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Abstract 

In this paper, we concentrate on a non-orthogonal multiple access (NOMA)-enabled 
UAV data collection network for Internet of Things devices (IoTDs), where a unmanned 
aerial vehicle (UAV) is deployed as an aerial base station. During its flight period, 
the UAV can collect data from IoTDs and take advantage of the simultaneous wire-
less information and power transfer technology to charge the batteries of IoTDs. With 
the aid of NOMA, spectrum efficiency has been improved. We aim to prolong the life-
time of the IoT network, via jointly optimizing the UAV trajectory, the time allocation 
for information communication and wireless power transfer, the IoTDs’ transmit power, 
as well as the IoTDs’ group scheduling for NOMA. Then, we use the block coordinate 
decent and successive convex approximation techniques to tackle the non-convexity 
of the formulated problem. Numerical results show that the proposed solution 
increases the residual energy of the IoTDs, thus prolonging the lifetime of the network.

Keywords:  UAV-assisted data collection, Energy maximization, Trajectory optimization, 
Resource allocation

1  Introduction
As an emerging technology, the Internet of Things (IoT) is expected to offer promising 
solutions to transform the operation and role of many existing industrial systems such 
as transportation systems and manufacturing systems [1]. As the basis of IoT applica-
tions, data collection has always been one of the most important issues for IoT to resolve 
for the following reasons. First, the conventional way of data collection relies heavily 
on ground infrastructures which cost relatively high; second, with limited energy, IoT 
devices (IoTDs) can hardly adapt to long-term work and third, under the condition of 
large number of IoTDs, the conventional orthogonal multiple access (OMA) may result 
in low spectrum efficiency because of the limited communication resources.

Recently, unmanned aerial vehicle (UAV) has raised great attention and been widely 
used in IoT due to its high possibilities of line-of-sight (LoS) air-to-ground communication 
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links and fully controllable mobility. However, the lifetime of IoT is usually limited by the 
energy availability of IoTDs. In this case, simultaneous wireless information and power 
transfer (SWIPT) is proposed and plays a key role in IoTDs with limited energy, since it 
takes full advantages of radio signals to achieve both information-transmitting and energy-
transferring simultaneously [2]. Thus, many scholars introduce SWIPT into UAV-enabled 
IoT networks to improve the IoT lifetime. In [3], the authors utilize the UAV as a mobile 
data collector for sensor nodes to prolong the network lifetime, and the maximum energy 
consumption of all sensor nodes is minimized. In [4], the authors concentrate on leverag-
ing UAVs to realize energy-transferring and information-transmitting simultaneously in the 
IoT. The power allocation and trajectory optimization problem for UAV-enabled SWIPT in 
IoT is investigated.

However, in the above works, in the case of a large number of IoTDs and a wide range of 
services, the low spectrum efficiency problem still needs to resolved.

In another aspect, the non-orthogonal multiple access (NOMA) technique is proposed 
as a promising technology to improve spectrum efficiency and support massive access [5]. 
NOMA allows multiple users reuse the same resource block to superpose their signals in 
the power domain, and take advantage of successive interference cancelation (SIC) tech-
nology to decode the signal. Many works try to introduce NOMA into UAV-assisted com-
munication systems to improve the spectrum efficiency of the wireless communication 
between UAV and IoTDs. In particular, in [6], all the users are served at the same time with 
different allocated power levels. In [7], the authors divide all IoTDs into two groups and 
allow two IoTDs from different groups to be served at the same channel using NOMA. 
IoTDs at different channels are served with OMA. However, the prior work has not taken 
into account the limited energy problem of IoTDs and the short lifetime problem of the 
IoT network. The above works show the potential advantage of applying NOMA in UAV-
assisted data collection networks, where a large number of IoTDs have the need for data 
collection.

In this paper, we study a UAV-enabled IoT network where a UAV is deployed to use 
SWIPT technology to collect data from IoTDs and charge the batteries of all IoTDs to 
improve the residual energy of them with the aim of prolonging the IoT network lifetime. 
Considering that large number of IoTDs and large range of services may lead to the low 
spectrum efficiency of the wireless communication between UAV and IoTDs, we introduce 
NOMA into the IoT network and serve multiple IoTDs with the same resource block in 
the power domain. We aim to maximize the minimum residual energy of IoTDs, via jointly 
optimizing UAV trajectory, transmit power, time scheduling and NOMA group schedul-
ing. To tackle the non-convexity of the formulated problem, we propose a suboptimal solu-
tion by utilizing the block coordinate descent (BCD) and successive convex approximation 
(SCA) techniques. Numerical results show that our scheme can critically improve the resid-
ual energy of IoTDs compared with the benchmark scheme.

