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1  Introduction
In recent years, economic globalization has been developing rapidly. As the backbone of 
international trade and the global economy, maritime transport carries over 80% of the 
volume of the international trade in goods is carried by sea, and the percentage is even 
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Ship path planning plays an important role in the intelligent decision-making system 
which can provide important navigation information for ship and coordinate with 
other ships via wireless networks. However, existing methods still suffer from slow path 
planning and low security problems. In this paper, we propose a second-order ship 
path planning model, which consists of two main steps, i.e., first-order static global 
path planning and second-order dynamic local path planning. Specifically, we first 
create a raster map using ArcGIS. Second, the global path planning is performed on 
the raster map based on the Dyna-Sarsa(� ) model, which integrates the eligibility trace 
and the Dyna framework on the Sarsa algorithm. Particularly, the eligibility trace has a 
short-term memory for the trajectory, which can improve the convergence speed of 
the model. Meanwhile, the Dyna framework obtains simulation experience through 
simulation training, which can further improve the convergence speed of the model. 
Then, the improved ship trajectory prediction model based on stacked bidirectional 
gated recurrent unit is used to identify the risk of ship collision and switch the path 
planning from the first order to the second order. Finally, the second-order dynamic 
local path planning is presented based on the FCC-A* algorithm, where the cost func-
tion of the traditional path planning A* algorithm is rewritten using the fuzzy collision 
cost membership function (fuzzy collision cost, FCC) to reduce the collision risk of 
ships. The proposed model is evaluated on the Baltic Sea geographic information and 
ship trajectory datasets. The experimental results show that the eligibility trace and the 
Dyna learning framework in the proposed model can effectively improve the planning 
efficiency of the ship’s global path planning, and the collision risk membership func-
tion can effectively reduce the number of collisions in A* local path planning and thus 
improve the navigation safety of encountering ships.
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higher for most developing countries.1 Therefore, shipping has become more and more 
important, particularly where prosperity depended primarily on international trade.

However, the rapid development of the international shipping at sea makes the traffic 
condition increasingly complicated, and the world’s main shipping routes and ports have 
formed complex networks, which are more prone to marine traffic accidents [1], and it 
pose a major threat to the safety of life and property at sea. Relevant statistics show that 
about 80%∼85% of marine accidents are caused by human factors. For example, the ship 
drivers did not operate in accordance with regulations  [2]. Although the International 
Maritime Organization has formulated the international rules for preventing collisions 
at sea, providing navigation methods and rules for ships at sea [3], and minimizing col-
lisions between ships, it is still difficult to effectively reduce the probability of collisions 
only by relying on the experience of the crew.

As the level of marine technology improved, ships have been developing to be quite 
large-scale, specialized, and intelligent. Meanwhile, researchers have paid more atten-
tion to the research and development of intelligent decision-making systems for ship 
navigation. Particularly, the automated and intelligent driving systems can provide navi-
gation for ship and coordinate with other ships via wireless networks, which can effec-
tively reduce the occurrence of marine accidents Therefore, in order to ensure the safety 
of ships, drivers and the marine environment, it is extremely important to study related 
technologies of ship navigation intelligent decision-making system, and ship navigation 
path planning is one of the core links of this intelligent decision-making system [4]. Par-
ticularly, the ship’s navigation intelligent decision-making system can provide the crew 
with important maneuvering suggestions for complex situations, and the ship’s path 
planning is an important prerequisite for the motion control of the intelligent decision-
making system and the output information of the intelligent decision-making system. 
Still, existing research works on the ship’s path planning still suffer from challenges in 
the following two aspects:

•	 Scenario modeling of ship path planning and collision domain modeling. In many 
existing ship path planning researches in discrete scenarios, the simulation environ-
ment used for training is a simulated environment where obstacles are randomly 
generated. Note that the simulated environment is quite different from the real sea 
environment, and it is difficult to reflect the performance of the path planning model 
in the actual sea environment. At the same time, in the related works about the local 
encounter of ships, the ships appear in the form of simple geometry such as points 
and circles in most cases, and the ship domain model that can reflect the collision 
distance is rarely used. Therefore, in such a scenario where the collision distance of 
the ship needs to be considered, existing path planning models suffer from poor col-
lision avoidance effect.

•	 The efficiency and safety of ship path planning. The current related research works 
usually do not distinguish between the long-distance navigation with few obstacles 
and the emergency ship encounter. In other words, the same model is used to deal 
with these two different navigation scenarios, which limits their performance in ship 

1  https://​unctad.​org/​webfl​yer/​review-​marit​ime-​trans​port-​2021.

https://unctad.org/webflyer/review-maritime-transport-2021
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path planning tasks. At the same time, existing path planning models based on tra-
ditional reinforcement learning algorithm has the problems of slow planning speed 
and frequent collisions in the process of ship path planning. Besides, the heuristic 
search-based models have difficulties in avoiding collisions when encountering ships 
dynamically and cannot ensure the safety of ships.

In this work, we focus on ship path planning of intelligent decision-making systems, 
and propose a second-order ship path planning model. Specifically, the proposed model 
consists of two main steps, i.e., first-order static global path planning and second-order 
dynamic local path planning. Firstly, we create a raster map using ArcGIS, and the global 
path planning is performed on the raster map based on the Dyna-Sarsa(� ) model, which 
integrates the eligibility trace and the Dyna framework on the Sarsa algorithm. Particu-
larly, the eligibility trace has a short-term memory for the trajectory, which can improve 
the convergence speed of the model. Meanwhile, the Dyna framework obtains simula-
tion experience through simulation training, which can further improve the conver-
gence speed of the model. Then, the improved ship trajectory prediction model based on 
stacked bidirectional gated recurrent unit is used to identify the risk of ship collision and 
switch the path planning from the first order to the second order. Finally, the second-
order path planning is implemented based on the FCC-A* algorithm, where the cost 
function of the traditional path planning A* algorithm is rewritten using the fuzzy col-
lision cost membership function (fuzzy collision cost, FCC) to reduce the collision risk 
of ships. The proposed model is evaluated on the Baltic Sea geographic information and 
ship trajectory datasets. Extensive experiments are conducted, and the results show that 
the proposed model can effectively improve the planning efficiency of the ship’s global 
path planning, and the number of collisions is effectively reduced.

The main contributions are summarized as follows:

•	 We propose a second-order ship path planning model based on Dyna-Sarsa(� ) for 
addressing the problem of slow marine scene modeling and the low safety of ship 
path planning.

