
Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Dong et al. J Wireless Com Network        (2022) 2022:127  
https://doi.org/10.1186/s13638-022-02209-0

EURASIP Journal on Wireless
Communications and Networking

Blockchained supply chain management 
based on IoT tracking and machine learning
Zhongping Dong*   , Wei Liang, Yan Liang, Weibo Gao and Yi Lu 

Abstract 

When it comes to running and managing modern supply chains, 6G Internet of things 
(IoT) is of utmost importance. To provide IoT with security and automation, blockchain 
and machine learning are two upper-layer technology that can help. First, we pro-
pose to utilize blockchain in modern supply chains to ensure efficient collaboration 
between all parties. Second, we adopt multi-head attention (MHA)-based gated recur-
rent unit (GRU) to do inbound logistics task prediction. Finally, numerical results justify 
that multi-head attention-based GRU model has better fitting efficiency and prediction 
accuracy than its counterparts.

Keywords:  Internet of things (IoT), Supply chains, Blockchain, Machine learning (ML), 
Big data, GRU​, Multi-head attention

1  Introduction
The manufacturing sector has been profoundly affected by globalization, increasing 
product life-cycle dynamics, and mass customization [1, 2]. To cut down on produc-
tion and administration costs, most contemporary manufacturers now contract out to 
third-party vendors for the creation of individual components. The primary focuses of a 
contemporary manufacturer are product development, integration, and marketing. Crit-
ical steps in the supply chain process include sourcing and manufacturing components, 
assembling finished goods, and moving them to retail outlets for sale [3]. The supply 
chain also in-corporates supplier management and product management.

The key to improving the competitiveness of modern manufacturing companies lies in 
improving the efficiency of their production and operations, especially effective product 
quality control. Production plan changes, poor logistics and rework caused by product 
defects can seriously affect supply chain management. Therefore, modern enterprise 
supply chain management should actively shift from reactive response to proactive 
prevention. However, proactive prevention of supply chain management may result 
in higher management costs as well as redundancy and inefficiency of the system [4]. 
Currently, product quality inspection is generally analyzed subjectively by professional 
technicians using qualitative methods. However, using predictive models to predict the 
quality of products in advance and to ensure continuous improvement of product qual-
ity may yield higher benefits in future.
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Internet of things (IoT) has important implications for the development of supply man-
agement. IoT tracking technology has come a long way in the last decade. IoT tracking 
system contains four main components, IoT device tag, location system, location engine 
and wireless communication with the cloud platform. As location systems and wireless 
communication technologies have matured, IoT trackers can now be used to monitor 
the location of IoT products in real time. However, modern supply chain technology 
advances have driven the emergence of more complex and diverse industrial application 
scenarios with higher performance requirements, and IoT tracking solutions to meet the 
needs of these scenarios are still in their infancy. In the literature [5], the authors investi-
gate a solution to the bullwhip effect based on IoT technology to ensure real-time trans-
mission and sharing of information among parties in the supply chain. In the literature 
[6], the authors studied the application of IoT technology in logistics enterprises and 
analyzed the impact of IoT on various aspects of logistics management. In the literature 
[7], the authors comprehensively investigated the security issues and challenges in sup-
ply chain management. In the literature [8], the authors apply machine learning to sup-
ply management, which can maximize the value of information sharing and data flow by 
integrating ML technology into various tools for supply chain management.

Strong assistance from current network technology is essential for identifying, trac-
ing, real-time tracking, and exchanging information about commodities in the supply 
chain. All things inside a territory may now be linked together and communicate with 
one another thanks to the Internet of Things and the 4G/5G public land mobile net-
work. However, the terrestrial-network’s scope of services is so narrow that it is unable 
to cover areas like deep space, deep sea, and the polar regions. A space-air-ground-sea 
network is a large-dimensional network with four tiers: a space-network tier made up of 
satellites, an air-network tier made up of flying BSs (e.g., high-altitude platforms, mobile 
airborne cells, UAVs, and so on), a terrestrial-network tier made up of legacy BSs, and an 
underwater-network tier made up of underwater hubs, ships, and so on.