The rest of this paper is organized as follows: Sect. 2 presents the system model and prob-
lem formulation. Section 3 describes the proposed optimization algorithm, while numerical 
results are discussed in Sect. 4. Section 5 provides conclusions.



Page 3 of 16Du et al. J Wireless Com Network  (2023) 2023:92	

2 � Methods
2.1 � General form of the UAV trajectory planning problem

The main research content of UAV trajectory planning is to optimize the trajectory of 
the UAV from the start point to the end point in a given task scenario by taking advan-
tages of its high mobility and combining some strategies, such as resource allocation and 
user scheduling, while meeting the hardware limitations of the UAV and the actual task 
scenario constraints, so as to obtain the optimal system performance.

Therefore, the UAV trajectory planning problem can be modeled as an optimization 
problem under multiple constraints. Through mathematical modeling of optimization 
objectives, decision variables and actual scenario constraints, we can obtain the opti-
mal UAV trajectory and other strategies by solving the optimization problem. We denote 
u(t) as the trajectory variable and o(t) as the other decision variables within the entire 
flight time t ∈ [0,T ] . The UAV trajectory planning problem can be represented by a 
mathematical model as follows: 

 where f (u(t), o(t)) represents the objective function to be optimized. It is usually an 
indicator function that reflects the communication performance of the system, such 
as throughput, system energy efficiency, etc., or some UAV indicators that need to be 
optimized, such as task completion time, energy consumption, etc. In addition, fi(u(t)) 
represents constraints that only act on UAV trajectory variables, gi(o(t)) represents con-
straints that only act on other decision variables and hi(u(t), o(t)) represents coupling 
constraints that act on both the UAV trajectory and other decision variables.

2.2 � The UAV trajectory discretization method

In general, the variables of continuous time UAV trajectory planning problem are infi-
nite dimensional. In order to transform this problem into an optimization problem with 
finite variables, it is necessary to discretize the UAV trajectory variables and other time-
varying variables. The basic idea of this method is to divide the continuous trajectory 
variable u(t) into a finite number of trajectory sequences {u[n]}Nn=1 , and the UAV has a 
duration in each trajectory segment. At present, one of the main trajectory discretiza-
tion methods is time discretization method.

When the entire flight time T of UAV is determined, the time discretization method 
can be used to deal with the continuous time variable. Specifically, the entire flight time 
[0, T] is divided into N sub-slots, and the duration of each sub-slot is δ . In this way, the UAV 
trajectory variable u(t) , which was originally based on continuous time representation, 
can be reformulated as a combination of N small line segments {u[n]}Nn=1 . The distance 

(1a)min
u(t),o(t)

f (u(t), o(t))

(1b)s.t. fi(u(t)) ≥ 0, i = 1, 2, 3, . . . ,m,

(1c)gi(o(t)) ≥ 0, i = 1, 2, 3, . . . ,m,

(1d)hi(u(t), o(t)) ≥ 0, i = 1, 2, 3, . . . ,m.
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interval of the UAV in two consecutive time slots should satisfy the following constraint: 
u[n] − u[n− 1] ≤ �max , where �max represents the maximum distance of the UAV in two 
consecutive time slots.

In order to ensure that the channel gain between the UAV and the ground communica-
tion nodes remains nearly unchanged in any time slot n, �max must meet �max ≤ H and 
δVmax ≤ �max , where H and Vmax represent the flying altitude the maximum flying speed 
of the UAV, respectively. Also, the theoretical value of N must meet N ≥ [TVmax

�max
] to ensure 

that the velocity vector and acceleration vector of the UAV remain unchanged in the same 
sub-slot n.

2.3 � Optimization algorithms of UAV trajectory planning problem

Since the UAV trajectory planning problem is usually a non-convex problem which is dif-
ficult to solve optimally, two practical algorithms have been proposed to solve this problem, 
namely, block coordinate descent (BCD) algorithm which is often used to solve multiple 
variables optimization problems and successive convex approximation (SCA) algorithm 
which is often used to solve non-convex problems [8].