•	 An ship trajectory prediction model based on Stacked-BiGRUs and a Fuzzy Colli-
sion Cost A* (FCC-A*)-based dynamic local path planning algorithm are designed 
and integrated together to identify the risk of ship collision and improve the safety of 
path planning model in the case of ship encounters.

•	 The proposed model is evaluated on the Baltic Sea geographic information and ship 
trajectory datasets, and the results demonstrate the proposed model’s effectiveness 
in terms of path planning efficiency and navigation safety.

The rest of this paper is organized as follows. The related works are reviewed in Sect. 2. 
The proposed method is introduced in Sect. 3, and extensive experimental results and 
discussion are given in Sect. 4. Section 5 concludes the main contributions and future 
works.
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2 � Related work
The path planning technologies for agent  [5] are widely used in the field of auto-
mation, including autonomous collision avoidance of service robots, formation of 
drones, autonomous vehicle navigation, and so on. All path planning methods can 
solve most of the planning problems of point-line networks. According to the classifi-
cation in common fields, path planning algorithms can be roughly divided into three 
categories: traditional path planning algorithms, machine learning algorithms, and 
heuristic search algorithms. Specifically, the advantages and disadvantages of three 
kinds of path planning algorithms are listed in Table 1.

2.1 � Traditional path planning algorithms

As one traditional path planning method, simulated annealing (SA) [6] can solve the 
problem of finding the optimal solution in a limited range. Xu et al. [7] investigate the 
transportation efficiency and sales cost of the aquatic product market in Haikou of 
China, and use the SA algorithm to improve the aquatic product transportation route 
planning model, so that the model can find a low-cost transportation route. Xiao 
et al. [8] propose a coverage path planning method for UAVs to achieve full coverage 
of a target area and to collect high-resolution images while considering the overlap 
ratio of the collected images and energy consumption of clustered UAVs. However, 
the SA algorithm, which is a popular evolutionary algorithm widely used in dynamic 
path planning, suffers from high computation complexity problem. Therefore, Miao 
et al. [9] develop an enhanced SA approach by combining two additional mathemati-
cal operators and initial path selection heuristics into the standard SA. Particularly, 
the proposed model can perform robot path planning in dynamic environments with 
both static and dynamic obstacles, the computing performance of the standard SA is 
significantly improved while the generated solution is optimal or near-optimal. The 
improvement makes the proposed model being able to be applied in many real-time 
and online applications. Bedsides, Wang et al. [10] model the certain climbing ability 
and crossing ditch capability of the ground robot. Specifically, the authors proposed a 
model to search the shortest path from the start point to the end point, with reliable 
obstacle avoidance in the three-dimensional environments. Particularly, ant colony 
algorithm and genetic algorithm are integrated into the proposed model for improv-
ing the performance.

Table 1  Summary and comparison of three types of path planning methods

Method Representative model Advantages Disadvantages

Traditional method Artificial potential field The planned path is smooth 
and safe

May fall into a local potential 
field, i.e., a local optimal solution

Machine learning Q-learning It is a model-free method with 
strong adaptability and can 
deal with uncertain environ-
ments

Blind exploration prolongs train-
ing time, causing the agent to 
converge to the wrong solution

Heuristic search A* algorithm High search efficiency, good 
stability, and can quickly 
respond to scene changes

Ignoring the node constraints 
of the moving volume, and the 
path planning is relatively rough
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Moreover, the artificial potential field (APF)  [11] method can construct virtual 
gravitational and repulsive forces. Specifically, the force between the end point and 
the object is the gravitational force, and the force between the object and the obstacle 
is the repulsive force. Therefore, we can set the force as a function for path optimiza-
tion. Zhu et al.  [12] propose a novel collision avoidance (CA) model by devising the 
APF method, and the proposed model is used to implement a practical ship automatic 
CA system. Particularly, in the proposed multi-ship CA model, the repulsive force 
model of APF is devised to incorporate the International Regulations for Preventing 
Collisions at Sea and the motion characteristics of the ship. Besides, inspired by navi-
gation practice, the distance between the closest point of approach time and approach 
criterion is used as the unique changeable parameter.

Feng et al.  [13] propose a new collision avoidance algorithm consisting of two main 
components, i.e., the path planning and the tracking controller. Specifically, a lateral 
lane-changing spacing model and the longitudinal braking distance model are designed 
to model the real vehicle’s dynamic scenarios. Next, the authors incorporate the safety 
distance in a simulated traffic scene into the APF algorithm. Besides, the repulsion in 
the proposed model includes the force of the position repulsion and the speed repulsion, 
which are divided according to the threat level. At last, a predictive control model is 
designed to track the lateral motion through steering angle. Besides, the author present 
a Fuzzy-PID control to track the longitudinal speed, and the planned path is converted 
into an actual trajectory with stable vehicle dynamics. Vagale et  al.  [14] review guid-
ance, and more specifically, path planning algorithms of autonomous surface vehicles 
and their classification, and provided potential need for new regulations for autonomous 
surface vehicles.

2.2 � Machine learning algorithms

The idea of ant colony algorithm (ACA) [15, 16] draws on the foraging behavior of ants. 
Specifically, all ants smear their own pheromones on the roads they pass through in the 
process of searching for food. The road with food will be smeared with pheromone by 
multiple ants in a short time, so the concentration of pheromone will increase in a short 
time. The ants will choose the path according to the concentration of pheromone, and 
finally find the shortest path. In the online logistics scenario, the use of the responsive 
ant colony-based optimization algorithm has a good effect on the path planning prob-
lem of dense vehicles [17]. Particularly, the vehicle response speed can be improved by 
generating a diverse pheromone matrix. At the same time, the incorporation of simpli-
fied pheromone diffusion model, unequal distribution pheromone initialization strategy, 
and adaptive pheromone update mechanism into the ant colony algorithm can signifi-
cantly enhance the computational speed and path quality of the classical ant colony 
algorithm [18].

Genetic algorithms (GAs) [19, 20] can simulate biological evolution, and is also an iter-
ative search algorithm based on the principle of genetic genetics. Pehlivanoglu et al. [21] 
propose initial population enhancement methods in GA, and thus accelerate conver-
gence process in the path planning problem of autonomous UAV. Nadia et al.  [22] use 
a modified selection operator instead of using mutation operators, an adaptive popula-
tion size and a modified procedure to perform a genetic algorithm, which outperformed 
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other models in terms of distance minimization.GA is also widely used in multi-vessel 
collision avoidance scenarios  [23, 24]. Particularly, GA-based model can meet the 
requirements of “early,” “large,” “wide” and “clear” for multi-vessel collision avoidance by 
incorporating ship navigation rules into genetic algorithms.