The supply chain industry has undergone significant transformation throughout the 
years. Many players, who have historically been sluggish to adopt technology, are now 
experiencing the benefits of modern digital solutions, such as cloud computing and 
mobility. Identification, traceability, and real-time tracking of commodities in the sup-
ply chain have long been hampered by the heterogeneity of platforms and technologies 
employed. From product tracking to inventory management, the supply chain is pre-
pared for its own IoT-driven upgrade.

The Internet of things enables the collection, transport, storage, and sharing of logis-
tics information for improved supply chain partner cooperation and interoperability. 
Given the worry over the sustainability of quality in certain industries, such as the phar-
maceutical supply chain, there is a great deal of focus on the regular monitoring and 
verification of quality assurance and quality of experience activities throughout the sup-
ply chain network. For IoT solutions to be successful in practice, they must meet supply 
chain needs and meet certain quality standards. Better-designed tracking and traceabil-
ity systems and information models make it simple for parties to utilize the technology 
and positively impact the supply chain.

In the information society, almost every enterprise cannot do without supply chain 
network, and tracking and monitoring all aspects of product design, production and 
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distribution, and sales through supply chain network is the fundamental guarantee for 
efficient operation of the enterprise. However, the management of supply chain network 
should not only complete the normal various functions, but also be able to deal with 
various abnormal situations and improve the security of the network in order to avoid 
enterprises from falling into some unpredictable risks. For example, due to the lack of 
supply chain security management, some criminals may take advantage of this loophole 
to engage in the production and sale of counterfeit or pirated goods. This will not only 
cause economic loss to consumers, but also affect the social reputation of the enterprise, 
and in serious cases, it may bring troublesome legal problems to the enterprise.

Blockchain has seen some early success in recent years in areas like trade finance and 
industrial Internet [9]. The security, privacy, and trust challenges relating to smart grids 
have recently received a lot of scholarly attention [10–19]. For instance, [10, 11] detailed 
the use of blockchain in the energy Internet and identified a number of issues that were 
caused by it. A review of blockchain applications for smart grids and new frameworks 
was presented in [12]. Typical blockchain use cases for energy applications, including 
distributed energy transactions, smart microgrids, smart power distribution, and smart 
power consumption, are discussed in [13]. Blockchain provides a decentralized trust 
framework for distributed energy operations. Further research was done on the peer-to-
peer energy transaction using blockchain and it was utilized for dispatching distributed 
energy on the basis of [14–18]. Ahl et al. [19] provides an review of blockchain-based 
distributed energy.

In all aspects of modern enterprise supply chain management, a large number of net-
worked devices, such as RFID readers, mobile communication devices, network cam-
eras, and IoT terminals will generate massive amounts of data. Based on the analysis of 
these big data, companies can enhance the decision-making process in the supply chain 
and help companies make the best operating model and operational decisions. Because 
of this, blockchain will have a record amount of data, which will significantly accelerate 
the globalization of technologies. Blockchain will be possible to offer trustworthy track-
ing, tracing, and spread-out point-to-point transactional capabilities for billions of prod-
ucts throughout the world. The inadequacies of IoT’s weak safety and privacy, lack of 
confidence in virtual exchanges, and insufficient protection of ownership rights can only 
be partially made up for by blockchain technology. The growth of IoT and new business 
models will be significantly aided by the decentralization of blockchain, preservation of 
the privacy of transaction information, prevention of tampering with historical data, and 
traceability.

Our goal is to forecast the future flow of incoming logistics using big data, machine 
learning, and blockchain technology for incoming logistics planning. The application 
of machine learning to a supply chain network can automate and simplify its admin-
istration by streamlining its operations. Specifically, machine learning can be used to 
estimate product demand and swiftly change logistics management to provide rapid 
responses to client requests. This research integrates machine learning into the logistics 
planning process based on business knowledge of inbound logistics planning [20, 21].

The reminder of this paper is organized as follows. Section II introduces the basics 
of supply chain management as well as the involvement of 5G IoT tracking, blockchain 
and machine learning. Section III develops an automatic approach to predict inbound 
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logistics tasks by using Multi-Head Attention-Based GRU (MHA-GRU). Section IV pre-
sents the numerical results to justify the performance of our design, followed by Section 
V to conclude this paper.

