the postsynaptic spike appears before
the presynaptic spike, a decrease in the weight occurs
assuming that inverse dependency exists between pre-
and postsynaptic spikes. The strength of the weight
change is a function of time between presynaptic and

postsynaptic spike events. The used function is shown on
Figure 3.
For STDP learning, The classic asymmetric reinforce-

ment curve is used, taking time units (TUs) as argument.
The learning function is described in Equation 6 where
A− and A+ are constants for negative and positive values
of time difference �t between presynaptic and postsy-
naptic spikes, determining the maximum excitation and
inhibition values; τ−, τ+ are constants characterizing the
steepness of the function.

STDP(�t) = �w =
⎧⎨
⎩
A− exp∗ (

�t
τ−

)
, if �t ≤ −2

0, if − 2 < �t < 2
A+ exp∗ (

�t
τ+

)
, if �t ≥ 2

(6)

The learning rule (weight change) is described by
Equation 7. The weights are always limited by wmax ≥
w ≥ wmin. The desired distance between presynaptic and
postsynaptic spike is unity and the STDPwindow is [2..20]
TUs in both directions. The weight change rate σ controls
the weight adaptation speed.

wnew =
{
wold + σ�w(wmax − wold), if �w > 0
wold + σ�w(wold − wmin), if �w ≤ 0 (7)

Since unsupervised learning requires competition, lat-
eral inhibition was introduced and thus, the weights of

Figure 8 Network structure used in the simulation. Input space of 10 × 10 is converted into a spike train by a matrix of 10 × 10 input neurons
with 5 × 5 receptive field. The generated spike train is fed to the hidden layer of 9 simplified LIF neurons with training. Lateral inhibition connections
are shown in red. Not all connections between the input space and encoding layer are shown.
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the winner neurons (first spiking neurons) are increased
while other neurons suffer a small weight reduction value.
Tests showed that depressing the weights of the non
firing neurons decrease the amount of noise in the net-
work. The depression of synapses that do not fire at all
was added in order to eliminate ‘mute’ synapses (inac-
tive synapses), reducing the network size and improving
robustness against noise. This training causes a side effect
since, for weight increase, spike-intense patterns require
a higher membrane threshold, avoiding the patterns with
low spike intensity to be recognized by the network. This
is solved by introducing negative weights, preventing neu-
rons from reacting on every pattern and increasing the
specificity of classifier.

4 Visual receptive fields
The visual cortex is one of the best studied parts of the
brain. The receptive field (RF) of a visual neuron is an

area of the image affecting the neural input. The size
and shape of receptive fields vary depending on the neu-
ron position and neuron task. A variety of tasks can be
done with RFs: edge detection, sharpening, blurring, line
decomposition, etc. In each subsequent layer of the visual
cortex, receptive fields of the neurons cover bigger and
bigger regions, convolving the outputs of the previous
layer.
Mammalian retinal ganglion cells located at the cen-

ter of vision, in the fovea, have the smallest receptive
fields, and those located in the visual periphery have the
largest receptive fields [26]. The large receptive field size
of neurons in the visual periphery explains the poor spatial
resolution of human vision outside the point of fixation,
together with photoreceptor density and optical aberra-
tions. Only a few cortical receptive fields resemble the
structure of thalamic receptive fields, some fields have
elongated subregions responding to dark or light spots,

Figure 9Membrane potentials of neurons during training. At the beginning, neuronal reactions are chaotic. The training leads to sharp
individual neuronal reactions, neurons become specific to one pattern. The most intensive weight shaping occurs between 3,000 and 4,000 TUs.
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while others do not respond to spots at all. In addition, the
implementation of a receptive field is a first stage of sparse
coding [27] where the neurons are reacting to shapes,
not single pixels. The receptive field model proposed
here shows a good approximation to the real behavior of
primary visual cortex.

4.1 Receptive field neuron response
The neurons in the receptive or sensory layer generate a
response RRF defined by Equation 8, as the calculation of
Frobenious inner product of the input image S with the
receptive field F of the neuron and calculation of the sum
of input stimuli. This operation is similar to normal 2D
convolution, the only difference that in convolution kernel
is rotated by 180◦.