Reinforcement learning (RL)  [25, 26] algorithm is a machine learning method in 
which the experimental target learns in the surrounding environment in a constantly 
trying way, and selects the next action according to the reward obtained by interact-
ing with the environment. Therefore, the experimental target can obtain the maximum 
reward. In traditional path planning problems, reinforcement learning-based models use 
reward and punishment strategies to obtain optimal routes by continuously interacting 
with obstacles and passable areas. As for the problem of ship collision avoidance, Shen 
et al.  [27] use the Bumper model in ship domain to incorporate avoidance experience 
into deep Q-learning based on maritime traffic rules, and rewrite the reward function 
part of the reinforcement learning algorithm. Therefore, the final collision avoidance 
model is in line with the actual ship motion and achieves good results in real ship colli-
sion avoidance experiments. Li et al. [28] investigate the path planning problem of USVs 
in uncertain environments, and proposed a path planning strategy unified with a colli-
sion avoidance function based on deep reinforcement learning (DRL).

Autonomous mobile robots usually move in dynamic unknown scenes, and can only 
plan paths through local information obtained from feedback, and their control quan-
tities are continuous quantities. The gradient strategy algorithm A3C in reinforcement 
learning can handle the navigation problem in the continuous action space. However, 
the training time of A3C is quite long. Gao et  al.  [29] propose a new deep reinforce-
ment learning (DRL)-based path planning model with incremental training for robot. 
Particularly, in order to deal with the complexity of real world applications, the authors 
combine twin-delayed deep deterministic policy gradients are with the traditional global 
path planning algorithm Probabilistic Roadmap to enhance the generalization ability of 
the proposed methods.

2.3 � Heuristic search algorithms

The A* algorithm [30, 31] is widely used in various autonomous mobile robots and intel-
ligent car navigation systems. Specifically, the algorithm can calculate the cost of each 
expansion node around it by selecting the corresponding heuristic function. Then, the 
position with the lower cost is selected as the next step by comparing the cost, until the 
target node position is found. Unmanned Surface Vehicles (USV) are widely used in 
modern cruises on the surface of water. In the study of intelligent navigation systems for 
unmanned vehicles, Song et al.  [32] propose an improved A* algorithm that combines 
three path smoothing components, which reduces the path aliasing caused by the tra-
ditional A* algorithm. Experimental results show that the proposed algorithm achieves 
better performance than the traditional algorithm in both sparse and cluttered environ-
ments with uniform rasterization. The algorithm has been applied to the Springer USV 
navigation system. Guo et al. [33] propose a complete coverage path planning algorithm 
based on the improved A* algorithm to improve the efficiency and energy consumption 
of unmanned ships traversing the entire area. Singh et al. [34] present an A* approach 
for USV path planning in a maritime environment. Besides, the proposed approach is 
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extended to deal with the complex environments that are cluttered with static and mov-
ing obstacles and different current intensities.

3 � Method
In this section, we introduce the proposed second-order ship path planning model in 
detail. Specifically, the problems that need to be solved in ship path planning are intro-
duced first. Second, we present the modeling method of sea area scene, including the 
rasterization method and the storage format of geographic information. Then, the static 
global path planning algorithm based on Dyna-Sarsa(� ) is introduced, including the 
eligibility trace and the optimization process of Sarsa algorithm by Dyna framework. 
Finally, the dynamic local path planning algorithm based on Fuzzy Collision Cost A* 
(FCC-A*) is introduced, including the identification of collision risk, the construction of 
ship domain and the optimization process of collision risk membership function to A* 
algorithm.

3.1 � Problem description

The proposed second-order ship path planning model needs to solve two problems, i.e., 
static global path planning and dynamic local path planning. Figure 1 shows a schematic 
diagram of the proposed path planning model.

On the macro level, the ship is in a long-distance sea area with few obstacles. As shown 
by the purple trajectory in Fig. 1, the ship will navigate in a global path planning manner, 

Global path planning

Local path planning

Fig. 1  Schematic diagram of second-order ship path planning. In the local path planning frame, the red ship 
should try to avoid collision with the blue ship that is sailing straightly. This planning method prioritizes the 
safety of the planned path and needs to avoid collisions with static obstacles and dynamic ships at the same 
time
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when there is no local dynamic ship collision risk. This proposed planning method gives 
more priority to the path planning speed and path length.

Microscopically, the ship trajectory prediction method based on Stacked-BiGRUs [35, 
36] continuously detects the collision risk between the ship and other ships. The model 
will switch states and navigate in a local path planning manner when the ship colli-
sion risk index exceeds the rated threshold. As shown in Fig. 1, in the local path plan-
ning frame, the red ship should try to avoid collision with the blue ship that is sailing 
straightly. This planning method prioritizes the safety of the planned path and needs to 
avoid collisions with static obstacles and dynamic ships at the same time.

The framework of the proposed second-order ship path planning model is shown in 
Fig. 2, and it mainly consists of two components, i.e., global path planning and local path 
planning.

Global path planning. First, the ship path planning based on Sarsa reinforcement 
learning algorithm can effectively carry out path planning but the convergence speed 
is slow. Then, the eligibility trace and decay value mechanism are incorporated, and a 
global path planning algorithm based on the Sarsa(�)  [37] learning model is proposed. 
Finally, the reinforcement learning algorithm framework Dyna is presented. In particu-
lar, the global path planning speed is further accelerated by combining the Dyna frame-
work and the Sarsa(� ) learning model into a Dyna-Sarsa(� ) learning model.

Local path planning. First, the ship collision risk identification is introduced. Specifi-
cally, the future route of the ship agent may inevitably collide with other dynamic ships 
when the ship is sailing on the globally planned path. At this time, the system should 
identify the collision risk and carry out dynamic local path planning to further ensure 
the navigation safety of the ship. This work focuses on the encounter situation of two 

Fig. 2  Framework of second-order ship path planning model
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ships, and the proposed model uses the ship trajectory prediction model to predict the 
future trajectories of the two ships in a period of time, and calculates the collision risk 
index (CRI) for each moment in this period of time. If the CRI index exceeds the thresh-
old, the ship’s path planning is switched to second order from the first order. Then, the 
traditional A* algorithm and its shortcomings that ignores the ship collision domain 
when applied to the ship trajectory planning problem is discussed. Finally, we introduce 
the GOODWIN ship domain model. The heuristic estimation cost of the A* algorithm 
is modified via the membership function, and the collision risk of dynamic obstacles is 
combined with the A* algorithm, and the FCC-A* path planning model is proposed to 
effectively reducing the collision risk of ships in local path planning.