The basic idea of BCD algorithm is to deal with multiple variables in an optimization 
problem in blocks, and split the original problem into multiple sub-problems of corre-
sponding variable blocks [9]. Each time the sub-problem of one variable block is optimized, 
the other variable blocks remain constant. The local optimal solution of the original prob-
lem is obtained by optimizing the sub-problems alternately.

For example, we want to jointly optimize the UAV trajectory and power allocation 
problem, where u[n] represents the trajectory sequence after time discretization of UAV 
trajectory variable u(t) , and p[n] represents the transmission power variable after time 
discretization, h(u[n], p[n]) represents the coupling constraints of the two decision vari-
ables. It is complicated to solve this problem directly, so we first split the original problem 
into two independently optimized sub-problems according to the optimization variables, 
namely, the sub-problem of optimizing UAV trajectory and the sub-problem of optimizing 
power allocation. Then, fix the values of one sub-problem, solve another sub-problem to 
get the optimal solution and vice versa. The two sub-problems are iterated alternately until 
they converge to a suboptimal solution of the original problem.

The main idea of SCA technology is that for some local points given in each iteration, the 
non-convex target/constraint in the original problem can be approximately transformed 
into the corresponding convex target/constraint by using convex function property, so that 
an effective suboptimal solution of the original problem can be obtained by iteratively solv-
ing a series of convex problems after the approximate transformation [10]. For example, 
considering a simplified UAV trajectory planning problem, 

 where u[n] represents the UAV trajectory sequence, f (u[n]) represents the objective 
function and fi(u[n]) represents a series of constraints acting on the UAV trajectory 
sequence. Suppose that there is a non-convex function of the optimal variable u[n] in 

(2a)min
u[n]

f (u[n])

(2b)s.t. fi(u[n]) ≤ 0, i = 1, 2, 3, . . . ,m,
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fi(u[n]) , the problem is a non-convex problem which is difficult to solve. Then, we can 
use SCA technique to solve this problem.

Specifically, for a local point u(l)[n] given at the lth iteration of the optimization 
process, a convex upper bound of the non-convex function fi(u[n]) needs to be found 
first,

We can obtain this convex upper bound by using the first-order property of concave 
functions, that is, the value of any concave function fconcave(y) is less than the value of its 
first-order Taylor expansion at any point,

Then, we substitute the non-convex function fi(u[n]) by its convex upper bound 
f
up
i (u[n]) , the original problem can be transformed into a new standard convex function, 

 which can be solved by existing convex optimization tools, i.e., CVX directly.

3 � System model and problem formulation
As shown in Fig.  1, we consider a NOMA-enabled UAV data collection network 
where a single UAV is deployed as an aerial base station to simultaneously collect 
data from K IoTDs, which are denoted as K � {1, 2, . . . ,K } during its flight period. We 
assume that the size of data that need to be collected from each IoTD is C bits.

(3)fi(u[n]) ≤ f
up
i (u[n])

(4)fconcave(y) ≤ fconcave(x)+∇fconcave(x)(y− x).

(5a)min
u[n]

f (u[n])

(5b)rms.t. f
up
i (u[n]) ≤ 0, i = 1, 2, 3, . . . ,m,

Fig. 1  A NOMA-enabled UAV data collection scenario. Red line—wireless power transfer—the wireless 
power transfer period,—UAV charges the batteries of IoTDs and blue line—wireless information—the 
wireless information transfer period,—transfer—UAV collects data from IoTDs
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Without loss of generality, we consider a 3D Cartesian coordinate system where the 
horizontal coordinate of IoTD k is fixed at wk = [xk , yk ]

T , k ∈ K . The UAV trajectory 
needs to satisfy the following constraint:

which implies that the UAV needs to return to its initial location by the end of each 
period T. We assume that the UAV flies at a constant altitude denoted as H, and 
its time-varying horizontal coordinate at time insatant t ∈ [0,T ] is denoted by 
q(t) = [x(t), y(t)]T . To make the problem more tractable, we divide the flight period T 
into N time slots with each time slot δ = T

N  . Thus, UAV trajectory can be approximated 
by a N two-dimensional sequence q[n] = [x(n), y(n)]T , n ∈ N � {1, 2, . . . ,N } . In prac-
tice, the trajectory of UAV is also subject to the maximum speed constraints

where Vmax is the maximum speed of UAV.
During its flight period, the UAV takes advantage of SWIPT to transfer information 

and energy simultaneously. Each time slot with the length of δ is divided into two period, 
namely, wireless power transfer (WPT) period and wireless information transfer (WIT) 
period. During the WPT period, UAV charges the batteries of IoTDs where the initial 
energy storage of IoTD k is denoted as Einit

k  , and during the WIT period, UAV collects 
data from IoTDs. We assume that the proportion of time slot n which is assigned to 
WPT period is ρ[n] , where ρ[n] ∈ [0, 1].