2 � Blockchained supply chain management and machine learning
2.1 � 5G IoT‑based supply chain management

In general, supply chain management includes three stages: supply chain design, supply 
chain planning, and supply chain operation, as shown in Fig. 1. Effective supply chain 
management often needs to take into account the uncertainty of decisions related to 
product and capital flows. In this respect, it would be significantly beneficial to bring 5G 
IoT as the infrastructure of the management.

•	 Supply Chain Design: It is a long-term decision made by the company according 
to its long-term development goals, and generally will not be changed in a short 
period of time, unless there is a major mistake in the management decision initially 
made. Such decisions are usually at the strategic level of the company’s develop-
ment, including both the company’s internal operation strategy and the cooperation 
strategy with outsourcing companies, and are the backbone of the company’s supply 
chain network.

•	 Supply Chain Planning: At this stage, the company integrates all short-term tasks 
under the designed supply chain framework and makes reasonable planning. These 
tasks include supply demand, inventory strategy, marketing target and price strategy. 
The purpose of this stage is to provide reasonable planning for short-term opera-
tional realization to ensure supply chain surplus. Moreover, if the planning stage can 
proceed smoothly, it shows that the strategic decision of supply chain design can be 
guaranteed.

•	 Supply Chain Operation: It is the stage of real-time operation of the supply chain 
network, which reflects the real-time flow of products at each node in the network. 
Depending on the speed of response and progress, the next node typically needs to 

Fig. 1  Four layers in supply chain management
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make a corresponding decision quickly within minutes, hours, or days. For example, 
in the process from when a customer initiates an order request to when a product is 
received, multiple different network nodes may be designed, and each node responds 
according to its own status and received requests, and makes the next decision.

•	 5G IoT Networks: The rapidly growing paradigm of Internet of Things will play a 
critical role in supply chain management. With 5G, airborne anchor nodes (AN) can 
provide relay services and aid in the localization of terrestrial IoT sensors. Using a 
group of UAVs outfitted with received signal strength indicator (RSSI) sensors, for 
instance, the enterprise may track a trunk carrying sensor-enabled merchandise, 
which can be considered a mobile IoT device with an unknown position.

2.2 � Challenges for supply chain

Modern enterprise supply chain management has become an important goal for the 
development of various industries, and researchers have applied big data, machine 
learning, IoT and blockchain technologies to supply chain management for better effi-
ciency, reliability and security. However, modern enterprise supply chain management 
still faces the following challenges [7].

•	 The area covered by supply chain management will be unprecedentedly broad, cover-
ing not only emerging industries such as urban logistics and e-commerce, but also 
many traditional manufacturing and sales industries will establish modern supply 
chain networks. This requires the study of a common modern supply chain network 
model, and requires the model to have flexible industry applicability and high usabil-
ity.

•	 Supply chain security management is an important goal of modern enterprise devel-
opment. Unlike the traditional industry operation model, the supply chain manage-
ment of modern information network-based enterprises faces many potential threats 
and security attacks. Therefore, it is necessary to establish a secure reference model 
for modern enterprise supply chain management so that enterprise data and transac-
tions can be transmitted, exchanged and processed for analysis in a secure environ-
ment.

•	 Big data analytics and machine learning algorithms will play an increasingly impor-
tant role in supply chain network management. Given the special needs of supply 
chain networks, the functional and performance specifications for large-scale data 
analytics and computer learning algorithms are more stringent. For example, there is 
an extremely high demand for privacy protection of data and security of transactions 
in supply chain networks, so big data analytics and machine learning algorithms 
need to have extremely high privacy protection capability and distributed security 
processing capability.

2.3 � Advantage of blockchain

The aforementioned drawbacks of insufficient property rights protection, insufficient 
security and privacy, and lack of confidence in virtual exchanges may only be partially 
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remedied by blockchain technology. The growth of the IoT supply chain will be suc-
cessfully aided by the decentralization of blockchain, transactional information, privacy 
security, and historical data anti-tampering in the smart grid.