3.2 � Marine scene modeling

There are various methods for modeling geographic information of the marine scene, 
most of which are related to converting the surrounding environment into the prob-
lem of graph theory. The environmental map conversion methods in two-dimensional 
marine can be divided into vector data method and rasterization method, and their 
characteristics can be summarized as follows.

•	 Vector data have the advantages of standardized structure and low redundancy. Par-
ticularly, the data retrieval speed is fast, and the image resolution is high. However, 
the data structure is relatively complex, and it is difficult to process irregular graph-
ics.

•	 Raster data have simpler data structure than that of vector data, and it is less difficult 
in spatial analysis or surface simulation. Besides, the integration or splicing of irregu-
lar graphics is more convenient, and it is easy to carry out various spatial analysis 
and mathematical simulation. The disadvantage is that the geographic information 
conversion becomes more difficult with data scale increasing.

•	 For the geographic features in large-scale ocean scenes shown in Fig.  3a, the ras-
terization method can represent geographic entities more effectively than the vector 
data method. The accuracy is determined by the grid side length.

In the sea area with complex weather and geographical environment, the ships may 
encounter many obstacles during the entire navigation process, and the obstacles 

Fig. 3  Visualization map and raster map of the Baltic Sea geographic information.The rasterization method 
can represent geographic entities more effectively than the vector data method
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include man-made marine structures, glaciers, reefs, etc. Such topographic data are 
generally stored in electronic charts. Therefore, it is necessary to convert the elec-
tronic chart into a scene data model that the algorithm can recognize to realize the 
path planning on the simulated electronic chart. The data source used in this paper 
is the shapefile format data based on ArcGIS, and the raster method is used to estab-
lish a static scene model with the vector data rasterization tool provided in ArcMap. 
This rasterization method belongs to an interpolation method, which is specially 
used to create a digital elevation model (DEM) that conforms to the real surface. 
The main principle of interpolation is to restore the real terrain by using traditional 
input data structures and known surface features.

Water is the primary erosive force that determines the general shape of most ter-
rains. Therefore, most terrains contain many local maxima such as peaks, but few 
local minima, resulting in a discontinuous terrain state. Terrain to raster can con-
strain the interpolation process with surface-related constraints, generating a con-
tinuous terrain structure and an accurate representation of mountains and rivers. 
This type of function-constrained method can generate more accurate topographic 
maps with less input data. The scale of information will be smaller than the infor-
mation required to describe geographic information with digital contours, further 
reducing the cost of obtaining accurate DEM.

This rasterization method is fully computed when removing sinks, and does not 
impose functional constraints where it might conflict with the input elevation data. 
Such conflicts are usually saved in log files in the form of sinks. These data can be 
used to correct geographic information, which is especially suitable for processing 
large and informative datasets such as marine environment. The rasterized Baltic 
Sea area is shown in Fig. 3b. Finally, the result data are saved in Shapefile format.

In particular, in the dynamic local ship path planning task, the extracted Shape-
file data are used to model the local navigation chart, where the collision avoidance 
rules, navigation experience, ship operation characteristics and the size of the navi-
gation chart should be fully considered. Let (xs, ys) be the starting position of the 
ship, and (xd , yd) be the target position at the end of the planning. Then, the center 
coordinate of the navigation chart pointce is formally set as:

The warp length llon and latitude length llat of the navigation chart are set as:

The grain size of rasterization determines the fineness of path planning, and it is neces-
sary to coordinate the execution time of the algorithm and the planning quality.

(1)pointce =
xs + xd

2
,
ys + yd

2
.

(2)llon = |ys − yd |,

(3)llat = |xs − xd |.
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3.3 � Static global path planning algorithm based on Dyna‑Sarsa(�)

In this section, we will introduce the static global path planning algorithm based on 
Dyna-Sarsa(� ) in the proposed model. The main feature of the Sarsa algorithm is to per-
form single-step update. The value function is updated immediately after each step in 
the environment, which can quickly respond to environmental information. Therefore, 
the traditional Sarsa algorithm is represented as Sarsa(0). However, in the single-step 
update method, only the previous step that reaches the goal is related to the goal and 
all actions before that become unrelated. In particular, this situation will slow down the 
convergence speed of the algorithm. Generally, the continuous multi-step can be set as 
one round by extending the number of steps to update, and a complete update is con-
ducted at the end of each round. This memory state of the continuous multi-step is 
called the eligibility traces (ET).

ET is an important concept in reinforcement learning. Sutton and Barto [38] pointed 
out that ET is additional memory variables associated with each state considering the 
frequency of visiting each state. There are three different expressions of ET: accumulat-
ing trace (AT), replacing trace (RT), and true online trace (TOT). The cumulative eligi-
bility traces of state-action pairs are calculated as follows:

where γ represents the discount factor. � ∈ [0, 1] is the decay coefficient of the trace, 
which defines how much the information of a selection in the past should be attenuated. 
In many cases, related studies have found that eligibility traces can speed up the conver-
gence rate [39]. We can get the obtain the Sarsa(� ) algorithm by using the eligibility trace 
to modify the Sarsa algorithm, and Sarsa(� ) is shown in Algorithm 1.

In Algorithm 1, δ represents the temporal difference learning error (TD-error). At 
each moment, the current δ is assigned to each state according to its eligibility trace. 

(4)et+1(s, a) =

{

γ �et(s, a) if s �= st , a �= at
γ �et(s, a)+ 1 if s = st , a = at

,
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The use of the eligibility trace allows the Sarsa(� ) algorithm to converge to the global 
optimum faster than the traditional Sarsa(0) algorithm. However, this acceleration is 
based on the preservation of past visits, and it will consume additional memory space. 
In the case with sufficient computing resources, choosing the Sarsa(� ) algorithm can 
quickly obtain a safer navigation planning path. The state-action trajectory diagram of 
the algorithm is shown in Fig. 4, where T is the total number of iterations.

The use of cumulative eligibility trace and decay coefficient � in the optimization of 
the Sarsa algorithm can improve the convergence speed of the algorithm. However, 
the Sarsa(� ) algorithm still belongs to the category of model-independent reinforce-
ment learning algorithms. In particular, the ships directly use the experience learned 
from the marine environment to generate, and the learning efficiency of this method 
is relatively limited. In model-based reinforcement learning algorithms, ships use the 
experience generated in the simulated environment to select new strategies by con-
tinuously refining the model.