3.1 � Channel model

We introduce NOMA into the network and divide IoTDs into M NOMA groups, with 
each group possess D = K

M IoTDs.1 IoTDs within the same NOMA group transmit data 
to UAV non-orthogonally over the same frequency resource blocks (RBs). Different 
NOMA groups operate on different frequency RBs which are orthogonal to each other. 
It is assumed that the total bandwidth of system is W Hz, and each NOMA group can 
acquire FmW0 Hz, where W0 =

W
M  and Fm denote the amount of IoTDs whose channel 

power gain are not zero within the NOMA group m ∈ M � {1, 2, . . . ,M} . We define 
the group scheduling of group m at time slot n as gm[n] � {gm,1[n], . . . , gm,D[n]} , where 
gm,d[n] ∈ K, ∀m, n, ∀d ∈ D � {1, . . . ,D} . We assume that in each time slot, different 
NOMA groups cannot contain the same IoTD, and each IoTD must be served, which 
yields the following constraints:

For simplicity, it is assumed that the communication links from UAV to IoTDs are domi-
nated by LoS links, where the channel quality depends only on the UAV-IoTD distance. 

(6)q[1] = q[N + 1] = qI ,

(7)�q[n+ 1] − q[n]�2 ≤ (Vmaxδ)
2, ∀n ∈ N ,

(8)
gm1,d1 [n] �= gm2,d2 [n], ∀m1,m2, d1, d2, n,

m1 �= m2, d1 �= d2.

1  For simplicity, in this paper, we assume that K is divisible by M; otherwise, we can add several virtual IoTDs with zero 
channel power gain.
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Thus, the channel power gain from UAV to IoTD k at time slot n follows the free-space 
path loss model, which can be expressed as follows:

where β0 is the channel power gain at the reference distance of 1m.
In the uplink, according to SIC, the receiver first decodes the signal of IoTD 

whose channel power gain is stronger and treat other signals of IoTDs whose 
channel power gain are weaker as interference. Without loss of generality, for 
the UAV-IoTD channels related with group m at time slot n, we assume that 
hgm,1[n][n] ≥ hgm,2[n][n] ≥ · · · ≥ hgm,D[n][n] . Thus, the achievable rate for IoTD 
k = gm,a[n] at time slot n can be presented as [11]

where Pk [n] denotes the transmit power of IoTD k at time slot n, and N0 denotes Gauss-
ian noise power. Based on the previous settings, for each time slot n with a length of δ , a 
proportion with a length of ρ[n]δ is assigned for wireless power transfer, and the remain-
ing period with a length of (1− ρ[n])δ is assigned for information transmission. There-
fore, the amount of data which is collected from IoTD k by UAV is Rk [n](1− ρ[n])δ . To 
guarantee each IoTD can finish uploading all the data successfully, we must have

3.2 � Energy model

Based on the mentioned above, the length of the WPT period at time slot n is ρ[n]δ , 
during which the UAV transfers wireless power to IoTDs and charge their batteries. 
The energy harvested by IoTD k at time slot n can be expressed as follows:

where η ∈ [0, 1] denotes the energy conversion efficiency of the receivers at IoTDs, 
and P0 denotes the transmit power of UAV. Thus, by the time slot n, the total energy 
harvested by IoTD k can be represented as follows: n

i=1 E
charge
k [i] . Meanwhile, at 

time slot n, IoTD k needs to take a certain amount of energy to transfer information, 
which can be expressed as follows: Pk [n](1− ρ[n])δ . Thus, before the WIT period of 
the time slot n, the total amount of energy which IoTD k takes to transfer information 
is 
∑n−1

i=1 Pk [i](1− ρ[i])δ . To ensure IoTD k has enough energy to transmit information 
during the remaining of time slot n, we must have

(9)hk [n] =
β0

�q[n] − wk�
2 +H2

,

(10)Rk [n] =FmW0 log2











1+
Pk [n]hk [n]

D
�

i=a+1

Pgm,i[n][n]hgm,i[n][n] + N0dmW0











,

(11)
N
∑

n=1

Rk [n](1− ρ[n])δ ≥ C , ∀k .