Blockchain can greatly cut labor costs and transaction times by automating a variety 
of transaction operations. For instance, IBM employs blockchain technology to address 
the issues with contracts for temporary labor and has created equivalent solutions for 
invoice reconciliation to address the issues with invoices brought on by temporary labor. 
In addition to ensuring that payment conditions are followed and eliminating invoice 
dispute situations, reconciliation using a digital ledger may significantly lower recon-
ciliation costs and accelerate work processes. Blockchain technology has given the cor-
porate world a breath of new air by serving as a shared digital ledger for documenting 
transactions.

From a layered perspective, the blockchain system consists of the network, consensus, 
application and meta-application layers, as shown in Fig.  2 [22]. The network layer is 
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Fig. 2  Layered structure of blockchain systems
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used to implement the blockchain network and information transfer among all nodes. 
The consensus layer allows highly decentralized nodes to agree on the validity of data in 
the blockchain network. The application layer encapsulates the various applications and 
scenarios of the blockchain, while the meta-application layer provides various standard 
basic function calls for the application layer.

2.4 � Machine learning applications in supply chain

The application of computer learning to supply chain management will be a major fea-
ture of modern supply chain network and an important guarantee to realize efficient 
operation of modern supply chain network. Traditional supply chain management has 
poor information integration and predictive analysis capabilities, while modern supply 
chain management based on machine learning and analysis of massive data will com-
pletely change this situation. Machine learning creates management models based on 
enterprise operations and business characteristics, and makes accurate production and 
scheduling decisions by analyzing the input big data. Further, the management model 
can also be readjusted to make the supply chain management better day by day by 
measuring the production and operation of the enterprise and the revenue status over 
a period of time. At the same time, local data offloading and access control issues for dif-
ferent system components will be resolved with the use of blockchain innovation to the 
supply chain [23]. When computer resources are few, it is possible to implement the dis-
persed deployment of a variety of resources to guarantee info on transaction traceability. 
The broad deployment of the mobile edge computing (MEC) servers will make it simple 
to manage IoT devices on the blockchain and save their information and data.

Machine learning is most commonly used in supply chain management for product 
demand forecasting and product production forecasting. Product demand information 
is derived from marketing, financial and production data, as well as other non-product 
factors, such as seasonality or “special events”. Based on this data and influencing fac-
tors, learning is used to accurately forecast customer demand for products. Further, the 
company adjusts the production status of the product based on the forecasted demand 
and the current product inventory and production capacity. Product production fore-
casting is used to measure the production capacity of a certain product and the ability 
of coordination and cooperation between different outsourcers. This is a very important 
management process in the supply chain. Accurate production forecasting helps com-
panies to order raw materials and coordinate production plans for different products in 
a prompt and precise way, so that they can fulfill customer orders quickly and speed up 
product distribution and reduce inventory, thus reducing costs and increasing revenues.

Machine learning algorithms should be able to meet the dynamic and diverse demand 
applications. Different supply chain networks have different demand for applications and 
different time accuracy and location of demand changes. Therefore, the factors affect-
ing demand forecasting and production forecasting are diverse, dispersed, complex and 
unstable, which poses a very serious challenge to machine learning-based supply chain 
management. In addition, due to some uncertain safety factors, machine learning needs 
to be safe training. Therefore, machine learning-based blockchain is an effective way to 
ensure the safety of machine learning model training process.
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Currently, in the context of the raging global COVID-19 epidemic, vaccinating the 
global population with COVID-19 vaccine is one of the challenging tasks faced in supply 
chain management. COVID-19 vaccine supply chain management should be manage-
able, operational, and auditable for both relevant government departments and stake-
holders such as manufacturers, but also visible and accessible to the general public to 
gain their trust and support. The current vaccine supply chain fails to include vaccine 
manufacturers, distributors, hospitals, and government departments in this unified plat-
form. This calls for a COVID-19 vaccine supply chain network based on big data analyt-
ics and machine learning to be launched as soon as possible to achieve success in the 
global immunization campaign (Fig. 3).