RRF =
I∑
i

J∑
j
SijFij (8)

The matrix F defines a receptive field (RF) of the neu-
ron, being I the X axis and J the Y axis sizes of input image
S. While the shape and size of receptive field can be arbi-
trary, in the mammalian visual cortex, there are several
distinct types of receptive fields. Two common types are
off-centered and on-centered as shown in Figure 4. These
RFs can be used as line detectors, small circle detectors
or perform basic feature extraction for higher layers. Sim-
ple classification tasks such as the inclination of a line,
circle or non-circle object and others can be performed
by this type of single-layer receptive field neurons. Once
input and weights are normalized, the maximum excita-
tion of a certain output neuron will be achieved when
the input exactly matches the weight matrix, providing
pattern classification when weights are properly adjusted.
Sensory layer neurons generate spikes at a frequency

proportional to their excitation. As the frequency of a fir-
ing neuron cannot be infinite, the maximum firing rate is
limited, and thus, the membrane potential is normalized.

Figure 10 Spike rate per sample before and after training. Blue bars are spike rate before training and red ones represent the spike rate after
the training.
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The spiking response firing rate (FRn) is described by
Equation 9, where RPmax is the defined minimum refrac-
tory period and max(R) is the maximum possible value of
membrane potential.

FRn =
{ 1

RPmax∗ RRF
max(R)

, if RRF > 0

0, if RRF ≤ 0
(9)

5 Software simulation and results
A subset of Semeion handwritten digit dataset [28] was
used to test the new algorithms and proof the validity
of simplifications. Matlab software was used. The dataset
consists on 1,593 samples of black and white images of
handwritten digits 0 to 9 (160 samples per digit), 16 × 16
pixels size as shown in Figure 5. The training set consisted
of 20 samples for each class (each digit) with 5% of uniform
random noise added to every sample fed into the SNN.

5.1 Image encoding
In the described experiment, a 5 × 5 on-centered recep-
tive field was used. This receptive field was weighted in a
[−0.5,..,1] range according to Manhattan distance to the
center of the field. A 16 × 16 pixel input is processed by
a 16 × 16 encoding neuron layer (256 neurons), obtain-
ing a potential value for each input which will be further
converted into spikes. The coding process using the 5 ×
5 receptive field is shown in Figure 6A,B. The neural
response, shown in Figure 6C is the membrane potential
map, further converted into spike trains whose spiking
frequency is proportional to such potential, as shown in
Figure 6D. The same procedure is repeated for all input
neurons. The receptive fields of the neurons are over-

Figure 11 Neurons weights representation after STDP training.
Ten out of sixteen neurons learnt to discriminate all ten numbers in
the SEMEION dataset.

Figure 12MSE for single pattern during learning. Red line
represents simplified model, and blue represents classic SRM. It can
be seen that, after 5,000 TU, neuron becomes overtrained for both
models.

lapping; an example of three receptive fields is shown in
Figure 7 where, in case C, a part of the RF lay outside
the input space, and thus, that part is not contributing to
membrane potential.

5.2 Network architecture
The proposed SNN consists of 2 layers, an encoding layer
of 256 neurons with an on-centered 5 × 5 pixel RF and
second layer of 16 neurons using the simplified SRM.
Experimental testing showed that, for proper competitive-
ness in the network, the number of neurons should be
at least 20% greater than the number of classes and thus,
16 neurons were implemented. If the number of neurons
is insufficient, only the most spike-intensive patterns are
learnt. Each sample was presented to the network during
200 time units (TUs). With a refractory period of encod-
ing neurons of 30 TUs, the maximum possible amount of
spikes is 200/30 = 6. STDP parameters for learning were
A+ = 0.6,A− = 0.3, τ+ = 8, τ− = 5. The maximum
weight change rate σ was fixed to 0.25 ∗ max(STDP) =
0.25 ∗ 0.25 = 0.0625.
Instead of using a ‘winner-takes-all’ strategy, a modifi-

cation is done by using a ‘winner-depresses-all’ strategy,
where the first spiking neuron gets a weight increase and
all other neuron potentials are depressed by 50% of the