During the training process with the Dyna learning framework, the ship first inter-
acts directly in the simulation environment to obtain real experience to generate a 
pre-model, and interactively obtains simulation experience in the simulation scene 
inside the model at the same time. Besides, the real experience and simulation expe-
rience are integrated to train the ship, helping the ships plan and judge the opti-
mal path. The core idea of the Dyna learning framework is to consume computing 
resources in exchange for high sampling efficiency. Particularly, more environmental 
interaction experience can be obtained, which improves the efficiency of the algo-
rithm per unit time, while consuming computing resources. At the same time, in the 
stage of obtaining simulation experience in the Dyna model, the update method of 
the Q-learning algorithm is used. This method has the ability to learn the global opti-
mum and can help the ship to avoid the local optimum situation. The steps of the 
Dyna-Sarsa(� ) algorithm after combining the Dyna learning framework with Sarsa(� ) 
are shown in Algorithm 2.

Fig. 4  Action trajectory diagram of Sarsa(� ). The state-action trajectory diagram of the Sarsa(� ) algorithm
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By integrating the Dyna framework with Sarsa(� ), the ships can not only obtain 
experience from the simulation training of the Dyna framework, but also learn expe-
rience from the direct interaction with the marine environment. The fusion of two 
kinds of experiences can provide guidance for ship path planning, which can greatly 
improve the efficiency of ship static global path planning.

3.4 � Dynamic local path planning algorithm based on FCC‑A*

It is necessary to switch from global path planning to local path planning for collision 
avoidance operations when a ship faces a collision risk. Therefore, this section first 
introduces the method for identifying the collision risk of encountering ships.

In the traditional autonomous ship collision avoidance system, the collision risk 
index (CRI) is usually used as an index to measure the collision risk of ships. The 
minimum value of CRI is 0 and the maximum value is 1. The minimum encounter 
distance (distance to closest point of approach, DCPA) and the minimum encounter 
time (time to closest point of approach, TCPA) are important factors for evaluating 
the CRI index between encountering ships in actual scenarios. As the value range of 
CRI has a nonlinear negative correlation with DCPA and TCPA, we use DCPA and 
TCPA to quantify CRI.

In consideration of the calculation of the collision risk of two ships, it is assumed 
that the status of the two ships at a certain moment is: V0

(

Lon0, Lat0, Sog0,Cog0
)

 
and V1

(

Lon1, Lat1, Sog1,Cog1
)

 , where Lon, Lat, Sog, and Cog represent the longitude, 
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latitude, ground speed, and ground angle of the ship, respectively. Therefore, the rela-
tive speed Sr and relative angle Cr of the two ships at this moment can be calculated 
as:

Besides, DCPA and TCPA are defined as:

where dist is the distance between the two ships on the sea, Bearing is the angle of the 
ship V1 relative to V0 when the ship V0 is the coordinate origin. Besides, the unit of DCPA 
is nautical miles, and the unit of TCPA is minutes.

The relationships between CRI and DCPA or TCPA are defined as:

where the parameters a and b are the adjustment coefficients estimated according to 
the opinions of the ship experts and the watchmen in the ship transportation system. In 
this work, the parameters are set as (ad , bd , at , bt) = (1.0529,−1.5694, 1.3971,−0.0879) 
according to the movement of the objects on the sea [40]. CRI is calculated by the fol-
lowing formula based on the weighted sum of CRId and CRIt

the parameters α and β are the weights of CRId and CRIt , respectively. The sum of α and 
β is 1, and its value can be set according to the specific characteristics of marine traffic 
applications.

Whenever the state of the two ships at the next moment is predicted, the collision 
risk index CRI is calculated. If the CRI index exceeds the collision threshold, the ship 
changes from the global path planning state to the local path planning state.

In the local path planning stage, the collision model of the ship itself becomes a factor 
that cannot be ignored. The basic structure of the ship is shown in Fig. 5. Experts and 
scholars have conducted related research and proposed ship domain models suitable for 
different scenarios. In this work, we will first introduce the GOODWIN ship domain 
model.

Japanese ship expert FUJII first proposed the concept of ship domain in the 1960s. 
FUJII uses sensing equipment to collect and organize ship encounter behaviors in 

(5)Sr =

√

Sog20 + Sog2t + 2Sog0Sogt cos
(

Cogt − Cog0
)

,

(6)cr =















Cog0 − arcos

�

S2r+Sog20−Sog2t
2SrSog0

�

Cog0 < Cogt

Cog0 + arcos

�

S2r+Sog20−Sog2t
2SrSog0

�

Cog0 ≥ Cogt

.

(7)DCPA = dist ∗
(

sin
(

Cr − Cog0 − Bearing− π
))

,

(8)TCPA = dist ∗
(

cos
(

Cr − Cog0 − Bearing− π
)

/Sr
)

,

(9)CRId =ad exp (bdDCPA),

(10)CRIt =at exp (btTCPA),

(11)CRI = αCRId + βCRIt ,
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coastal waterways and crowded areas. Then, the ship collision avoidance trajectory 
data are filtered and analyzed, and finally an elliptical ship field is obtained. The ship 
is located at the intersection of the long and short axes. Specifically, the long axis is 8 
times the length of the deck, and the short axis is 3.2 times the length of the deck. The 
schematic diagram of the FUJII ship domain model is shown in Fig. 6:

Then, GOODWIN improved the FUJII model into an asymmetrical shape via 
marine traffic surveys and a large number of collision avoidance experiments are 
conducted on radar simulators using crew training machines, taking into account 
the International Regulations for Preventing Collisions at Sea. The GOODWIN ship 
domain model with asymmetric shape based on the FUJII model. The model consists 
of three sectors with different radii spliced together. The sector areas are distributed 
according to the range of the ship’s lights. Its fan-shaped radii are 0.7 nautical miles, 
0.85 nautical miles and 0.45 nautical miles, respectively. The schematic diagram of the 
GOODWIN ship domain model is shown in Fig. 7.

The GOODWIN model is considered to be suitable for collision avoidance of ships 
at sea [40]. Particularly, the GOODWIN model is safer than the COLDWELL model 
and the FUJII model in practical use, so the GOODWIN model is selected as the col-
lision domain model in this study. The GOODWIN model calculates the ship domain 
according to the angle relationship between ships. Formally, GOODWIN is defined 
as:

Left Right
forecastle

starboard 
side

port 
side

stern 
gates

Bow
heading

board boardaftercastle

forebridge

hull 
bottom

rudder

main 
hull

port 
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starboard 
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Fig. 5  Basic structure of the ship.