In COVID-19 vaccine supply chain management, machine learning will play an impor-
tant role in predicting vaccination demand and managing vaccination regions and popu-
lations. For example, if big data analysis shows that the population in a certain region is 
more inclined to receive a specific vaccine, the supply chain network will have to make 
timely decisions based on this analysis to increase the production and targeted deploy-
ment of that vaccine. For example, if a certain vaccine has special requirements for trans-
portation and storage conditions, the supply chain network should market and promote 
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this vaccine to regions that meet the storage conditions and select logistics companies 
that meet the transportation conditions as partners.

Therefore, machine learning-based algorithms in the COVID-19 vaccine supply chain 
network need to consider a variety of factors, including country, region, vaccine manu-
facturer, vaccine storage requirements, number of vaccinated/unvaccinated people, and 
distribution of vaccinated regions. Different machine learning algorithms are suitable for 
accomplishing different specific functions. For example, using ML regression algorithms 
to accomplish vaccination demand prediction, while ML classification algorithms are 
better suited to accomplish vaccination selection. In addition, in order to transparently 
track COVID-19 vaccine distribution and protect the privacy and security of vaccinated 
population data, machine learning needs to be combined with other advanced tech-
nologies, such as building blockchain-based machine learning models. Decentralized 
machine learning built regards to blockchain technology will have additional benefits in 
terms of data security, identity verification, protection of privacy, and other areas, which 
will encourage and support the widespread deployment of machine learning application 
scenarios. As a matter of fact, the MEC server may be used to install the blockchain plat-
form or application, enabling support for a variety of application scenarios.

3 � Methods
3.1 � GRU basics

Gate Recurrent Unit (GRU) is a kind of recurrent neural network. The GRU neural 
network is a variant of the LSTM neural network (long short-term memory network), 
which is based on the RNN (recurrent neural network), a well-established machine 
learning method that has great advantages in processing temporal series [24]. The RNN 
contains a signal feedback structure that correlates the output information at time t with 
the information before time t, and has dynamic features and memory functions.

Figure 4 shows the structure of the RNN. As can be seen from the figure: ① the RNN 
structure includes an input hidden layer and an output layer, where the hidden layer con-
tains the feedback structure; ② the output value at time t is the result of the joint action of 
the input information at that time and the time before; ③ the RNN can effectively analyze 
and process short time series, but cannot analyze and process time series with too long a 
dimension, otherwise it will produce "gradient disappearance RNNs can effectively ana-
lyze and process shorter time-series, but cannot analyze and process time-series with too 
long a dimension, otherwise it will result in gradient disappearance or gradient explosion 
[25]. To solve this issue, [26] proposed an RNN improved structure LSTM neural network, 
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whose hidden layer structure is shown in Fig. 5.The LSTM neural network achieves mem-
ory controllability in temporal order based on the memory units (forgetting gate, input gate 
and output gate) in the hidden layer, it resolves the issue of RNN’s inadequate long-term 
memory, but its hidden layer structure is too complex and the sample training takes a lot of 
time [27]. Based on the LSTM neural network, [28] proposed a GRU neural network, using 
reset gates and update gates instead of forgetting gates, input gates and output gates in the 
LSTM neural network. Although the hidden layer data flows in the LSTM and GRU neural 
networks are comparable, the GRU neural network lacks a dedicated storage unit, making 
sample training more effective.
ht is the value of the hidden layer at moment t, and ht−1 is the value of the hidden layer 

before moment t; ot is the value of the output layer at moment t, and ot−1 is the value of 
the output layer before moment t; W is the value of the hidden layer previously used as 
this input’s weight matrix, and the input layer to the hidden layer’s weight matrix is rep-
resented by U., V represents the weight matrix from the output layer to the hidden layer; 
each circle represents a neuron. For a regular RNN hidden layer, when given the input value 
xt(t = 1, 2, . . . , n) , the output values of the output layer, hidden layer at moment t can be 
calculated by following a series of equations:

For a regular LSTM hidden layer, when given the input value xt(t = 1, 2, . . . , n) , the out-
put values of the output layer, hidden layer at moment t can be calculated by following a 
series of equations.

(1)f = tanh (x) =
ex − e−x

ex + e−x

(2)ht = f (U · xt +W · ht−1)

(3)g = sigmoid(x) =
1

1+ e−x

(4)ot = g(V · ht)

(5)ft = g(Wf · ht−1 +Uf · xt)

× +

× ×
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f
tx g
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Fig. 5  Structure diagram of LSTM hidden layer
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where ft , it and ct represent forget gate, input gate and cell update, respectively. Wf , Wi 
and Wa represent the relationship coefficient of each gate.