(12)E
charge
k [n] = ηP0hk [n]ρ[n]δ,
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By the end of flight period, the residual energy of IoTD k can be written as follows:

3.3 � Problem formulation

Our objective is to maximize the minimum residual energy of all IoTDs, via jointly 
optimizing UAV trajectory, transmit power allocation of IoTDS, time scheduling and 
NOMA group scheduling. For notation brevity, we define transmit power allocation of 
IoTDs variable set as P = {Pk [n], ∀k , n} , time scheduling variable set as ρ = {ρ[n], ∀n} 
and NOMA group scheduling variable set as G = {gm[n], ∀m, n} . We aim at maximizing 
the minimum residual energy of all IoTDs. By defining α = mink Ek , such an optimiza-
tion problem can be formulated as follows: 

where Pmax denotes the maximum power that IoTDs can use to transmit information. 
Constraints (15b) represent the maximum IoTDs transmit power constraint. Note that 
the problem (P1) is complex and non-convex due to the nonconvexity of constraints (8), 
(11) and (13), it is extremely difficult to be solved by utilizing existing convex optimiza-
tion method.

4 � Problem solution
Solving problem ( P1 ) is challenging since it is a non-convex problem. In this section, 
we propose an iterative algorithm to solve the non-convex problem ( P1 ) by utilizing 
block coordinate decent (BCD) and successive convex approximation (SCA) techniques. 
Specifically, we use BCD and split the optimization variables of ( P1 ) into four blocks, 
denoted as {P,α}, {ρ,α}, {q,α} and {G} . Based on the previous settings, we can decom-
pose ( P1 ) into four sub-problems, as discussed in the following.

4.1 � Sub‑problem 1: IToDs transmit power optimization

For any given {q, ρ,G} , the IoTDs transmission power allocation of problem ( P1 ) can be 
optimized by solving the following problem:

(13)
E
init
k

+

n
∑

i=1

E
charge
k

[i] −

n−1
∑

i=1

Pk [i](1− ρ[i])δ

≥ Pk [n](1− ρ[n])δ, ∀n, k .

(14)Ek = Einit
k +

N
∑

n=1

E
charge
k [n] −

N
∑

n=1

Pk [n](1− ρ[n])δ.

(15a)
(P1) : max

q,P,ρ,G
α

rms.t. Ek ≥ α, ∀k ,

(15b)0 ≤ Pk [n] ≤ Pmax, ∀k , n,

(15c)
0 ≤ ρ[n] ≤ 1, ∀n,

(6), (7), (8), (11), (13),
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However, problem ( P2 ) is still non-convex due to the non-convex constraint (6). Note 
that the left-hand side of constraint (6), i.e., Rk [n] can be written as a difference of two 
concave functions with respect to the P , i.e.,

where Řk [n] = log2

(

∑d
i=a+1 Pgm,i[n][n]hgm,i[n][n] + N0dmW0

)

.

To handle the non-convex constraint (11), we apply SCA to approximate Řk [n] with 
a convex function in each iteration. We define Pr � {Pr

k [n], ∀k , ∀n} as the given IoTDS 
transmit power in the r-th iteration. Recall that any concave function is globally upper-
bounded by its first-order Taylor expansion at any point. Therefore, we have the follow-
ing convex upper bound at the given point Pr

k [n]

where Fm,i[n] =
hgm,i [n]

[n]

d
∑

j=a+1

Pr
gm,j [n]

[n]hgm,j [n]
[n]+N0dmW0

.

With any given local point Pr and (17), constraint (11) can be approximated as

, and problem ( P2 ) can be approximated as the following problem:

Problem ( P3 ) is a convex problem, and we can solve it with existing convex optimization 
method.

4.2 � Sub‑problem 2: time scheduling optimization

For any given {q,P,G} , the time scheduling of problem ( P2 ) can be optimized by solving 
the following problem:

Since problem ( P4 ) is a standard linear programming, we can easily solve it with existing 
convex optimization method.