Fig. 6  FUJII ship domain model.The schematic diagram of the FUJII ship domain model proposed by 
Japanese ship expert FUJII in the 1960s
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In this work, the A* algorithm will be used to obtain the local optimal planning path of 
the ship. The cost function f(k) of the A* algorithm in this scenario should be expressed 
as the sum of the navigation distance cost and the collision cost:

where g(k) is the cost of the ship’s distance from the starting point, and its initial value 
is 0. Besides, the heuristic cost function h(k) can choose from a variety of methods to 
calculate the distance, such as Manhattan distance, Euclidean distance, and Cheby-
shev distance. Considering the underactuated characteristics of the ship (the degree of 
freedom of the ship’s navigation is less than the degree of freedom of the marine envi-
ronment) [27], we use the sum of the Chebyshev distance and the collision cost (fuzzy 
collision cost, FCC) at this point as the heuristic estimated cost of (k) . Give the ship a 
guiding direction, and the specific calculation expression of (k) is:

where (xt , yt) is the position coordinate of the target waypoint, (xk , yk) is the current 
position coordinate of the ship. Besides, we set the clockwise direction of true north 
from 0◦ to 360◦ , and the ship direction angle is the angle between the ship’s bow and 
the true north direction. FCC is the fuzzy collision cost based on the GOODWIN ship 
domain model. Next, the collision cost FCC based on the fuzzy model is introduced.

The basic operation in traditional Boolean logic is “and, or, not,” which is suitable 
for scenarios with clear logic. However, there is no particularly clear threshold when 
actually judging the distance and angle of two ships. In fuzzy logic, there are no strict 
boundaries between distances and angles, and the classification of different orienta-
tions is measured by the degree of membership. Specifically, the degree of member-
ship refers to the quantitative analysis of a fuzzy research object through membership 

(12)GOODWIN =







0.85 0◦ ≤ θ < 112.5◦

0.45 112.5◦ ≤ θ ≤ 247.5◦

0.7 247.5◦ < θ < 360◦
.

(13)f (k) = g(k)+ h(k),

(14)(k) = max
(

|xk − xt |, |yk − yt |
)

+ FCC(dist, θ1, θ2),

Fig. 7  GOODWIN ship domain model.The schematic diagram of the GOODWIN ship domain model, which is 
an improved version of FUJII ship domain model
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functions, and the process of transforming logical input values into membership 
degrees of each set is called fuzzification. The calculation of the collision risk mem-
bership function FCC can be expressed as:

where Uθ is the membership function of the azimuth angle θ between the current ship 
and the target ship, and Udist is the membership function of the distance dist between 
the current ship and the target ship.

The collision risk index encountered by the ship will change with the relative angle 
of the two ships. Uθ is a function of the included angle between the two ships. Accord-
ing to the ship collision avoidance rule  [41], the membership degree of the azimuth 
angle θ between the current ship and the target ship is defined as:

Moreover, dist, the distance between the ship and the target ship, will also cause the 
change of the collision risk index. Combined with the GOODWIN ship domain model, 
the surrounding of the ship is divided into three areas, and the collision risk Udist is cal-
culated for each area separately, which is shown in Algorithm 3.

Besides, we use the collision risk membership function FCC to modify the heuristic 
estimation cost function of the traditional A* algorithm, and the process of the FCC-
A* algorithm is shown in Algorithm 4.

(15)FCC =
1

2
Uθ +

1

2
Udist,

(16)Uθ =
17

44

[

cos
(

abs(θ1 − θ2)− 19◦
)

+

√

440

289
+ cos2(abs(θ1 − θ2)− 19◦)

]

.
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4 � Results and discussion
In this section, we conduct extensive experiments to evaluate the proposed ship path 
planning model in details. Specifically, we first analyze the global path planning perfor-
mance of the proposed model based on Dyna-Sarsa(� ). Then, the local path planning 
based on FCC-A* is evaluated.
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4.1 � Analysis of global path planning based on Dyna‑Sarsa(�)

The simulation experimental chart by rasterizing the shapefile data model of part of 
the Baltic Sea is shown in Fig. 8. We can observe that the experimental chart basically 
simulates the static obstacles in the sea area, which reflects the proposed model’s abil-
ity of the sea scene modeling.

The Q-learning algorithm, Sarsa algorithm, Sarsa(� ) algorithm and Dyna-Sarsa(� ) 
algorithm are introduced into the simulation chart for evaluation, and each algorithm 
was trained for 2000 rounds. In the main test of the Dyna-Sarsa(� ) learning algorithm, 
40 rounds of simulations are performed using the Dyna learning framework, which 
means that the ship interacts with the simulated environment for 40 rounds to obtain 
simulation experiences. The experiment of each algorithm repeats 6 times, and the 
average value of the corresponding evaluation index is used as the final experimental 
result. The evaluation indicators of algorithm performance are the reward value of 
each iteration, the number of collisions per iteration, and the convergence speed of 
the algorithm. Then, we will evaluate the performance of the Dyna-Sarsa(� ) model. 
The baseline models are listed as follows: 

1.	 Q-learning learning model. The Q-learning model is used as the benchmark refer-
ence model for the ablation experiments in this section.

2.	 Sarsa learning model. The Sarsa learning model is an online improvement in the 
Q-learning model, and it is more cautious in exploration than Q-learning.

3.	 Sarsa(� ) learning model. Sarsa(� ) is a learning model obtained by improving the 
round update method of Sarsa with eligibility traces.

4.	 Dyna-Sarsa(� ) learning model. The proposed model that uses the Dyna learning 
framework to enable the Sarsa(� ) learning model to gain simulation experience.

Figures 9 and 10 show the performance of different models on the simulation experi-
ment charts, and the visualization results of path planning are shown in Fig. 11.