Figure 6 shows the hidden layer structure of GRU neural network. As can be seen from 
the diagram: the update gate regulates how much information from a prior instant influ-
ences the information in the present moment; the greater the update gate’s value, the 
less influence past knowledge has on the present. The reset gate regulates how much 
information is taken in from the previous instant; the higher the value of the reset gate, 
the more information is taken in.

"1-" means that the vector’s elements are each deducted by one. The hidden layer’s 
value ht at time t is more likely to be impacted by the candidate value h̃t at time t than 
by the hidden layer’s value ht−1 at time t-1 if the update gate’s value zt at time t is big-
ger. If the value of zt is taken to be approximately 1, this indicates that the value of 
the hidden layer at instant t-1, ht−1 , does not affect the value of the hidden layer at 
moment t, ht . The update gate facilitates a better representation of the influence of 
data with a wider time range in the temporal series on the current moment. For the 
value rt of the reset gate at moment t, a larger value means that the candidate value 
h̃t at moment t is more influenced by the value ht−1 of the current concealed layer t a 
1. If the value of rt is approximately zero, it means that the value of ht−1 in the covert 

(6)it = g(Wi · ht−1 +Ui · xt)

(7)at = f (Wa · ht−1 + Ua · xt)

(8)ct = ct−1 ⊙ ft + it ⊙ at

(9)ot = g(WO · ht−1 + UO · xt)

(10)ht = ot ⊙ f (ct)

Fig. 6  Structure diagram of GRU hidden layer
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layer at time t-1 does not contribute to the candidate value h̃t at time t. The reset gate 
helps to better reflect the influence of the shorter intervals in the temporal series on 
the current moment.

Given the input value xt(t − 1, 2, . . . , n) , the value of the hidden layers at instant t 
for the GRU neural network is [27]

where: "[]" means two vectors are connected; "○" is a calculation method between matri-
ces, which means multiply by elements, when "○" acts on two vectors, the operation is

From Eqs. (1) to (4), it can be seen that the weight matrices at time  t for which the 
GRU neural network needs to be trained are Wz , Wr and W

h̃
 , which are combined by 

two weight matrices, respectively, i.e.,

where Wzx , Wrx and W
h̃x

 are the weight matrices of the input value to the update gate, the 
input value to the reset gate and the input value to the candidate value, respectively; Wzx , 
Wrx and W

h̃x
 are the weight matrices of the last candidate value to the update gate, a reset 

gate’s last candidate value and a candidate value’s latest candidate value, respectively.
The training method for GRU neural networks is based on back-propagation theory 

and consists of four main steps.

(1)	 Forward computation of each neuron’s output value.
(2)	 Back-propagation of the error term for each neuron the back-propagation of the 

GRU neural network error term consists of two aspects: one is the back-propaga-
tion along time, i.e., the calculation of the error term for each moment from the 
current moment, and the other is the transfer of the error term to the previous 
layer.

(11)zt = g(Wz · [ht−1, xt])

(12)rt = g(Wr · [ht−1 , xt])

(13)h̃t = f W
h̃
· [rt � ht−1 , xt]

(14)ht = (1− zt)� ht−1 + zt � h̃t

(15)a� b =


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(3)	 Based on the error term, the corresponding weight gradient is calculated using the 
optimization algorithm.

(4)	 Update the weights using the obtained gradients. In this paper, stochastic gradient 
descent (SGD) is used to calculate the weight gradients. The ordinary batch gra-
dient descent (BGD) method computes all the samples in each iteration and then 
updates the gradient; the SGD algorithm computes a random set of samples and 
updates the gradient. Compared with the BGD algorithm, the SGD algorithm is 
able to avoid falling into local extremes during the computation process, but does 
not need to compute all samples in each iteration, which can balance computa-
tional efficiency and computational accuracy.