(P2) :max
P,α

α

s.t. (11), (13), (15b), (15a).

(16)Rk [n] = dmW0

[

log2

(

d
∑

i=a

Pgm,i[n][n]hgm,i[n][n] + N0dmW0

)

− Řk [n]

]

,

(17)

Řk [n] ≤ log2

(

d
∑

i=a+1

Pr
gm,i[n]

[n]hgm,i[n][n] + N0dmW0

)

+

d
∑

i=a+1

Fm,i[n](Pgm,i[n][n] − Pr
gm,i[n]

[n]) � Řub
k [n],

(18)

N
∑

n=1

dmW0[log2

(

d
∑

i=a

Pgm,i[n][n]hgm,i[n][n] + N0dmW0

)

− Řub
k [n]](1− ρ[n])δ ≥ C , ∀k

(P3) :max
P,α

α

s.t. (13), (15b), (15a), (18).

(P4) :max
ρ,α

α

s.t. (13), (11), (15c), (15a).
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4.3 � Sub‑problem 3: UAV trajectory optimization

For any given {P, ρ,G} , the UAV trajectory of problem (P2) can be optimized by solving 
the following problem:

Problem ( P5 ) is still non-convex due to the non-convex constraints (11), (13) and (15a). 
As discussed in Sect. 3.1, we utilize SCA for trajectory optimization. To this end, Rk [n] 
in constraint (11) can be written as follows:

where R̂k [n] = log2(
Pk [n]β0

�q[n]−wk�
2+H2 +

d
∑

i=a+1

Pgm,i [n]
[n]β0

�q[n]−wgm,i[n]
�2+H2 + N0dmW0).

By introducing slack variables S � {Sk [n] = �q[n] − wk�
2, ∀k , ∀n} , constraint (11) can 

be written as follows:

, and problem ( P5 ) can be formulated as follows:

To tackle the non-convexity of constraints (13), (15a), (20) and (21), we approximate 
them with convex functions in each iteration. We define qr � {qr[n], ∀n} as the given 
UAV trajectory in the r-th iteration. Although hk [n] is not convex with resect to q[n] , it 
is covex with respect to �q[n] − wk�

2 . Recall that any convex function is globally lower-
bounded by its first-order Taylor expansion at any point. Therefore, we have the follow-
ing convex lower bound at the given point qr

By substituting ĥlbk [n] for hk [n] in (13), we can approximate (13) as the following concave 
constraint:

(P5) :max
q,α

α

s.t. (6), (7), (11), (13), (15a).

(19)Rk [n] = dmW0

[

R̂k [n] − log2

(

d
∑

i=a+1

Pgm,i[n][n]β0

�q[n] − wgm,i[n]�
2 +H2

+ N0dmW0

)]

,

(20)

N
∑

n=1

dmW0[R̂k [n] − log2

(

d
∑

i=a+1

Pgm,i[n][n]β0

Sgm,i[n][n] +H2
+ N0dmW0)](1− ρ[n]

)

δ ≥ C ,

(21)

(P6) :max
q,α,S

α

s.t. Sk [n] ≤ �q[n] − wk�
2, ∀k , n,

(6), (7), (13), (15a), (20).

(22)
hk [n] ≥

β0

�qr[n] − wk�
2 +H2

−
β0(�q[n] − wk�

2 − �qr[n] − wk�
2)

(�qr[n] − wk�
2 +H2)2

� ĥlbk [n].

(23)
Einit
k +

n
∑

i=1

ηP0h
lb
k [i]ρ[i]δ −

n−1
∑

i=1

Pk [i](1− ρ[i])δ

≥ Pk [n](1− ρ[n])δ, ∀n, k .
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Also, by substituting ĥlbk [n] for hk [n] in (15a), we can approximate (15a) as the following 
concave constraint

R̂k [n] in constraint (20) is convex with respect to �q[n] − wk�
2 . Therefore, we have the 

following convex lower bound at the given point qr

where Ar
k ,i[n] and Br

k ,i[n] are constants that are given by

By substituting R̂lb
k [n] for R̂k [n] in (20), we can approximate (20) as the following jointly 

concave constraint with respect to q and S

In constraint (21), �q[n] − wk�
2 is convex with respect to q[n] , so constraint (21) can be 

approximated as

Based on these, with any given local point qr , problem ( P5 ) can be approximated as the 
following convex problem:

, and problem ( P6 ) can be solved by existing convex optimization technologies.