Fig. 8  Nautical chart of simulation experiments. This figure shows the simulation experimental chart by 
rasterizing the shapefile data model of part of the Baltic Sea, and we can observe that the experimental chart 
basically simulates the static obstacles in the sea area, which reflects the ability of the sea scene modeling
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Specifically, we can observe that: (1) the convergence speed and average reward of 
the Sarsa learning model and the Q-learning model are quite similar. However, the 
number of collisions per round of the Sarsa model is less than that of the Q-learning 
model with an average decrease of 9.8%, which indicates safer navigation. The main 
reason is that Sarsa is sensitive to the penalty value brought by the collision and 
adopts a more cautious strategy. Therefore, the safety of the Sarsa-based model is 
higher than that of the Q-learning model in the application of ship path planning. 
(2) The eligibility trace can effectively improve the convergence speed of the Sarsa 
model. The Sarsa(� ) model converges in about 900 rounds, and the correspond-
ing Sarsa model and Q-learning model basically reach the convergence after 2000 
rounds. The reason is that the eligibility trace can mark the value of the positions 

Fig. 9  Comparison of ship reward value for each iteration. The performance comparison of ship reward value 
achieved by the proposed model and baselines for each iteration

Fig. 10  Comparison of the number of ship collisions in each iteration. The performance comparison of the 
number of ship collisions between the proposed model and baselines in each iteration
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at different distances from the target point, which can guide the state transition 
selection in the subsequent rounds and help the ship to find the optimal solution 
faster. (3) The Dyna learning framework can improve the convergence speed of the 
Sarsa(� ) model. Specifically, compared with the Sarsa(� ) model, which converges in 
about 900 rounds, the Dyna-Sarsa(� ) learning model reaches the convergence state 
in about 500 rounds. Besides, the average number of collisions per round decreased 
by 73.3% compared with the Sarsa model. This is because the Dyna learning frame-
work can help the Sarsa(� ) learning model to gain experience from the simulated 
environment, and the simulated experience can guide the ship to choose the optimal 
path. (4) As shown in Fig. 10, in the trajectory planning diagram of the four types of 
learning models, the Q-learning model tends to perform path planning through the 
right channel closer to the target point, while Sarsa and Sarsa(� ) are more likely to 
perform path planning through the wide left waterway. The results reflect that the 
Sarsa-related model is sensitive to collision risk and will abandon closer paths to 
avoid obstacles. The Dyna-Sarsa(� ) learning model uses the Q-learning algorithm in 
the stage of acquiring simulation experience, so it can plan shorter paths under the 
premise of ensuring safety.

In conclusion, the experimental results show that the learning model based on 
Sarsa has higher navigation safety, and both the eligibility trace and the Dyna learn-
ing framework can effectively improve the convergence speed in the experiments.

Fig. 11  Path planning simulation of four types of learning model. The visualization results of path planning 
simulation achieved by the proposed model and baselines



Page 22 of 29Yuan et al. J Wireless Com Network        (2022) 2022:128 

4.2 � Analysis of local path planning based on FCC‑A*

In order to provide a local path planning scheme when the ship encounters the danger 
of collision, we propose a dynamic local path planning model based on the FCC-A* algo-
rithm with trajectory prediction for a collision risk identification method.

In this section, we first evaluate the method for calculating the collision risk of encoun-
tering ships. Then, the FCC-A* algorithm is evaluated with the path planning time and 
the number of path collisions. Specifically, we select the trajectory data of two encoun-
tering ships in the Baltic Sea summer ship trajectory data for evaluations.

Figure  12 shows the visualization of ship trajectories in part of the Baltic Sea. The 
dashed box is the port of Helsingborg, which has the characteristics of dense ships, com-
plex historical trajectories, and high possibility of ship collision events. Therefore, we 
select the ship trajectory data that have performed the collision avoidance operation in 
this port as the experimental dataset.

Firstly, we train a Stacked-BiGRUs trained on the Baltic Sea summer ship trajectory 
dataset, and use the trained model to predict the trajectories of the two encountering 
ships. The prediction results are shown in Fig. 13. The blue trajectory in the figure is the 
historical trajectory of the blue ship, and its route direction is the direction of the blue 

Fig. 12  Visualization of summer ship trajectories in the Baltic Sea. This figure shows the visualization of ship 
trajectories in part of the Baltic Sea. The dashed box is the port of Helsingborg, which has the characteristics 
of dense ships, complex historical trajectories, and high possibility of ship collision events



Page 23 of 29Yuan et al. J Wireless Com Network        (2022) 2022:128 	

arrow. Besides, the red line is the red ship’s historical trajectory, and the sailing direction 
is the along the red arrow. The green trajectory is the predicted trajectory of the blue 
ship from a certain moment.

Since ship collision avoidance is an emergency event, the relevant trajectory data 
account for a very low proportion in the ship trajectory training set. Therefore, the 
trajectory predicted by the ship trajectory prediction model is the usual maneuvering 
behavior of the ship. Generally, the crew is not aware of the danger of collision during 
the actual navigation, and proceed according to the original route.

The red ships in Fig. 13 sail directly, and the blue ships should give way. If the blue 
ship does not perform the collision avoidance operation according to the blue trajec-
tory in the figure, but continues to sail according to the predicted green trajectory, 
it will collide with the red ship at the yellow lightning mark and cause a marine traf-
fic accident. In this situation, it is necessary to establish a collision risk identification 
mechanism first. Specifically, the collision risk index of the ship should be calculated 

Fig. 13  Visualization of improved ship trajectory prediction (green trajectory) based on Stacked-BiGRUs. 
Firstly, we train a Stacked-BiGRUs trained on the Baltic Sea summer ship trajectory dataset and use the 
trained model to predict the trajectories of the two encountering ships. The prediction results of the two 
encountering ships by the pretrained model are shown in this figure. The blue trajectory in the figure is the 
historical trajectory of the blue ship, and its route direction is the direction of the blue arrow. Besides, the 
red line is the red ship’s historical trajectory, and the sailing direction is the along the red arrow. The green 
trajectory is the predicted trajectory of the blue ship from a certain moment
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in combination with the collision risk index by predicting the ship’s future route. If 
the collision risk index of the ship exceeds the set threshold, it is determined that the 
ship has an accident risk, and collision avoidance operations need to be performed in 
this area.

Therefore, the ship collision risk should be firstly identified based on the improved 
ship trajectory prediction model. Since the closest encounter distance of the ship needs 
to be more than one nautical mile, the collision risk index (CRI) between the next six 
predicted positions of the direct ship and the give-way ship is calculated to identify colli-
sion risks in time and carry out local path planning. Table 2 shows the changes of DCPA, 
TCPA and CRI of the six predicted positions of the two ships. It can be seen that the 
CRI value of Step 3 corresponding to the yellow mark has reached about 0.8. Note that 
the value range of CRI is 0 to 1, and the larger the value, the higher the collision risk. 
Particularly, if the value exceeds 0.5, the ship has a collision risk [42]. Therefore, it can be 
seen from the table that at Step 2, the static global path of the ship needs to be switched 
to local dynamic path planning.