3.2 � Blockchained supply chain prediction

Figure 7 shows the flow of blockchained supply chain prediction based on GRU neural 
network. A hidden layer, an output layer, and an input layer are present, as shown in the 
picture. The input layer performs outlier processing and normalization of the storage 
layer parameters and feeds the processed data into the hidden layer. The goal of normali-
zation is to keep the input data’s maximum and lowest values within the bounds of the 
functions for the hidden layer and the output layer. The normalization formula used in 
this paper is

where xmin and xmax are the minimum and maximum values of xi respectively.
When training the neural network, the hidden layer receives the data and uses the 

constructed GRU neural network to calculate and pass the results to the output layer; 

(19)x̃i =
xi−xmin

xmax−xmin
i = 1, 2, . . . , n

Fig. 7  Prediction flow based on GRU neural network
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the output layer receives the calculation results and performs denormalization to pro-
vide the output results; the output results are compared with the sample values and the 
weight coefficients of the hidden layer are iteratively updated until the end of training. 
When performing neural network prediction, the hidden layer receives the data and uses 
the trained GRU neural network to calculate and pass the calculation results to the out-
put layer; the output layer receives the calculation results and performs the inverse nor-
malization to provide the cross-wave velocity information.

3.3 � Multi‑head attention mechanism

To further improve the performance, we add to GRU the concept of Multi-Head Atten-
tion (MHA). Their research discovered that it is advantageous to use multi-head atten-
tion for the queries, values, and keys by using an attention layer as a function, which 
maps a query and a set of key-value pairs to the output. The multi-head attention layer 
computes the hidden information by linearly projecting the context vectors into several 
subspaces, performing better than single-head attention. We generate the output using 
weighted values, which are determined by queries and the related keys.

The time-dimension calculation for attention weighting is given by

where st contributes the time-dimension’s attention score, olast stands for the most recent 
output, and oall refers to the total output. T  stands for the number of time steps, B for the 
batch size, and Z for the feature dimension. The most recent time step is represented by 
parameter 1 . The output of the time-dimension attention layer is donated by ot , while H 
stands for the transpose operator, Wt for the parameter matrix, and  Wt for the transpose 
operator.

Single-Head Attention calculation is shown in Eqs. 20 and 21. For attention, we simply 
employ two GRU output varieties. The fact that the output of all time comprises data 
from every GRU output makes it crucial. The last time step output was chosen since it 
has the most redundant data of all the time steps. In order to calculate the queries, keys, 
and values for multi-head time-dimension attention computing, we also select the fol-
lowing two forms of output:

where K ,V ,Q represent the value, key, and query, respectively. n is the number of atten-
tion heads and b means bias.

The following formulas are used to calculate the context vectors and C for Multi-Head 
Attention scores.

(20)st = softmax
(
olast × (oall ×Wt)

H
)
, olast ∈ RB,1,Z

(21)ot = st × oall , oall ∈ RB, T, Z, st ∈ RB, 1, T

(22)Ki = Wi,k × oall + bi,k , Ki ∈ RB, T, Zn , Wi,k ∈ RZ, Zn , bi,k ∈ R
Z
n

(23)Vi = Wi,v × oall + bi,v, Vi ∈ RB,T, Zn , Wi,v ∈ RZ, Zn , bi,v ∈ R
Z
n

(24)Qi = Wi,q × olast + bi,q , Qi ∈ RB,1 Z
n , Wi,q ∈ RZ, Zn , bi,q ∈ R

Z
n
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where contexti denotes the reduced-dimension contexti vectors from each subspace and 
si denotes the multi-head time-dimension attention score. Figure 8 illustrates the gen-
eral organization of multi-head time-dimension attention. The context vector is then 
inserted into the complete connection layer. The softmax layer receives the output and 
makes the final prediction.

4 � Results and discussion
Incorporating machine learning into supply chain management can aid in automating a 
lot of tedious processes and free up businesses to concentrate on more strategic and sig-
nificant commercial endeavors. Supply chain managers can locate the best suppliers and 
optimize inventory using clever machine learning tools to keep their business running 
smoothly. As a result of machine learning’s many benefits and the opportunity to fully 
utilize the enormous volumes of data gathered by warehousing, transportation systems, 
and industrial logistics, an increasing number of enterprises are now exhibiting interest 
in its applications. Additionally, it may assist businesses in building a complete supply 
chain model that is powered by machine intelligence in order to reduce risks, increase 
insights, and improve performance—all of which are essential for developing a supply 
chain model that is globally competitive.