4.4 � Sub‑problem 4: NOMA grouping scheduling optimization

For any given {P, ρ,q} , the NOMA group scheduling of problem ( P1 ) is still hard to 
tackle due to the non-convex nonlinear constraint (8). To make the sub-problem more 

(24)Einit
k +

N
∑

n=1

ηP0h
lb
k [n]ρ[n]δ −

N
∑

n=1

Pk [n](1− ρ[n])δ ≥ α, ∀k .

(25)
R̂k [n] ≥

d
∑

i=a

Ar
k ,i[n](�q[n] − wgm,i[n]�

2 − �qr[n] − wgm,i[n]�
2)

+ Br
k ,i[n] � R̂lb

k [n],

(26)Ar
k ,i[n] =

−
Pgm,i [n]

[n]β0

(�qr [n]−wgm,i[n]
�2+H2)2

∑d
j=a

Pgm,i[n]
[n]β0

(�qr [n]−wgm,i[n]
�2+H2)

+ N0dmW0

,

(27)Br
k ,i[n] = log2

(

d
∑

i=a

Pgm,i[n][n]β0

�qr[n] − wgm,i[n]�
2 +H2

+ N0dmW0

)

.

(28)

N
∑

n=1

dmW0[R̂
lb
k [n] − log2

( d
∑

i=a+1

Pgm,i[n][n]β0

Sgm,i[n][n] +H2

+ N0dmW0)](1− ρ[n]

)

δ ≥ C .

(29)
Sk [n] ≤ �qr[n]−wk�

2 + 2(qr[n] − wk)
T

(q[n] − qr[n]), ∀k , n.

(P6) :max
q,α,S

α

s.t. (6), (7), (23), (24), (28), (29).
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tractable, we propose a heuristic algorithm for NOMA group scheduling. Considering 
the characteristic of NOMA, the greater the channel power gain differences between the 
UAV and IoTDs, the better performance of NOMA. The group scheduling we proposed 
aims to maxmize the channel power gain differences among IoTDs in the same group. 
In particular, at time slot n, we first rank the channel power gain of IoTDs from large 
to small, and we have hr1[n] ≥ hr2[n] ≥ · · · ≥ hrk [n] , where ri[n] ∈ K and i ∈ {1, 2, . . . , k} . 
Based on sorted results, we divide all IoTDs into D sets in order. Then, the m-th group 
consists of the m-th IoTD in each set, which can be presented as

and as shown in Fig. 2.

4.5 � Overall algorithm

Based on the solutions to four sub-problems, an iterative algorithm for problem ( P1 ) with 
BCD is proposed in Algorithm 1, which is guaranteed to converge to a sub-optimum [8].

Algorithm 1 BCD Algorithm for problem P1

1: Initialize q0,P0,ρ0 and G0. Let r = 0.
2: repeat
3: Solve problem (P2.2) for given {qr,ρr,Gr} and denote the optimal solution

as {Pr+1}.
4: Solve problem (P2.3) for given {qr,Pr+1,Gr} and denote the optimal solution

as {ρr+1}.
5: Solve problem (P2.6) for given {Pr+1,ρr+1,Gr}, denote the optimal solution

as {qr+1}.
6: Update {Gr} as {Gr+1} according to the proposed NOMA grouping schedul-

ing.
7: Update r = r + 1.
8: until The fractional increase of the objective value is below a threshold ε > 0.

5 � Results and discussion
In this section, we provide numerical results to demonstrate the performance of the pro-
posed algorithm. We distribute K = 12 IoTDs in a geographical area of 500× 500m2 . 
Other parameters are set as 
H = 50m, Vmax = 50m/s, qI = [75, 0]T , T = 40 s, W = 15MHz, β0 = 0 dB,

N0 = −120 dBm, D = 3, M = 4, C = 15Mb, Pmax = 3mW, η = 0.8, P0 = 15W
.