Table 1 Simulation speed of classic and simplified
networks

Classic (s) Simplified (s)

5 classes, 8 neurons, 15,000 time units 48.1 2.25

6 classes, 9 neurons, 15,000 time units 48.9 2.4

6 classes, 16 neurons, 15,000 time units 66.1 3.9

6 classes, 100 neurons, 15,000 time units 137.1 13.03

12 classes, 50 neurons, 96,000 time units 1327.12 80.28

All data are obtained on synthetic datasets taking the mean values of five runs.
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spike threshold value. Thus, strongly stimulated neurons
can fire immediately after the winner, which adds plastic-
ity to the network. The whole network structure is shown
on Figure 8.
For the classic SRM algorithm, a table-based PSP

function of 30 points was used (simplified model uses
constant decrease as PSP and does not require table-based
functions). For both SRM and simplified models, STDP
function was also table-based with 30 positive and 30 neg-
ative values. All algorithms (classic and simplified model)
were written using atomic operations without the usage
of Matlab vector and matrix arithmetic. Such coding style
provides more accurate results in performance tests when
modeling hardware implementation.

5.3 Results
In order to prove noise robustness, input spike trains were
corrupted by randomly inverting the state of 5% from all
spike trains. Thus, some spikes were missing and some
other random spikes were injected into the spike trains.
Five training epochs were run before the evaluation. The
implemented network successfully learned all patterns. In
Figure 9, the membrane potential change is shown, hav-
ing small values at the beginning. During the training, the
membrane potential becomes more and more polarized
with strong negative values on the classes that are not rec-
ognized by the selected neuron. It can also be appreciated
that six neurons (numbered 8,10,13,14,15,16) remained
almost untrained, with random weights.
Training evolution can be observed by the spike rate

diagrams shown in Figure 10. Each graph represents one
neuron, with classes along X axis. Before training, every
neuron is firing in several classes, and after the train-
ing, each neuron has a discriminative high spike rate only
in one class. As a result, the final weight maps of neu-
rons become similar to the presented stimuli as Figure 11
depicts. The successful separation of patterns 2 to 5 and
1 to 6 proves that a network can solve problems with
partially overlapping classes. The performance of learn-
ing between classic SRM and simplified SRM models can
be measured with the mean square error (MSE) for nor-
malized weights after training. The training error for a
single pattern (class 0) can be seen in Figure 12. The graph
shows very similar learning dynamics and performance of
both models. Starting from 5,000 TU, both models tend to
increase the error showing over-training.
For comparing time of simulation, three synthetic

datasets from Semeion samples with 5, 6 and 12 classes
were prepared (12 classes dataset as digits 1 and 0 were
represented with 2 classes each). Every class was repeated
30 times to test different network sizes (8, 9, 16 and 50
SNN neuron size in hidden layer were tested). Time of
Matlab simulation in Table 1 shows an improvement over
20 times when comparing the simplified and classic SRM.

Simulation was done on a 64-bit OS system with 6 GB of
RAM and an Intel i7-2620M processor.

6 Conclusions
In this paper, we describe a simplified spiking neuron
architecture optimized for embedded systems implemen-
tation, proving the learning capabilities of the design. The
network preserves its learning and classification prop-
erties while computational and memory complexity is
reduced dramatically - by eliminating the PSP table in
each neuron. Learning is stable and robust, the trained
network can recognize noisy patterns. A simple, yet effec-
tive visual input encoding was implemented for this net-
work. The simplification is beneficial for reconfigurable
hardware systems, keeping generality and accuracy. Fur-
thermore, slight modifications would allow to be used
with Address-Event Representation (AER) data protocol
for frameless vision [29]. The proposed system could be
further implemented in FPGAs for low-power embedded
neural computation.
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