Before evaluating the FCC-A* algorithm, we first set the related parameters. The 
search range of the traditional A* algorithm is eight grids around a grid. However, the 
search direction is simplified, and only the three directions, i.e., front, left and right, are 
searched due to the under-driven property of marine ships. At the same time, the ship 
cannot turn in the direction that is a boundary or a marine obstacle. These constraints 
narrow the search scope of the algorithm, thereby reducing the algorithm execution 
time and ensuring that the planned path meets the navigation requirements of the ship.

As shown in Fig. 14, the collision avoidance scene is rasterized according to the sea 
area scene modeling method. The black squares in the figure represent the terrain of the 
sea area, which are static obstacles. Besides, the red squares are the ship sailing directly, 
and the blue squares are the ship that should make way. In this experiment, the direct-
sailing ship simulates the navigation process by printing its historical trajectory in real 
time, and the goal of the avoidance ship is to reach the green star without colliding with 
the direct-sailing ship and obstacles.

The experimental results of the traditional A* algorithm are shown in Fig. 15, and 
the planning results of the FCC-A* algorithm are shown in Fig. 16. We can observe 
that the traditional A* algorithm can avoid all static obstacles well, and the path 
length is also optimal. However, it is difficult for traditional A* algorithm to effectively 
avoid the straight ships whose position changes dynamically in each round, resulting 
in the collision between the give-way ship and the direct-sailing ship at the yellow 
sign. Besides, the proposed FCC-A* algorithm considers the collision field between 
the give-way ship and the direct-sailing ship, and the collision risk is incorporated 
into the cost function of the A* algorithm as a membership function. Therefore, the 

Table 2  Collision risk correlation index change

Index Step1 Step2 Step3 Step4 Step5 Step6

DCPA 1.990 0.533 0.145 0.479 1.212 1.521

TCPA 17.39 10.21 6.89 13.84 16.33 19.92

CRI 0.174 0.512 0.801 0.455 0.244 0.169
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Fig. 14  Local dynamic path planning scenario. The collision avoidance scene is rasterized according to the 
sea area scene modeling method. The black squares in the figure represent the terrain of the sea area, which 
are static obstacles. Besides, the red squares are the ship sailing directly, and the blue squares are the ship 
that should make way

Fig. 15  Path planning results of traditional A* algorithm. The experimental results of the traditional A* 
algorithm are shown in this figure. We can observe that the traditional A* algorithm can avoid all static 
obstacles well, and the path length is optimal. However, it is difficult for traditional A* algorithm to effectively 
avoid the straight ships whose position changes dynamically in each round, resulting in the collision 
between the give-way ship and the direct-sailing ship at the yellow sign
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give-way ship will consider the cost of collision with the direct-sailing ship in every 
step, and FCC-A* algorithm can help to avoid the risk of collision.

Furthermore, we compare the traditional A* algorithm and the FCC-A* algorithm 
in the case of two ships meeting on 6 local path planning experiments with different 
scales. The experimental results of the planning time are given in Table 3. It can be 
observed that the calculation time of the FCC-A* algorithm is about 30% higher than 
that of the traditional A* algorithm due to the component of the fuzzy model in FCC-
A*. However, since the search speed of the A* algorithm is quite fast, the delay of the 
FCC-A* algorithm is acceptable.

Table 4 presents the comparison of the number of collisions between the two algo-
rithms at different scales. In particular, the collision refers to the number of times 

Fig. 16  Path planning results of FCC-A*. The planning results of the FCC-A* algorithm are shown in this 
figure. The FCC-A* algorithm considers the collision field between the give-way ship and the direct-sailing 
ship, and the collision risk is incorporated into the cost function of the A* algorithm as a membership 
function. Therefore, the give-way ship will consider the cost of collision with the direct-sailing ship in every 
step, thereby avoiding the risk of collision

Table 3  Comparison of planning time of two algorithms (unit: seconds)

Scene scale 100 grid 400 grid 900 grid 1600 grid 2500 grid 3600 grid

A* 0.104 0.160 0.235 0.446 0.879 1.023

FCC-A* 0.134 0.220 0.301 0.747 1.223 1.790

Table 4  Comparison of collision times between two algorithms (unit: times)

Scene scale 100 grid 400 grid 900 grid 1600 grid 2500 grid 3600 grid

A* 2 3 3 2 5 4

FCC-A* 0 0 0 0 0 0
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the grid positions of the give-way ship and the direct-sailing ship overlap at the same 
time. We can observe that the path of the give-way ship planned by the traditional A* 
algorithm has 3 to 4 collisions with the direct ship on average, while the planned path 
of the FCC-A* algorithm basically has no collision. This is because the FCC-A* algo-
rithm uses the membership function calculation to quantify the collision risk of the 
two ships and incorporate it as part of the cost calculation. Therefore, the dynamic 
path planning process considers the collision risk at each moment, which greatly 
reduces the collision risk between the give-way ship and the direct ship.

In conclusion, the experimental results show that the dynamic path local planning 
model based on FCC-A* has a slight loss in planning speed compared with the tradi-
tional algorithm, but its planned path is safer than that of the traditional algorithm.

5 � Conclusion
In this work, a second-order ship path planning model is proposed to address the prob-
lem of sea area scene modeling and the slow speed and low safety of ship path planning. 
Specifically, we first create a raster map with ArcGIS, and the global path planning is 
performed on the raster map based on the Dyna-Sarsa(� ) model, which integrates the 
eligibility trace and the Dyna framework on the Sarsa algorithm. Particularly, the eligi-
bility trace is adopted to improve the convergence speed of the model. Meanwhile, the 
Dyna framework obtains simulation experience through simulation training, which can 
further improve the convergence speed of the model. Then, the improved ship trajectory 
prediction model is used to identify the risk of ship collision and switch the path plan-
ning from the first order to the second order. Finally, the second-order dynamic local 
path planning is implemented based on the FCC-A* algorithm, where the cost func-
tion of the traditional path planning A* algorithm is rewritten using the fuzzy collision 
cost membership function to reduce the collision risk of ships. The proposed model is 
evaluated on the Baltic Sea geographic information and ship trajectory datasets, and the 
experimental results show the effectiveness of the proposed model.

In the future, we plan to adopt federated learning model  [43] for privacy protection 
of each ship without influencing the path planning performance. Besides, collaborative 
learning of local and global features  [44, 45] can be used to guide each ship to plan a 
safe path through the collaborative collision avoidance of multiple ships. Moreover, edge 
computing techniques [46] can be also applied in the field of ship path planning to fur-
ther improve the perception ability and decision-making ability and improve the effi-
ciency and safety of ship path planning.
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