(30)gm,d[n] = rm+(d−1)M[n], ∀m, d, n,

Fig. 2  The group scheduling
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First, we study how the amount of data which each IoTD need to finish upload-
ing affects the optimal UAV trajectory. As shown in Fig. 3, with a small C, UAV can 
pass through the above of every IoTD to collect data and charge their batteries more 
efficiently. On the contrary, a large C leads to limited time, which makes UAV trajec-
tory only cover the central area. However, we can observe that UAV always flies pass 
through the above of the IoTD with minimum initial energy to transmit more energy 
to it. Figure  4a and b presents the NOMA group scheduling at two different time 
slots. It is observed that IToDs which are about the same distance to UAV are always 
grouped into different groups to increase the differences of channel power gain of 
IoTDs among the same group.

Fig. 3  UAV trajectory under different data size C. Red line with triangle—C = 1 MB—the optimal UAV 
trajectory with C = 1 MB; green line with circle—C = 2 MB—the optimal UAV trajectory with C = 2 MB and 
blue line with diamond—C = 50 MB—the optimal UAV trajectory with C = 50 MB star—IoTDs—the location 
of IoTDS

Fig. 4  a NOMA grouping results at t = 10ms. b NOMA grouping results at t = 20ms. Square—group1—the 
location of IoTDs within NOMA group 1; diamond—group2—the location of IoTDs within NOMA group 2; left 
triangle—group3—the location of IoTDs within NOMA group 3 and right triangle—group4—the location of 
IoTDs within NOMA group 4 star—UAV—the location of UAV
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In Fig. 5a, the results of time scheduling strategy under different amounts of data each 
IoTD need to transmit, i.e., C, are plotted. It is shown that, first, the transmission is fluc-
tuation over the time, since the UAVs tend to transmit when flying near the IoTDs. Sec-
ond, with more data for IoTDs to finish uploading, more time will be allocated for data 
collection, and that is to say that ρ is smaller.

Figure  5b illustrates a comparison between NOMA and orthogonal multiple access 
(OMA) under different bandwidth W of system. It is observed that with the increase-
ment of W, the performance of both two schemes will be improved, and the NOMA 
scheme that we proposed always outperforms the OMA scheme under the same 
condition.

Moreover, Fig. 6a presents the performance of NOMA scheme we proposed under dif-
ferent amounts of IoTDs K. It is easy to see with the increasement of K, the performance 

Fig. 5  a Time scheduling under different C. b Minimum residual energy of NOMA and OMA under different 
bandwidth W. Red line with circle in a—C = 20 Mb—the time scheduling—under C = 20 MB; blue line 
with triangle in a—C = 60 Mb—the time scheduling—under C = 60 MB; blue line with circle in b—OMA 
(W = 15 MHz)—the OMA scheduling—under W = 15 MHz; red line with circle in b—NOMA(W = 15 
MHz)—the NOMA scheduling—under W = 15 MHz; blue line with triangle in b—OMA(W = 5 MHz)—the 
OMA scheduling—under W = 5 MHz and red line with triangle in b—NOMA(W = 5 MHz)—the NOMA 
scheduling—under W = 15 MHz

Fig. 6  a Minimum residual energy of NOMA under different amounts of IoTDs K. b Minimum residual energy 
of NOMA under the different amounts of IoTDs in each group D. Blue bar in a K = 6—the NOMA scheduling 
under K = 6; orange bar in a—K = 12—the NOMA scheduling under K = 12; blue bar in b—D = 3—the 
NOMA scheduling under D = 3; orange bar in b—D = 4—the NOMA scheduling under D = 4 and yellow bar 
in b—D = 6—the NOMA scheduling under D = 6
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decreases. Figure 6b shows how the amount of IoTDs in each NOMA group, denoted as 
D, affects the performance of NOMA scheme. It is easily observed that the increasement 
of D may improve the performance as expected. However, we cannot endlessly keep 
increasing the value of D, which has an optimal value denoted as Doptimal . When D is 
larger than Doptimal , the performance will degrade instead.

6 � Conclusion
This paper studies a new NOMA-enabled UAV data collection system for IoTDs, where 
the UAV is deployed to collect data from IoTDs and charge the batteries of them to pro-
long the lifetime of the IoT network. We formulate the residual energy maximization 
problem of IoTDs, via jointly optimizing UAV trajectory, transmit power allocation of 
IoTDs, time scheduling and NOMA group scheduling. Then, we propose an iterative 
algorithm to solve the formulated problem suboptimally. Numerical results show that 
our schemes can effectively increase the residual energy of the IoTDs, thus prolonging 
the lifetime of the network.
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