In this section, we will demonstrate the performance of different machine learning 
tools in term of demand prediction of IoT tracked refrigerators. It’s worth noting that 
the same method can be used to forecast product quality, product lifecycle, etc. as well.

The model is trained using the training set, and the test set’s prediction value is 
acquired once the model has been trained. The fitted and projected results are compared 

(25)si = softmax
(
Qi × KH

i

)
, si ∈ RB,1,T

(26)contexti = si × Vi, contexti ∈ RB,1, Zn

(27)C = Concat ([context1, . . . , contextn]), C ∈ RB,1,Z

Fig. 8  Structure of Multi-Head Attention GRU model



Page 16 of 19Dong et al. J Wireless Com Network        (2022) 2022:127 

using the Root-Mean-Square Error (RMSE), and Eq.  (20) provides its definition. The 
accuracy of the model increases with decreasing RMSE.

where yi is the actual data,  ŷi is the model’s projected value, and n is the total sample size 
(Table 1).

We use a sliding window to produce the drill set and the testing set while applying 
RNN and MHA-GRU to forecast the order number. The data from the second day are 
utilized as a designation after the data from the first day were used as input. Both the 
RNN and MHA-GRU utilized in this study have three layers. Prior doing anything 
else, the inputs must be normalized. The RNN and MHA-GRU models should then be 
trained using the practice set. Finally, inversely normalize the test set’s outputs to get the 
projected order number. In Fig. 9, the prediction results are shown. The RNN and MHA-
GRU prediction accuracy are described in Fig. 9 in the meanwhile.

Figure 9 reveals that MHA-GRU model has a more stable curve when the fitting accu-
racy of RNN and MHA-GRU are compared. The red curve in Fig. 9 is the fitted curve 
for stability test. The fitted curve can roughly keep consistent with the overall trend of 
the original curve, while providing guarantee for the subsequent curve prediction of 
MHA-GRU and RNN. The blue and green curves in Fig. 9 represent the effect of inverse 
normalization after prediction of MHA-GRU and RNN, respectively. It can be clearly 

(28)RMSE =

√∑n
i=1

(
ŷi − yi

)2

n

Table 1  Parameter setup for different machine learning methods

Parameter GRU​ RNN

Network structure Data normalization multi-head attention—GRU 
(three head)

Data normaliza-
tion three layers 
RNN

Learning rate(lr) 0.01 0.01

lr scheduler MultiStepLR MultiStepLR

Optimizer SGD SGD

Loss function RMSE RMSE

Batch size 56 56

Epoch 80 80

Randomseed 0 0
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Fig. 9  RNN versus MHA-GRU: prediction results of demand
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observed from that the blue curve fits the trend very closely to the direction of the origi-
nal data, while on the contrary, the green curve tends to express above or below the orig-
inal curve. RNN cannot handle the long-term dependencies due to vanishing/exploding 
gradient problem, and then MHA-GRU is introduced to overcome this shortcoming.

Figure 10 illustrates the accuracy curves of MHA-GRU and RNN predictions. Appar-
ently MHA-GRU model provides a better accuracy of prediction for the series, as it has 
superior fitting and prediction accuracy. Predicting the short-term tendency of client 
volume can help significantly supply chain managers make good commercial choices, 
increase management effectiveness, and become more responsive to market changes.

5 � Conclusion
Using cutting-edge IoT tracking technologies, this work conducts extensive research 
on supply chain management. In particular, we leverage machine learning over block-
chained big data. Modern supply chain management based on machine learning is 
capable of achieving self-optimization and continual improvement to assure sustained 
growth. Blockchain technology can compensate for poor safety and privacy, lack of trust 
in online transactions, and inadequate protection of property rights. Consequently, 
manufacturers are able to make accurate forecasts of customer demand, formulate flaw-
less production plans, and coordinate all parties and links in the supply chain to achieve 
an integrated arrangement and efficient management, thereby maximizing profits.
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